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Proxy-based sliding mode control (PSMC) is a control scheme proposed a decade ago originally as
a position controller for robot manipulators. This controller has a unique mathematical structure that
combines a proportional-integral-derivative (PID) controller and a sliding mode controller in an algebraic
way, and has demonstrated its practical usefulness in various applications. Its theoretical foundation,
however, has been quite immature. This article presents a set of stability proofs on PSMC as a minimum
requirement for future practical applications. Finite-time stability and asymptotic stability of terminal
attractors are proven with the use of a non-smooth Lyapunov function.
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1. Introduction

Proxy-based sliding mode control (PSMC) (Kikuuwe & Fujimoto, 2006; Kikuuwe et al., 2010) is a
control scheme that has been proposed by the author and his colleagues originally for position control
of robotic manipulators. It is an extension of proportional-integral-derivative (PID) position control and
also is an approximation of a simple sliding mode control (SMC). Its tracking accuracy is at the same level
as PID control as long as the actuator force does not saturate, but it produces smooth, non-overshooting
resuming motion from large positional errors resulted from actuator force saturation. After its initial
presentation by Kikuuwe & Fujimoto (2006), the practical benefits of PSMC attracted some attentions
and many applications from different research groups have been reported, such as rehabilitation robots
(Van Damme et al., 2009; Liao et al., 2015; Chen et al., 2016; Jin et al., 2016; Kashiri et al., 2016),
piezoelectric nanopositioning systems (Gu et al., 2015), motion platforms (Hastürk et al., 2011; Prieto
et al., 2013), bilateral master-slave systems (Nishi & Katsura, 2015), passive actuators (Kashiri et al.,
2016), a linear resonant actuator (Yoshimoto et al., 2015) and a liquid-based sensing system (Tanaka
et al., 2010). The author and his colleagues have also reported some of its variants (Kikuuwe et al., 2006;
Kikuuwe, 2014) and its experimental evaluation in human-robot interaction (Kikuuwe et al., 2008).

In contrast to its practicality, the theoretical backbone of PSMC has been quite immature. A stability
analysis has been provided by the author and his colleagues (Kikuuwe et al., 2010, Section 4), but
the proof depends on a conjecture, which has not been verified yet. The mathematical structure of
PSMC is rather unique. The controller is described as a differential-algebraic inclusion, which involves
discontinuity in expression, but it is algebraically equivalent to an ordinary differential equation.

This article presents results of theoretical analysis on properties of PSMC. More specifically,
behaviours of PSMC applied to a perturbed one-dimensional second-order system are analysed.
Finite-time and asymptotic stability of terminal invariant sets are proven through the use of a non-smooth
Lyapunov function.

© The authors 2017. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

IMA Journal of Mathematical Control and Information (2018) 35, 1319–1341
doi: 10.1093/imamci/dnx030
Advance Access publication on July 24, 2017

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
ci/article-abstract/35/4/1319/4030793 by (D

) H
iroshim

a U
 M

ed Lib user on 19 D
ecem

ber 2018



1320 R. KIKUUWE

It should be emphasized that this article is not to present a new controller but to provide a theoretical
analysis on an existing controller, namely, PSMC. This article is not either to argue practical advan-
tages of PSMC, but to provide a set of stability proofs as a minimum, baseline requirement for future
practical applications of PSMC. Through some experiments presented in our original articles (Kiku-
uwe & Fujimoto, 2006; Kikuuwe et al., 2010), PSMC has been shown to outperform the conventional
boundary-layer implementation of SMC in terms of the tracking accuracy and the insensitivity to the
discretization noise of the position measurements. This article however does not intend to discuss this
matter in detail.

This article is organized as follows. Section 2 provides some preliminaries, including the overview on
PSMC. Section 3 provides the main results, which are stability proofs of PSMC in the continuous-time
domain. Section 4 presents some concluding remarks.

2. Background

2.1. Mathematical preliminaries

The following scalar functions will be used throughout this article:

sgn(z)
Δ=
{

z/|z| if z �= 0
[ − 1, 1] if z = 0

(2.1)

sat(z)
Δ= z/ max(1, |z|). (2.2)

Here, it should be noted that the function sgn(z) is set-valued at z = 0. These functions are connected
by the following important relation:

∀{x, y} ⊂ R, y ∈ sgn(x − y) ⇐⇒ y = sat(x), (2.3)

of which the proofs are found in previous articles (Kikuuwe & Fujimoto, 2006; Acary et al., 2012).
Throughout this article, ∂X , IntX , clX and ccX denote the boundary, the interior, the closure and

the convex closure of the set X , respectively. The following notation is defined to give the root of a
function:

root
ξ∈C

f (ξ)
Δ= {ξ ∈ C|f (ξ) = 0}. (2.4)

In addition, ‖G(s)‖L1 is the L1 gain of the transfer function G(s). (See, e.g. Cao & Hovakimyan, 2008,
Definition 2.)

For investigating indifferentiable functions, this paper uses the upper derivative of a function with
respect to time, which is defined as follows:

D∗
t Φ(t)

Δ= lim
h̄→+0

sup
|h|≤h̄

Φ(t + h) − Φ(t)

h
. (2.5)

This upper derivative is equal to the (ordinary) derivative if the function Φ(t) is differentiable.
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SOME STABILITY PROOFS ON PROXY-BASED SLIDING MODE CONTROL 1321

2.2. Proxy-based sliding mode control

PSMC (Kikuuwe & Fujimoto, 2006; Kikuuwe et al., 2010) is a control scheme originally intended for
position control of robotic manipulators. In our original contributions (Kikuuwe & Fujimoto, 2006;
Kikuuwe et al., 2010), it is implicitly assumed that PSMC is applied to second-order systems, which
are roughly described as follows:

Mp̈s = τ + φs (2.6)

where M > 0 is the mass of the controlled object, ps is the position of the object, τ is the actuator force
determined by the controller, and φs is sum of unknown forces from any other sources.

With PSMC, the torque command τ is determined by the following differential-algebraic inclusion
(DAI):

τ ∈ Fsgn(pd − q + H(ṗd − q̇)) (2.7a)

τ = K(q − ps) + B(q̇ − ṗs) + L
∫

(q − ps)dt. (2.7b)

Here, pd is the desired position and q is what we call a ‘proxy’ position, and K > 0, B > 0, L ≥ 0,
H > 0, and F > 0 are all constant scalars that satisfies KH > B. The position ps and the velocity ṗs

are assumed to be available in real-time. A straightforward question that can be raised here is which
equation of (2.7a) and (2.7b) determines the controller output τ . The answer is ‘both’, in the sense that
(2.7a) and (2.7b) are a pair of simultaneous equations with two unknowns, τ and q̇, and thus τ and q̇ are
determined so that (2.7a) and (2.7b) are satisfied.

A possible physical interpretation of PSMC (2.7) applied to the system (2.6) is illustrated in Fig. 1.
Here, a sliding mode controller, which is represented by (2.7a), applied to the virtual object, i.e. the
‘proxy’. Meanwhile, a PID controller, (2.7b), connects the controlled object and the proxy. The outputs
of the controllers are both equal to τ , which implies that the proxy is an object that has no mass and that
the forces from the two controllers balance each other. Again, the actuator force τ and the proxy velocity
q̇ are determined so that they satisfy both (2.7a) and (2.7b). Note that setting L = 0 means replacing the
PID controller by a PD controller. In our previous paper (Kikuuwe et al., 2010), PSMC with L > 0 and
L = 0 are respectively referred to as PID-type PSMC and PD-type PSMC.

It should be noted that the purpose of the controller (2.7) is not to merely stabilize the simple system
(2.6). The original articles (Kikuuwe & Fujimoto, 2006; Kikuuwe et al., 2010) intended to eliminate
violent overshooting behaviours of position-controlled robots when the actuator forces are saturated and
when the position is far separated from the desired position, while preserving the accuracy of position
control at the same level as the well-tuned PID controller. The controller (2.7) has been developed based
on quite an intuitive consideration using Fig. 1, in which the ‘proxy’ realizes the ideal ‘sliding mode’ by
completely satisfying pd −q+H(ṗd − q̇) = 0, and the actual controlled object is restrained to the ‘proxy’
through the sufficiently stiff PID controller. In the ‘sliding mode’, the proxy exponentially converges
to the desired position without overshoots, and the rate of convergence is adjusted by the parameter H.
The sliding-mode-like equation (2.7a) is used not for the robustness purposes, but for realizing the non-
overshooting response after actuator force saturation. This means that PSMC (2.7) is not a controller that
was built upon a mathematically well-formulated control objective or a particular Lyapunov function. In
spite of such ambiguity in the theoretical basis, PSMC has been found useful by some research groups
for some real-world applications, especially those involving human–robot interaction, as reviewed in
Section I.
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1322 R. KIKUUWE

Fig. 1. A physical interpretation of PSMC (2.7) applied to the system (2.6).

For the implementation to digital controllers, the DAI (2.7) is discretized with the implicit Euler
method. By the application of (2.3), the discretized form (Kikuuwe et al., 2010, Equation (27)) can be
transformed into a closed-form, analytical solution (Kikuuwe et al., 2010, Equation (33)), which can be
used as the controller algorithm of PSMC. Details of the derivation can be found in our previous articles
(Kikuuwe & Fujimoto, 2006; Kikuuwe et al., 2010).

2.3. Properties of PSMC

With the direct application of (2.3), the DAI (2.7), without discretization, can also be converted
into another expression having no discontinuities or set-valuedness, which is the following ordinary
differential equations:

σ = ps − pd + H(ṗs − ṗd) (2.8a)

τ = −Fsat

(
B

FH

(
σ − KH − B

B
ȧ − LH

B
a

))
(2.8b)

ä = (−Kȧ − La + τ)/B. (2.8c)

Here, ȧ
Δ= q − ps. The derivation from (2.7) to (2.8) is detailed in Appendix A. It should be emphasized

that no approximation intervenes between (2.7) and (2.8) and the apparent algebraic loop through τ in
(2.7) is removed thanks to the use of (2.3). The expression (2.8) is convenient for theoretical analysis in
the continuous-time domain. Note that the expression (2.8) of the controller does not look like a sliding
mode controller anymore, but it is algebraically equivalent to (2.7). The controller (2.8) can be viewed
to be in the sliding mode when the right-hand side of (2.8b) is unsaturated, i.e. when∣∣∣∣σ − KH − B

B
ȧ − LH

B
a

∣∣∣∣ ≤ FH

B
(2.9)

holds true because the condition (2.9) is equivalent to

pd − q + H(ṗd − q̇) = 0, (2.10)

which results in the set-valuedness of the right-hand side of (2.7a). The equivalence between (2.9) and
(2.10) can be seen through the use of (2.8) and (2.3).
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SOME STABILITY PROOFS ON PROXY-BASED SLIDING MODE CONTROL 1323

The expression (2.8) can be observed from many perspectives. For example, using Ŵ
Δ= FH/B

results in the following expression:

τ = −Fsat

(
σ

Ŵ
− τf

F

)
(2.11a)

where

L[τf ] = (K − B/H)s + L

Bs2 + Ks + L
L[τ ]. (2.11b)

One can see that (2.11), which is equivalent to (2.7), is an approximation of the discontinuous controller

τ = −Fsgn(σ ), (2.12)

which can be obtained by taking the limit of Ŵ → 0 with (2.11a) in the region of σ �= 0. In this extreme
case, if there exists an R that satisfies |φs − Mp̈d | < R < F, the sliding mode σ = 0 takes place in the
region |ṗs − ṗd | ≤ H(F − R)/M (see Appendix B). This justifies the use of the term ‘sliding mode’ in
the name of PSMC as it can be seen as an approximation of SMC. Moreover, (2.11) shows that τf is a
low-pass filtered value of the actuator force τ . That is, PSMC can be seen as a SMC with a boundary-
layer plus low-pass filtered torque feedback. This interpretation contrasts PSMC with a simple output
low-pass filtering of SMC, which is one of conventional implementations of SMC.

Another aspect of (2.8) can be made visible by setting H = B/K and L = 0, which reduces (2.11a)
into

τ = −Fsat(Kσ/F). (2.13)

The controller (2.13) can be viewed as a saturated PD controller whose P and D gains are K and KH,
respectively, and also can be viewed as a SMC with a boundary layer whose width is F/K . In this sense,
PSMC is a generalization of these schemes. This also justifies the use of ‘sliding mode’ in the name of
the controller (2.8).

Our previous article (Kikuuwe et al., 2010) presented an attempt for the stability proof of PSMC
applied to a multi-dimensional second-order mechanical system involving Coriolis and centrifugal terms.
In that attempt, the stability is proven based on a conjecture (Kikuuwe et al., 2010, Conjecture 1), which
depends on the existence of a strict storage function Vp(·, ·) that satisfies the condition presented as
equation (45) in Kikuuwe et al.’s (2010) article. Unfortunately, such a function has not been found yet.
There have been proposed some strict Lyapunov functions as reviewed by Kikuuwe (2013), but they do
not satisfy equation (45) in Kikuuwe et al.’s (2010) article. Leaving the search for such a function as an
open problem, this article focuses on the case with a simple one-dimensional system.

3. Main results

3.1. The system

This article considers the system (2.6) controlled with PSMC (2.8) where an extended perturbation

φs − Mp̈d is bounded. By setting p
Δ= ps − pd and φ

Δ= φs − Mp̈d and specifying the bound of the
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1324 R. KIKUUWE

extended perturbation, the system considered in this article is now formulated as follows:

Mp̈ = τ + φ (3.1a)

τ = −Fsat

(
B

FH

(
p + Hṗ − KH − B

B
ȧ − LH

B
a

))
(3.1b)

ä = (−Kȧ − La + τ)/B (3.1c)

|φ| ≤ Rm < R < F (3.1d)

where M, K , B, H, F and R are strictly positive constants, L and Rm are non-negative constants and a,
p, τ and φ are scalar variables. The system (3.1) can be seen as a perturbed position-controlled system
that is intended to realize p → 0.

Let us define a vector as follows:

x
Δ=
[

σ

v

]
Δ=
[

p + Hṗ
ṗ

]
∈ R

2. (3.2)

In addition, let us define new symbols as follows:

φ̂
Δ= φ

M
, F̂

Δ= F

M
, R̂

Δ= R

M
, R̂m

Δ= Rm

M
, B̂

Δ= B

K
, L̂

Δ= L

K
, Ŵ

Δ= FH

B
. (3.3)

Then, the system (3.1) can be rewritten as the following state-space representation:

ẋ = Ψ (x, φ̂ − F̂ρ) (3.4a)

ρ = sat((σ + σf )/Ŵ) (3.4b)[
ė
ȧ

]
=
[

(−e − L̂a)/B̂ − Ŵρ/H
e

]
(3.4c)

σf = −((H − B̂)e + HL̂a)/B̂ (3.4d)

|φ̂| ≤ R̂m < R̂ < F̂ (3.4e)

where

Ψ

([
σ

v

]
, η

)
Δ=
[

v + Hη

η

]
. (3.5)

Figure 2 illustrates a block diagram of the system (3.4). This system can be seen as a pair of dynamical
subsystems, (3.4a) and (3.4c) and (3.4d), interconnected through the static mapping (3.4b), of which the
outputs is ρ.

The state vector of the total system (3.4) can be set as the following four-dimensional vector:

z
Δ= [xT , e, a]T = [σ , v, e, a]T ∈ R

4. (3.6)
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SOME STABILITY PROOFS ON PROXY-BASED SLIDING MODE CONTROL 1325

Fig. 2. System (3.4), which represents a perturbed mass controlled with PSMC. Note that x
Δ= [σ , v]T .

Then, the system (3.4) can also be written as a saturated linear system of the following form:

ż = Âz + B̂sat(ĈT z) + Êφ̂ (3.7)

where Â ∈ R
4×4 and {̂B, Ĉ, Ê} ⊂ R

4 are appropriately chosen matrices and vectors. If there existed a
positive definite matrix P ∈ R

4×4 with which P(̂A + B̂ĈT ) + (̂A + B̂ĈT )T P < 0 and PÂ + ÂT P < 0
are satisfied, the global asymptotic stability and the ultimate boundedness with a bounded |φ̂| could be
obtained. It is however not the case (i.e. such a matrix P does not exist) because the matrices Â and
Â + B̂ĈT do not satisfy the condition provided by Shorten et al. (2004, Theorem 2). It has been known
that systems of the form (3.7) can be analysed through the conventional Popov and Circle criteria (Khalil,
2002). In addition, some necessary conditions for the stability of systems of the form (3.7) have been
provided, e.g. by Hu et al. (2002) and Hu et al. (2005). These approaches are however difficult to apply
to the analytical study on our particular case.

One can see that the system (3.4) is unsaturated and linear in the following subset of the state space:

Ŝ Δ=
{

[σ , v, e, a]T ∈ R
4
∣∣ |σ + σf | ≤ Ŵ

}
. (3.8)

This region is the region in which (2.9), or equivalently, (2.10), is satisfied, and thus is the region in
which the proxy is in the sliding mode. The attractively of this set Ŝ is of some interest but its proof has
not been obtained yet. Therefore, a common approach for sliding mode systems, which usually shows
the existence of the sliding mode first and the stability of the origin next, cannot be employed in this
paper.

With the use of a simple Lyapunov function, the following limited result is obtained.

Theorem 3.1 (Global asymptotic stability of the origin of PD-type PSMC with φ̂ = 0) Consider the
system (3.4a), (3.4b) and (3.4c) and assume that L̂ = 0 and φ̂ ≡ 0. Then, the subspace {[xT , e, a]T ∈
R

4 | x = 0 ∧ e = 0}, which includes the origin, is globally asymptotically stable.

Because a can be practically excluded from the state vector when L̂ = 0, this theorem states the
asymptotic stability of the origin of R

3 (instead of R
4). The proof is shown in Appendix C. Unfortunately,

the proof cannot be extended into the PID-type PSMC, i.e. the case of L̂ > 0. Moreover, the Lyapunov
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1326 R. KIKUUWE

function used in this proof does not provide appropriate estimate of the domain of attraction in the
presence of the disturbance φ̂ �≡ 0.

Because of the limitations of the aforementioned approaches, we need somewhat non-standard
approach, which is presented as follows.

3.2. Subsystem

For the convenience of further analysis, we now consider the subsystem (3.4a), of which the state vector
is x ∈ R

2. Equations (3.4c) and (3.4d) imply that ρ and σf are linearly connected by the following
Laplace-domain representation:

L[σf ] = ŴG(s)L[ρ] (3.9)

where

G(s)
Δ= (1 − B̂/H)s + L̂

B̂s2 + s + L̂
. (3.10)

The transfer function G(s) is Hurwitz and thus it is stable in the bounded-input bounded-output sense.
Noticing that |ρ| ≤ 1 is always satisfied, one can see that

|σf |/Ŵ ≤ Ng
Δ= ‖G(s)‖L1 (3.11)

is satisfied for all t ≥ 0. Simple calculus shows that Ng = 1 if

0 ≤ L̂ <
H − B̂

H2

(
≤ 1

4B̂

)
. (3.12)

Considering (3.4b), one can find that the boundedness of σf directly leads to the state-dependent
boundedness of ρ as follows:

ρ ∈ cc (sgn(σ − W) ∪ sgn(σ + W)) (3.13)

where

W
Δ= Ŵ

(
1 + Ng

)
. (3.14)

For the convenience of further discussions, the subsystem (3.4a) combined with the input conditions
(3.4e) and (3.13) are now aggregated as follows:

ẋ = Ψ (x, φ̂ − F̂ρ) (3.15a)

ρ ∈ cc (sgn(σ − W) ∪ sgn(σ + W)) (3.15b)

|φ̂| ≤ R̂m < R̂ < F̂. (3.15c)

In the following, a sufficient condition of the stability of the original system (3.4) is provided through
the stability analysis on the subsystem (3.15), which is more tractable.
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SOME STABILITY PROOFS ON PROXY-BASED SLIDING MODE CONTROL 1327

3.3. Worst destabilizer candidates

For the stability analysis of the perturbed system (3.15), we here consider the following autonomous
system:

ẋ = Ψ (x, φ̂ − F̂ρ) (3.16a)

ρ ∈ sgn(σ − Wsgn(v)) (3.16b)

φ̂ ∈ R̂sgn(v). (3.16c)

The ‘artificial’ disturbances ρ and φ̂ in (3.16b) and (3.16c) are predicted to pull the state away from the
origin marginally outside the conditions (3.15b) and (3.15c), respectively. In this sense, the autonomous
system (3.16) exhibits a worse-than-the-worst case scenario of the perturbed system (3.15). An aim of
using these ‘artificial’ disturbances is to derive a Lyapunov function candidate of which the contours
coincide (at least partially) with the solution trajectories of this disturbed system. Another aim is to
provide an accurate estimate of the domain of attraction based on the inference that, if a solution orbit
is a closed curve in the state space R

2, it is on the boundary or in the outside of the domain of attraction.
Let us define the following four subsets of the state space:

R1
Δ= { x ∈ R

2 | σ > W ∧ v > 0} (3.17)

R2
Δ= { x ∈ R

2 | σ < W ∧ v > 0} (3.18)

R3
Δ= −R1 = { x ∈ R

2 | σ < −W ∧ v < 0} (3.19)

R4
Δ= −R2 = { x ∈ R

2 | σ > −W ∧ v < 0}. (3.20)

The disturbances ρ and φ̂ take constant values within the interior of each of the subsets. A careful
derivation reveals that, in the regions Ri (i ∈ {1, · · · , 4}), solution orbits of the autonomous system
(3.16) are, respectively, contours of the following functions:

G(x)
Δ=
{

G1(sgn(v)x) if x ∈ R1 ∪ R3

G2(sgn(v)x) if x ∈ R2 ∪ R4
(3.21)

where

G1(x)
Δ= σ + (v − Vy)

2

2(F̂ − R̂)
− W (3.22)

G2(x)
Δ= −σ + (v + Vw)2

2(F̂ + R̂)
+ W − 2F̂2H2

F̂ + R̂
(3.23)

and

Vy
Δ= H(F̂ − R̂), Vw

Δ= H(F̂ + R̂). (3.24)

For the convenience of upcoming derivations, the constant terms of these functions are chosen so that
G1(x) ≥ 0 for all x ∈ R1 and G1([W , Vy]T ) = G2([W , Vy]T ) = 0.
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1328 R. KIKUUWE

Fig. 3. Plots of G(x) with {F̂, H, R̂, W} = {1, 1, 0.5, 0.2}. In (a), the red and yellow curves are solution orbits of x(t) of the
autonomous system (3.16). The yellow one is a closed curve, which bounds the subset D. The blue lines are subsets on which
G(x) is discontinuous. The green curves are the contours of G(x) = 0. Plots (c) and (d) are enlarged views of (a) and (b),
respectively.

Figure 3 shows the plot of function G(x). Figure 3(a) shows examples of solution orbits of the system
(3.16), which are composed of contours of Gi(x). These orbits start from the line {[W , v]T |v > 0} and
leads clock-wise. The yellow orbit is a special one that forms an closed curve. It can be obtained by the
following simultaneous equations with respect to Σd and Vd :

G1([W , Vd]T ) = G1([Σd , 0]T ) (3.25)

G2([W , Vd]T ) = G2([−Σd , 0]T ), (3.26)

of which the solutions are, if W is small enough, as follows:

Σd
Δ= F̂H2(F̂2 − R̂2)

R̂2

⎛⎝1 +
√

1 − 2R̂W

H2(F̂2 − R̂2)

⎞⎠2

(3.27)
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SOME STABILITY PROOFS ON PROXY-BASED SLIDING MODE CONTROL 1329

Fig. 4. Some contours and discontinuities of G(x). The thick lines are the subsets on which G(x) is discontinuous.

Vd = H(F̂2 − R̂2)

R̂

⎛⎝1 +
√

1 − 2R̂W

H2(F̂2 − R̂2)

⎞⎠ . (3.28)

By using them, we can define the closed set bounded by the closed orbit, which is as follows:

D Δ= cl

({
x ∈ R1 ∪ R3 | G(x) < G1([W , Vd]T )

}
∪ { x ∈ R2 ∪ R4 | G(x) < G2([W , Vd]T )

})
. (3.29)

This set D is the region enclosed by the yellow curve in Fig. 3(a) and (b). One can see that solutions of
the system (3.16) starting inside D approaches the origin, while those starting outside D diverge.

Figure 4 shows an enlarged view of the contours of G(x) near the origin. Here, it is assumed that W
is small enough to satisfy

W < Wc
Δ= H2(F̂ − R̂)(3F̂ + R̂)

4(F̂ + R̂)
(3.30)

and the symbols used in the figure are defined as follows:

Y Δ= cl{ x ∈ R2 ∪ R4 | |σ | ≤ W ∧ G(x) ≤ 0} ⊂ R
2 (3.31)

Z Δ= cl{ x ∈ R2 ∪ R4 | G(x) ≤ −2(Wc − W)} ⊂ Y . (3.32)

It can be seen that the condition (3.30) is necessary for Z ∈ Y and is sufficient for Vd in (3.28) being a
real number.
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1330 R. KIKUUWE

3.4. Main results

The sets Y and Z introduced in the previous section have important meanings. A careful observation on
the definitions of Y and Z shows that, with W → +0, one has

Y → Y0
Δ= {x ∈ R

2 | σ = 0 ∧ |v| ≤ Vy } (3.33)

Z → {0}. (3.34)

In this case of W → +0, the system (3.15) reduces to a system with sliding mode that can be described
as follows:

ẋ ∈ Ψ (x, φ̂ − F̂ sgn(σ )) (3.35a)

|φ̂| ≤ R̂m < R̂ < F̂, (3.35b)

or equivalently,

ṗ = v (3.36a)

v̇ ∈ −F̂ sgn(p + Hv) + φ̂ (3.36b)

|φ̂| ≤ R̂m < R̂ < F̂. (3.36c)

It is easy to see that, in the system (3.35), the sliding mode takes place on the line segment Y0, which
can be referred to as a ‘sliding patch’ (see Appendix B). Moreover, after the state arrives in the sliding
patch Y0, it asymptotically approaches the origin {0} ∈ R

2. In this sense, the sets Y and Z are analogous
to the sliding patch Y0 and the origin {0}, respectively.

The main results on the perturbed subsystem (3.15) are summarized as follows:

Theorem 3.2 (Finite-time stability of Y) Consider the system (3.15) with W satisfying (3.30). Then,
the set Y is positively invariant and finite-time stable with the domain of attraction including the set D.

Theorem 3.3 (Asymptotic stability of Z) Consider the system (3.15) with W satisfying (3.30). Then,
the set Z , which is a subset of Y , is asymptotically stable with the domain of attraction including the
set D.

Proofs are presented in subsequent sections. Due to the definition (3.29) of D, the region of attraction
D in these theorems can be arbitrarily enlarged by increasing F̂. Moreover, if there is no disturbance
(i.e., φ̂ ≡ 0), one can set R̂m = 0 and R̂ to be arbitrarily small, and thus the stability of the sets Y and Z
are given in the global sense.

3.5. Finite-time stability of Y: proof

A proof of Theorem 3.2 is now provided. Here we employ a Lyapunov function candidate that partially
shares the contours with the function G(x).
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SOME STABILITY PROOFS ON PROXY-BASED SLIDING MODE CONTROL 1331

Proof of Theorem 3.2. Let us define

α
Δ= R̂ − R̂m

F̂ + R̂
> 0. (3.37)

Then, if x ∈ cl(R1 ∪ R3), in which ρ = sgn(v) = sgn(σ ), the following is satisfied:

Ġ1(sgn(v)x) = −|v|(F̂(sgn(v)ρ − 1) + (R̂ − sgn(v)φ̂))

F̂ − R̂

≤ −α
F̂ + R̂

F̂ − R̂
|v|. (3.38)

Moreover, if x ∈ cl(R2 ∪ R4) and v �= 0,

Ġ2(sgn(v)x) = −|v|(F̂ + R̂ + sgn(v)(F̂ρ − φ̂))

F̂ + R̂

≤ −α|v| (3.39)

holds true. These inequalities justify our choice of (3.16b) and (3.16c) as worse-than-the-worst desta-
bilizers because Ġ(x) ≤ 0 always holds true and the equality holds with the disturbances (3.16b) and
(3.16c). Moreover, they also suggest that the functions G1(·) and G2(·) can be used as building blocks
to construct a Lyapunov function of the system (3.15).

Let us construct a Lyapunov function candidate, which is defined as follows:

U(x) =

⎧⎪⎪⎨⎪⎪⎩
0 if x ∈ Y
U1(sgn(v)x) if x ∈ D1

G2(sgn(v)x) if x ∈ D2

U5(|σ |) if x ∈ D3

(3.40)

where

U1(x)
Δ= G2

([
W

root
ξ∈[Vy ,+∞)

(G1(x) − G1([W , ξ ]T ))

])

= 2F̂2H2

F̂ + R̂

⎛⎝(1 +
√

G1(x)

2F̂2H2/(F̂ − R̂)

)2

− 1

⎞⎠ (3.41)

U5(σp)
Δ= U1(xσ (σp)) (3.42)

xσ (σp)
Δ=
[

σp

vσ (σp)

]
Δ=
⎡⎣ σp

Σd − σp

Σd − W
Vy

⎤⎦ (3.43)
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1332 R. KIKUUWE

and

D1
Δ= {x ∈ D\Y | sgn(v)σ ≥ W ∧ |v| ≥ vσ (|σ |)} (3.44)

D2
Δ= {

x ∈ D\Y | |v| ≤ W ∨ (sgn(v)σ ≤ −W

∧ G2(sgn(v)x) ≥ U5(|σ |))} (3.45)

D3
Δ= (D\Y)\Int(D1 ∪ D2). (3.46)

Here, Di are chosen so that they overlap each other at their boundaries and that Di ∩ Y = ∅ and
D\Y = D1 ∪ D2 ∪ D3 are satisfied. (Figure 5 illustrates these sets and the function U(x).) The function
U(x) is positive definite with respect to the set Y and is continuous in D. Therefore, the proof can be
completed by showing that, for any initial states x(0) = x0 ∈ D\Y , there exists a positive constant q(x0)

such that D∗
t U(x) ≤ −q(x0) for all t > 0. (See, e.g. Polyakov & Fridman (2014, Theorem 11).)

If x ∈ D1 ⊂ cl(R1 ∪ R3), in which v �= 0, the following is satisfied:

U̇(x) = U̇1(sgn(v)x)

= F̂ − R̂

F̂ + R̂

⎛⎝√ 2F̂2H2

G1(sgn(v)x)(F̂ − R̂)
+ 1

⎞⎠ Ġ1(sgn(v)x)

≤ F̂ − R̂

F̂ + R̂
Ġ1(sgn(v)x) ≤ −α|v| < 0. (3.47)

If x ∈ D2 ⊂ cl(R2 ∪ R4), in which v �= 0, the following is satisfied:

U̇(x) = Ġ2(sgn(v)x) < −α|v| < 0. (3.48)

If x ∈ D3, in which sgn(σ )v ≤ Vy and |σ | > W are satisfied, the following is satisfied:

U̇(x) = U̇5(|σ |)

= F̂ − R̂

F̂ + R̂

⎛⎝√ 2F̂2H2

G1(xσ (|σ |))(F̂ − R̂)
+ 1

⎞⎠×

[
1

F̂(vσ (|σ |) − Vy)

F̂ − R̂

]⎡⎣ 1

− Vy

Σd − W

⎤⎦ sgn(σ )σ̇

≤ − F̂ − R̂

F̂ + R̂
H(R̂ − R̂m) = −αVy < 0. (3.49)

Therefore, one can see that U(x) is strictly monotonically decreasing in each of the sets D1, D2 and D3.
The equality, U̇(x) = 0, can hold only on the points [±Σd , 0]T , which are on the boundary of D but not
included in D.
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SOME STABILITY PROOFS ON PROXY-BASED SLIDING MODE CONTROL 1333

(a) (b)

(c) (d)

Fig. 5. Plots of U(x) with {F̂, H, R̂, W} = {1, 1, 0.5, 0.2}. Plots (c) and (d) are enlarged views of (a) and (b), respectively. The
yellow closed curve represents U(x) = U([Σd , 0]T ), which bounds the subset D. The blue curves are subsets on which U(x) is
indifferentiable. The green curves are the boundary of Y where U(x) = 0.

Due to its definition and due to the fact that U(x) is continuous everywhere, the upper derivative
D∗

t U(x) is upperbounded by the derivatives of U̇(x) evaluated in the regions to which x belongs. That
is, we have the followings:

D∗
t U(x) ≤ Ġ1(sgn(σ )x) ≤ −α|v| < 0 if x ∈ D1 (3.50)

D∗
t U(x) ≤ Ġ2(sgn(v)x) ≤ −α|v| < 0 if x ∈ D2 (3.51)

D∗
t U(x) ≤ U̇5(|σ |) ≤ −αVy < 0 if x ∈ D3. (3.52)

This means that the function U(x(t)) strictly monotonically decreases everywhere in D\Y =
D1 ∪ D2 ∪ D3.

Let us define the function va : R
2 → R as follows:

va(x0)
Δ= min

x∈D1∪D2
U(x)≤U(x0)

|v|. (3.53)
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1334 R. KIKUUWE

For all t > 0 and all initial states x0 ∈ D\Y , U(x) ≤ U(x0) and 0 < va(x0) < Vy are satisfied because
of (3.50), (3.51) and (3.52). Therefore,

D∗
t U(x) ≤ −αva(x0) < 0 (3.54)

is satisfied for all t > 0 and any initial states x0 ∈ D\Y . This concludes the proof. �

Remark 3.1 By using the function U(x), the definition (3.29) of the set D can be concisely rewritten
as follows:

D = {x ∈ R
2 | U(x) < U([Σd , 0]T )}. (3.55)

3.6. Asymptotic stability of Z: proof

A proof of Theorem 3.3 is now presented. It employs another Lyapunov function, but its choice is
relatively easy because the estimated domain of attraction should be only large enough to include
an open set including Y , considering that the finite-time reaching to Y has already been shown by
Theorem 3.2.

Proof of Theorem 3.3. Let us define the following Lyapunov function:

Uz(x)
Δ= max(0, Uz1(x)) + max(0, Uz2(x)) (3.56)

where

Uz1(x)
Δ= G2

([
Wsgn(v)sat(σ/W)

|v|
])

+ 2(Wc − W) (3.57)

Uz2(x)
Δ= |σ | − W . (3.58)

The function Uz(x) satisfies Uz(x) = 0 if and only if x ∈ Z , satisfies Uz(x) ≥ 0 everywhere, and is
continuous everywhere. From the definition,

U̇z(x) = Ġ2(sgn(v)x) < −α|v| (3.59)

if |σ | < W ,

U̇z(x) < −α|v| (3.60)

also if |σ | > W ∧ vσ < 0, and

U̇z(x) < − (R̂ − R̂m)(|v| + 2Vw) + 2((F̂ + R̂)Vy − R̂|v|)
F̂ + R̂

= − 2R̂

F̂ + R̂

(
Vy(F̂ + R̂)

R̂
− |v|

)
(3.61)
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SOME STABILITY PROOFS ON PROXY-BASED SLIDING MODE CONTROL 1335

if |σ | > W ∧ vσ > 0. Therefore, D∗
t Uz(x) < 0 is satisfied in the neighbourhood of Z including Y

and D∗
t Uz(x) = 0 may happen only if v = 0. At v = 0, the definition (3.15a) of the system implies

that v̇ = 0 does not happen. Therefore, invoking LaSalle’s invariance theorem, one can find that Z is
asymptotically stable and Y is a subset of the domain of attraction. Moreover, because Theorem 3.2
states that Y is finite-time stable with the domain of attraction including D, one can conclude that Z is
asymptotically stable with the domain of attraction including D. �

3.7. Stability of the total system

The main subject of this article is the stability of the total system (3.4), which is on the total state space
R

4. Theorems 3.2 and 3.3 directly lead to the following result:

Theorem 3.4 (Stability of PSMC) Consider the system (3.4). Let A1 and A2 be defined as follows:

A1
Δ= ‖sG2(s)‖L1, A2

Δ= ‖G2(s)‖L1 (3.62)

where

G2(s) = 1/(B̂s2 + s + L̂), (3.63)

and let us define the following sets:

D̂ Δ= D × [−A1, A1] × [−A2, A2] ⊂ R
4 (3.64)

Ŷ Δ= Y × [−A1, A1] × [−A2, A2] ⊂ R
4 (3.65)

Ẑ Δ= Z × [−A1, A1] × [−A2, A2] ⊂ R
4. (3.66)

Then, the set Ŷ is finite-time stable and the set Ẑ is asymptotically stable with the domain of attraction
including D̂.

Proof. The state-space equation (3.4c) implies that the signal ρ is linearly related to e and a in the
following forms:

L[e] = sG2(s)L[ρ], L[a] = G2(s)L[ρ]. (3.67)

From this and from the fact that |ρ| ≤ 1 for all t ≥ 0, one can see that, if |e| ≤ A1 and |a| ≤ A2 are
satisfied when t = 0, they are also satisfied for all t > 0. Considering this fact and Theorems 3.2 and
3.3, one can see that the proof is complete. �

Remark 3.2 Theorem 3.4 slightly abuses the notion of the asymptotic stability and the finite-time
stability because D̂ shares portions of its boundaries with Ŷ and Ẑ , not being a superset of neigh-
bourhoods of Ŷ and Ẑ . It is not however practically important because there is no practical reasons
to set the initial values of [e, a]T , which are the controller’s internal state variables, outside the region
[−A1, A1] × [−A2, A2].
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1336 R. KIKUUWE

The system (3.4), which is equivalent to (3.1), implicitly includes the PID controller (3.1c). From
Hurwitz stability criterion, one can see that the stability of the PID-controlled second-order system
requires BK > ML, which is equivalent to

F̂H > ŴL̂. (3.68)

Interestingly, the system (3.4) does not require this condition to achieve the asymptotic stability of the
set Ẑ . Through a straightforward derivation, one can see that the condition (3.68) is the necessary and
sufficient condition of the unsaturated linear system to which the system (3.4) reduces in the subset Ŝ.
This means that, if the condition (3.68) is violated, the system is unstable in the subset Ŝ. Therefore, if the
condition (3.68) is violated, the state z ∈ R

4 will not reach the origin {0} ∈ R
4, which lies in the subset

Ŝ, although it asymptotically approaches the set Ẑ . This may be able to be seen as a chattering-like
behaviour around the origin in the set Ẑ .

If there exists a scalar function Uo : R
4 → R with which Uo(0) = 0, Uo(z) > 0 and D∗

t Uo(z) < 0
for all z ∈ Ẑ\{0} and with φ̂ = 0, the origin {0} ∈ R

4 can be shown to be asymptotically stable with
the domain of attraction including D̂. Such a function would require the condition (3.68) to be negative
definite. The quest for such a function Uo is left for future study.

3.8. Illustrative numerical examples

Some numerical examples are now presented to illustrate the results of analysis. The simulations are
done for the system (3.1), which is a mass (3.1a) under the perturbation (3.1d) controlled with PSMC
(3.1b) and (3.1c). In the simulation, the controller (3.1b) and (3.1c) is implemented with the Backward
Euler discretization as detailed in our previous articles (Kikuuwe & Fujimoto, 2006; Kikuuwe et al.,
2010), and the position p and the velocity v of the mass are updated by the fourth-order Runge Kutta
integration of (3.1a). The controlled system (3.1a) is set up as M = 1 and φ = 0.49 sin(20π t) and
thus we can set R = 0.5. The controller parameters are set as {F, H, K , B, L} = {1, 1, 100, 10, 200}. The
timestep size is T = 0.001. These settings result in {F̂, H, R̂, W} = {1, 1, 0.5, 0.2}, which is the same
setting as Figs 3 and 5.

The results are shown in Fig. 6. It includes the solution trajectories of which the initial values of
σ are four different values and the initial values of {v, e, a} are zero. Figure 6(a) and (b) shows that all
solution trajectories reach the sets Y and Z , near the origin. Fig. 6(c) shows that the variable σ + σf ,
which appears in (3.4b), converges to the region |σ + σf | < Ŵ , with which the system is unsaturated
and linear, and further reduces to the neighbourhood of zero asymptotically. Fig. 6(d) shows asymptotic
convergence of the position p to the neighbourhood of zero.

Figure 7 shows another set of numerical results with L = 2000, which is 10 times of the case of
Fig. 6. This setting does not alter {F̂, H, R̂, W} but it violates the condition (3.68). The result shows that
there is vibratory behaviour around the set Ŝ, which can be seen as chattering-like, and thus the origin
is not reached. The sets Y and Z are, however, reached as implied by Theorems 3.2 and 3.3.

4. Concluding remarks

This article has presented stability analysis on PSMC. A non-smooth Lyapunov function has been
employed to provide an accurate estimate of the region of attraction under a bounded disturbance. Two
terminal invariant sets have been derived and their finite-time stability and asymptotic stability have
been proven. It has been also shown that the terminal invariant sets can be made arbitrarily small by
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SOME STABILITY PROOFS ON PROXY-BASED SLIDING MODE CONTROL 1337

Fig. 6. Illustrative numerical examples of solution trajectories. Thick curves indicate solutions with different initial states. The
graph (a) shows the trajectories in the σ -v subspace of the state space. The graph (b) is an enlarged view of the graph (a) and shows
that the sets Y and Z are reached, as suggested by Theorems 3.2 and 3.3. The graph (c) shows the variable σ + σf , indicating that
the system reaches Ŝ and is stable therein, which is the consequence of the condition (3.68) being satisfied. The graph (d) shows
that the position p asymptotically converges to 0 in any cases.

setting the parameter Ŵ smaller, and that the domain of attraction can be arbitrarily enlarged by setting
F̂ higher. The work presented here is limited to a simple one-dimensional case, but many of multi-
dimensional mechanical systems can be decoupled into such simple systems when the cross-coupling
terms are appropriately bounded, as is the case in robotic manipulators with joint transmissions with
high reduction ratios.

As overviewed in Section 1, some research groups have already reported applications of PSMC
mainly to position control of robotic devices. The main feature of PSMC that attracted their attention is
that PSMC does not produce violent overshooting behaviours when the actuator forces are saturated and
when the position is far separated from the desired position. Because the present article has focused only
on the stability, the essence of this non-overshooting feature has not been discussed in this article and it
still needs more theoretical analysis. The robustness against the measurement noise has been shown only
empirically by our original articles (Kikuuwe & Fujimoto, 2006; Kikuuwe et al., 2010) in comparison
with the standard boundary-layer implementation of SMC. This robustness may be attributed to the DAI
structure (2.7) and to its backward Euler implementation (Kikuuwe & Fujimoto, 2006; Kikuuwe et al.,
2010). Theoretical analysis on this matter is still an open problem for future studies.
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1338 R. KIKUUWE

Fig. 7. Numerical example of the same setting as Fig. 6 except a higher value of L, which violates the condition (3.68). The sets
Ŷ and Ẑ are still stable although the graph of σ + σf shows a persistent oscillatory behaviour, which indicates that the system
state does not stay in Ŝ.
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Appendix A. Derivation from (2.7) to (2.8)

By substituting q = p + ȧ to (2.7) and eliminating ä, one can obtain the following:

τ ∈ Fsgn

(
−σ + KH − B

B
ȧ + HL

B
a − Hτ

B

)
(A.1)
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where

σ = p − pd + H(ṗ − ṗd). (A.2)

Here, one can easily see that the sgn(·) function defined in (2.1) has the following property:

sgn(x) = sgn(cx), ∀c > 0, ∀x ∈ R. (A.3)

Thus, (A.1) can be rewritten as follows:

τ

F
∈ sgn

(
B

FH

(
−σ + KH − B

B
ȧ + HL

B
a

)
− τ

F

)
. (A.4)

This expression involves an algebraic loop of τ/F and the set-valuedness, but the direct application of
(2.3) shows that (A.4) is analytically equivalent to the following expression:

τ

F
= sat

(
B

FH

(
−σ + KH − B

B
ȧ + HL

B
a

))
, (A.5)

which is free from an algebraic loop or the set-valuedness. Equation (A.5) directly leads to (2.8b).

Appendix B. Existence of sliding mode in simple sliding-mode-controlled system

This appendix section discusses the simple one-dimensional system (2.6) controlled with an ideal sliding
mode controller (2.12), which is obtained as a limit of PSMC. Now, such a system can be written as
follows:

Mp̈s = −Fsgn(σ ) + φs (B.1)

where

σ
Δ= ps − pd + H(ṗs − ṗd). (B.2)

Here let us consider the following function:

Vs(σ )
Δ= σ 2/2. (B.3)

If there exist R and Rm that satisfy |φs − Mp̈d | ≤ Rm < R < F for all t > 0, one can see the following:

V̇s(σ ) = σ (ṗs − ṗd + H (−Fsgn(σ ) + φs − Mp̈d) /M)

< −|σ |
(

H(F − R)

M
− |ṗs − ṗd |

)
. (B.4)

This indicates that, in the region where |ṗs − ṗd | < H(F − R)/M is satisfied, the sliding mode σ = 0
takes place.
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Appendix C. Proof of Theorem 3.1

Proof of Theorem 3.1. Let us consider the following Lyapunov function candidate:

Upd(z) = v2

2
+ F̂He2

2B̂Ŵ
+ F̂ |σ − Hv + e| (C.1)

where z = [σ , v, e]T ∈ R
3. This function satisfies Upd(z) > 0 for all z �= 0 and Upd(0) = 0. Its time

derivative can be obtained as follows:

U̇pd(x) = −FŴ

H
Γ

(
σ

Ŵ
− (H − B̂)e

B̂Ŵ
,
σ − Hv + e

Ŵ

)

− F̂Ŵ

H

(
sat

(
σ

Ŵ
− (H − B̂)e

B̂Ŵ

)
+ He

B̂Ŵ

)2

(C.2)

where

Γ (x, y) = (sat(x) − sgn(y))(x − sat(x) − y). (C.3)

It is easy to see that this function satisfies Γ (x, y) ≥ 0 for all {x, y} ⊂ R. Therefore, U̇pd(z) ≤ 0 holds
true for all z ∈ R

3. Here, U̇pd(z) = 0 can be satisfied only if

e = − B̂Ŵ

H
sat

(
H

B̂Ŵ
σ

)
(C.4)

is satisfied. It can be seen that the maximum positively invariant subset of the set {z ∈ R
3 | (C.4)} is the

origin. Thus, the origin is globally asymptotically stable. �
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