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1. INTRODUCTION

In many control applications, numerical differentiation of
sensor signals, which are usually noisy, is an important
issue. An estimation problem of signal derivatives can
be formulated as an observation problem of a simple
integrator of which the input is not available and the
output is contaminated by noise. The most straightforward
way is Euler differentiation combined with a linear low-
pass filter (LPF), which can also be seen as a Luenberger
observer of an integrator (Vasiljevic and Khalil, 2008).
Some researchers have studied the use of sliding-mode
observers for estimating signal derivatives. One example
is Slotine et al.’s (1987) first-order sliding-mode observer,
in which s = 0 is intended to be achieved where s is the
sliding variable. It involves a discontinuous function, which
usually needs to be approximated through a boundary-
layer approach in the implementation. Other researchers
use higher-order sliding mode observers (Levant, 1998,
2003; Davila et al., 2005; Iqbal et al., 2010), with which
the higher-order time derivatives of s are maintained
continuous.

In the context of observation problems, Vasiljevic and
Khalil (2008) analyzed the upperbound of the estima-
tion error under bounded measurement noise. Effects
of noise on sliding mode observers have been discussed
with boundary-layer approximations (Slotine et al., 1987;
Moura et al., 1997) and with Lipschitz assumptions on the
noise (Levant, 2003). Because it is in principle impossible
to distinguish the signal component and the noise com-
ponents in the input signal, the observer design always
requires a certain level of a priori knowledge or assump-
tions. In the design of linear LPFs, one usually adjusts the
cut-off frequency to obtain appropriately smooth outputs.
In contrast, in the design of sliding mode differentiators,
the upperbound of the signal derivatives need to be taken
into consideration (Vázquez et al., 2016; Levant and Livne,
2012). Another important difference is that the global
convergence is trivially realized in the case of linear LPFs

but needs careful parameter design in the case of sliding
mode differentiators.

This paper proposes a new sliding mode differentiator
to obtain the first-order derivative of noisy signals. Its
structure can be seen as a first-order sliding mode system
similar to Slotine et al.’s (1987) observer but it includes
a non-Lipschitz function. The new differentiator behaves
exactly as a first-order LPF in the sliding mode and as
a second-order LPF when it is far from the sliding mode.
Due to this property, its behavior is in the middle between
the first and second-order LPFs, having a certain balance
between the noise attenuation and the signal preservation.
The non-Lipschitz term is intended to realize smooth
transition between the sliding mode and the reaching
mode. The global asymptotic stability in the unperturbed
case and the global input-to-state stability are proven.
This paper also presents a discrete-time implementation
of the new differentiator based on the implicit (backward)
Euler discretization, which prevents chattering.

The rest of this paper is organized as follows. Section 2
presents a new differentiator structure, which is a non-
Lipschitz variant of Slotine-type observer, and some anal-
yses on its behaviors. Section 3 presents its discrete-time
implementation. Section 4 shows some experimental re-
sults. Section 5 provides concluding remarks.

2. NEW DIFFERENTIATOR

2.1 The Structure

Let us consider the following system:

ẋ1 = x2 (1a)

ẋ2 = u (1b)

y = x1 + v (1c)
where x1 and x2 are state variables and u is an un-
known input. The output y is the measured value that

11th IFAC Symposium on Nonlinear Control Systems
Vienna, Austria, Sept. 4-6, 2019

Copyright © 2019 IFAC 1383

A First-Order Differentiator with
First-Order Sliding Mode Filtering

Ryo Kikuuwe ∗ Rainhart Pasaribu ∗∗ Gyuho Byun ∗∗∗

∗ Hiroshima University, Higashi-Hiroshima 739-8527, Japan
(e-mail: kikuuwe@hiroshima-u.ac.jp).

∗∗ Institut Teknologi Bandung, Bandung 40132, Indonesia.
∗∗∗ Kyushu University, Fukuoka 819-0395, Japan.

Abstract: This paper proposes a sliding mode differentiator for estimating the first-order
derivatives of noisy signals. The proposed differentiator can be seen as a version of Slotine
et al.’s sliding mode observer extended with additional non-Lipschitzness. It behaves exactly
as a first-order low-pass filter in the sliding mode and is globally convergent. Its discrete-time
implementation is based on the implicit (backward) Euler discretization, which does not result
in chattering. The differentiator is validated through some numerical examples.

Keywords: Sliding mode observer, Differentiator, Implicit Euler discretization, Noise filtering

1. INTRODUCTION

In many control applications, numerical differentiation of
sensor signals, which are usually noisy, is an important
issue. An estimation problem of signal derivatives can
be formulated as an observation problem of a simple
integrator of which the input is not available and the
output is contaminated by noise. The most straightforward
way is Euler differentiation combined with a linear low-
pass filter (LPF), which can also be seen as a Luenberger
observer of an integrator (Vasiljevic and Khalil, 2008).
Some researchers have studied the use of sliding-mode
observers for estimating signal derivatives. One example
is Slotine et al.’s (1987) first-order sliding-mode observer,
in which s = 0 is intended to be achieved where s is the
sliding variable. It involves a discontinuous function, which
usually needs to be approximated through a boundary-
layer approach in the implementation. Other researchers
use higher-order sliding mode observers (Levant, 1998,
2003; Davila et al., 2005; Iqbal et al., 2010), with which
the higher-order time derivatives of s are maintained
continuous.

In the context of observation problems, Vasiljevic and
Khalil (2008) analyzed the upperbound of the estima-
tion error under bounded measurement noise. Effects
of noise on sliding mode observers have been discussed
with boundary-layer approximations (Slotine et al., 1987;
Moura et al., 1997) and with Lipschitz assumptions on the
noise (Levant, 2003). Because it is in principle impossible
to distinguish the signal component and the noise com-
ponents in the input signal, the observer design always
requires a certain level of a priori knowledge or assump-
tions. In the design of linear LPFs, one usually adjusts the
cut-off frequency to obtain appropriately smooth outputs.
In contrast, in the design of sliding mode differentiators,
the upperbound of the signal derivatives need to be taken
into consideration (Vázquez et al., 2016; Levant and Livne,
2012). Another important difference is that the global
convergence is trivially realized in the case of linear LPFs

but needs careful parameter design in the case of sliding
mode differentiators.

This paper proposes a new sliding mode differentiator
to obtain the first-order derivative of noisy signals. Its
structure can be seen as a first-order sliding mode system
similar to Slotine et al.’s (1987) observer but it includes
a non-Lipschitz function. The new differentiator behaves
exactly as a first-order LPF in the sliding mode and as
a second-order LPF when it is far from the sliding mode.
Due to this property, its behavior is in the middle between
the first and second-order LPFs, having a certain balance
between the noise attenuation and the signal preservation.
The non-Lipschitz term is intended to realize smooth
transition between the sliding mode and the reaching
mode. The global asymptotic stability in the unperturbed
case and the global input-to-state stability are proven.
This paper also presents a discrete-time implementation
of the new differentiator based on the implicit (backward)
Euler discretization, which prevents chattering.

The rest of this paper is organized as follows. Section 2
presents a new differentiator structure, which is a non-
Lipschitz variant of Slotine-type observer, and some anal-
yses on its behaviors. Section 3 presents its discrete-time
implementation. Section 4 shows some experimental re-
sults. Section 5 provides concluding remarks.

2. NEW DIFFERENTIATOR

2.1 The Structure

Let us consider the following system:
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is corrupted with the unknown noise v. This system is a
simple second-order integrator of an unknown input signal
u. The problem considered in this paper is to construct
an observer to estimate the state variable x2 from the
measured system output y. Such an observer can be seen as
a first-order differentiator of the noisy signal y. It should be
noted that the system (1) does not represent a particular
physical system but represents an imaginary system, of
which the unknown states x1 and x2 are the “true” values
of the noisy measurement y and its derivative, respectively.
Here we assume that y and u are differentiable with respect
to time.

For the system (1), we consider the following observer:
[

ż1

ż2

]
∈

[
z2 − κ1(z1 − y)
−κ2(z1 − y)

]
−

[
α1

α2

]
η(z1 − y) (2a)

w = z2. (2b)

Here, z1 and z2 are the estimated values of x1 and
x2, respectively, w is the output of the observer, and
{κ1, α1, κ2, α2} are non-negative constants. The function
η is a set-valued function (it is why (2) is a differential
inclusion) that satisfies the following conditions:

η(0) = [−1, 1] (3a)

lim
ξ↘0

η(ξ) = 1, lim
ξ↗0

η(ξ) = −1 (3b)

η′(ξ) ≥ 0 ∀ξ ̸= 0 (3c)

lim
ξ→±∞

η(ξ)/ξ = 0 (3d)

lim
ξ↘0

η′(ξ) = lim
ξ↗0

η′(ξ) = ∞ (3e)

lim
ξ→±∞

η(ξ) = ±∞. (3f)

The properties (3a) and (3b) suggest that η is a continuous
(both upper and lower semicontinuous) set-valued map
(Cortés, 2008, p.49). The property (3c) implies that η
is monotonic. The property (3e) means that η is non-
Lipschitz.

If one neglects the conditions (3e)(3f), one choice for the
function η is the set-valued signum function that is defined
as follows:

sgn(ξ) ∆=
{

ξ/|ξ| if ξ ̸= 0
[−1, 1] if ξ = 0.

(4)

In this case, the structure (2) reduces to Slotine et al.’s
(1987) observer applied to the plant (1). It is also ob-
vious that setting α1 = α2 = 0 reduces (2) into the
Luenberger observer whose transfer function is κ2s/(s2 +
κ1s + κ2), which is a first-order differentiator combined
with a second-order LPF, and the one referred to as a
high-gain observer by Vasiljevic and Khalil (2008). The
non-Lipschitz term η(z1 − y) may have some similarity
to fractional power terms that appear in Levant’s (2003)
higher-order sliding mode differentiator.

When the observer (2) is applied to the system (1), the
following system is obtained:

ė ∈ Ae − αη(e1) − v (5)

where v
∆= [v̇, u]T , α

∆= [α1, α2]T ,

A
∆=

[
−κ1 1
−κ2 0

]
(6)

e
∆= [e1, e2]T

∆= [z1 − y, w − x2]T . (7)
Here, the state variable e1 is not exactly an estimation er-
ror, but is the one including the effect of the measurement
noise v. In contrast, e2 is defined with excluding the noise
component v̇ because the aim of this observer is to achieve
e2 = z2 − x2 → 0.

2.2 Stability and Rechability

Stability properties of the error system (5) are now dis-
cussed.
Theorem 1. With the system (5) in which v ≡ 0, the
origin is globally asymptotically stable.

Proof. Let us define the following Lyapunov function
candidate:

V (e) = eT Pe/2 + µη̂(e1) (8)
where η̂ is a function defined by dη̂(ξ)/dξ = η(ξ) and
η̂(0) = 0,

P
∆=

[
1 −β
−β 1/κ2

]
(9)

µ
∆= α1 (α2/(α1κ2) − β) , (10)

and β is a positive constant. Then, the following is ob-
tained:

V̇ (e) = (eT P + η(e1)[µ, 0])(Ae − αη(e1) − v)

=−eT Qe − µce1η(e1) − α1µη(e1)2

−eT Pv − µη(e1)v̇ (11)
where

Q
∆=−1

2
(PA + AT P ) =

[
κ1 − βκ2 −βκ1/2
−βκ1/2 β

]
(12)

µc
∆= (α1κ1 + α2)

(
α1κ2 + α2κ1

κ2(α1κ1 + α2)
− β

)
. (13)

Therefore, by choosing β such that it satisfies

0 <β<min
(

4κ1

κ2
1 + 4κ2

,
1

√
κ2

,
α2

α1κ2
,

α1κ2 + α2κ1

κ2(α1κ1 + α2)

)
,(14)

V (e) is positive definite and V̇ (e) is negative definite
with v ≡ 0. That is, with v ≡ 0, the origin is globally
asymptotically stable.
Theorem 2. The system (5) is globally input-to-state
stable with respect to the input v.

Proof. Now we use the Lyapunov function V defined by
(8). If β satisfies (14), (11) shows that the following is
satisfied:

V̇ (e) <−λQ∥e∥2 + (γP ∥e∥ + µη(e1))∥v∥ (15)
where λQ > 0 is the minimum eigenvalue of Q and γP > 0
is the maximum eigenvalue of P . Therefore, if there exists
an upperbound L of ∥v∥, V̇ (e) < 0 is satisfied for all
e ∈ R2 outside the subset E that is defined as follows:
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Fig. 1. The sliding patch S(v̇) and the region of direct
attraction A(v̇) in the error state space.

E ∆=
{

e ∈ R2

∣∣∣∣ λQ∥e∥ − L

(
γP +

µη(e1)
∥e∥

)
≤ 0

}
, (16)

which is a closed set including the origin in its interior.
Such a set E exists for any L > 0. This implies that, for
any v satisfying ∥v∥ ≤ L and for any initial states, the
state e converges to an ultimate bound, which is a level
set of V (e) including E . Therefore, the system is globally
input-to-state stable. �

As the effect of the set-valuedness of the term η(e1), the
system (5) can be in a sliding mode on the surface e1 = 0.
The following theorem shows this fact:
Theorem 3. With the system (5), the sliding mode is
established on a subset of the subspace e1 = 0 of the state
space.

Proof. When e1 ̸= 0, the following is satisfied:

de2
1

dt
=−2e1(κ1e1 + α1η(e1) + v̇ − e2). (17)

The properties (3a)(3b)(3c) of η imply that, if e is in the
subset

A(v̇) ∆=
{
e ∈ R2

∣∣ e1(κ1e1 + α1η(e1) + v̇ − e2) > 0
}
, (18)

there exists a ε > 0 with which de2
1/dt < −ε|e1| is

satisfied. One can see that A(v̇) covers a neighborhood
of the following subset:

S(v̇) ∆= {e ∈ R2 | e1 = 0 ∧ |e2 − v̇| < α1}, (19)

which is a subset of the subspace e1 = 0. Therefore, one
can see the sliding mode is established on S(v̇). �

The subset S(v̇) can be referred to as a “sliding patch,”
and the subset A(v̇) can be referred to as a “region
of direct attraction” (Slotine et al., 1987, Section 2.3).
Fig. 1 illustrates these subsets in the e1-e2 state space.
These subsets move in the vertical direction in the figure
according to the noise derivative v̇. As long as the state e
stays in the set A(v̇), the state approaches to the subspace
e1 = 0. The state e may go out of the set A(v̇) before
reaching the subspace e1 = 0, but Theorem 2 guarantees
that the state eventually converges to a neighborhood of
the origin.

2.3 Behavior in the Sliding Mode

When the error state e is on the sliding patch S(v̇), y = z1

and ẏ = ż1 are satisfied and thus the observer (2) reduces
to the following form:

ẏ = w − α1σ, ẇ = −α2σ, |σ| ≤ 1, (20)
which is equivalent to the following:

ẇ = α2(ẏ − w)/α1 (21a)

|w − ẏ| ≤ α1. (21b)
Here, (21a) can also be rewritten as follows:

L [w] = sGsm(s)L[y] (22a)
where

Gsm(s) ∆= α2/(α1s + α2). (22b)
That is, the observer (2) behaves as a first-order LPF
Gsm(s), from ẏ to w. The influence of the measurement
noise v̇ is reduced by Gsm(s), as long as |w − ẏ| ≤ α1.

2.4 Behavior outside the Sliding Mode

With vectors eo = [eo1, eo2]T and e = [e1, e2]T , if eo and e
are close enough to each other and e1eo1 > 0, the following
is satisfied:

η(e1)≈ η(eo1) + η′(eo1)(e1 − eo1) (23)
because of the continuity of η. In this case, the system (5)
can be approximated as follows:

ė≈
[
−κ1−α1η

′(eo1) 1
−κ2−α2η

′(eo1) 0

]
(e − eo) + Aeo − αη(eo1) − v.

(24)
If one choose eo so that

v ∈ Aeo − αη(eo1) (25)
is satisfied, the following is satisfied:

ė≈
[
−κ1 − α1η

′(eo1) 1
−κ2 − α2η

′(eo1) 0

]
(e − eo) . (26)

In this case, for an infinitisimal time period, the system
can be seen as a linear system with the equilibrium eo.

By observing the eigenvalues of the 2×2 matrix in (26), one
can see that the locations of the system poles continuously
vary according to eo1 from {(−κ1 ±

√
κ2

1 − 4κ2)/2} to
{−α2/α1,−∞} as eo1 approaches to zero because η′(eo1)
is not upperbounded. This is consistent with the fact that,
when the system is in the sliding mode at eo1, the system
has a pole at −α2/α1, as suggested by (22). If η′(eo1) is
upperbounded (i.e., if η is Lipschitz and if (3e) is not
satisfied), the poles would not reach {−α2/α1,−∞} as
long as eo1 ̸= 0 but would discontinuously jump from a
certain value to −α2/α1 when it reaches eo1 = 0. This
point supports the importance of the property (3e), the
non-Lipschitzness, of η.

Another observation can be obtained regarding the prop-
erty (3f), the unboundedness, of η. If η is bounded, (25)
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Fig. 1. The sliding patch S(v̇) and the region of direct
attraction A(v̇) in the error state space.
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e ∈ R2

∣∣∣∣ λQ∥e∥ − L

(
γP +

µη(e1)
∥e∥

)
≤ 0

}
, (16)

which is a closed set including the origin in its interior.
Such a set E exists for any L > 0. This implies that, for
any v satisfying ∥v∥ ≤ L and for any initial states, the
state e converges to an ultimate bound, which is a level
set of V (e) including E . Therefore, the system is globally
input-to-state stable. �

As the effect of the set-valuedness of the term η(e1), the
system (5) can be in a sliding mode on the surface e1 = 0.
The following theorem shows this fact:
Theorem 3. With the system (5), the sliding mode is
established on a subset of the subspace e1 = 0 of the state
space.

Proof. When e1 ̸= 0, the following is satisfied:

de2
1

dt
=−2e1(κ1e1 + α1η(e1) + v̇ − e2). (17)

The properties (3a)(3b)(3c) of η imply that, if e is in the
subset

A(v̇) ∆=
{
e ∈ R2

∣∣ e1(κ1e1 + α1η(e1) + v̇ − e2) > 0
}
, (18)

there exists a ε > 0 with which de2
1/dt < −ε|e1| is

satisfied. One can see that A(v̇) covers a neighborhood
of the following subset:

S(v̇) ∆= {e ∈ R2 | e1 = 0 ∧ |e2 − v̇| < α1}, (19)

which is a subset of the subspace e1 = 0. Therefore, one
can see the sliding mode is established on S(v̇). �

The subset S(v̇) can be referred to as a “sliding patch,”
and the subset A(v̇) can be referred to as a “region
of direct attraction” (Slotine et al., 1987, Section 2.3).
Fig. 1 illustrates these subsets in the e1-e2 state space.
These subsets move in the vertical direction in the figure
according to the noise derivative v̇. As long as the state e
stays in the set A(v̇), the state approaches to the subspace
e1 = 0. The state e may go out of the set A(v̇) before
reaching the subspace e1 = 0, but Theorem 2 guarantees
that the state eventually converges to a neighborhood of
the origin.

2.3 Behavior in the Sliding Mode

When the error state e is on the sliding patch S(v̇), y = z1

and ẏ = ż1 are satisfied and thus the observer (2) reduces
to the following form:

ẏ = w − α1σ, ẇ = −α2σ, |σ| ≤ 1, (20)
which is equivalent to the following:

ẇ = α2(ẏ − w)/α1 (21a)

|w − ẏ| ≤ α1. (21b)
Here, (21a) can also be rewritten as follows:

L [w] = sGsm(s)L[y] (22a)
where

Gsm(s) ∆= α2/(α1s + α2). (22b)
That is, the observer (2) behaves as a first-order LPF
Gsm(s), from ẏ to w. The influence of the measurement
noise v̇ is reduced by Gsm(s), as long as |w − ẏ| ≤ α1.

2.4 Behavior outside the Sliding Mode

With vectors eo = [eo1, eo2]T and e = [e1, e2]T , if eo and e
are close enough to each other and e1eo1 > 0, the following
is satisfied:

η(e1)≈ η(eo1) + η′(eo1)(e1 − eo1) (23)
because of the continuity of η. In this case, the system (5)
can be approximated as follows:

ė≈
[
−κ1−α1η

′(eo1) 1
−κ2−α2η

′(eo1) 0

]
(e − eo) + Aeo − αη(eo1) − v.

(24)
If one choose eo so that

v ∈ Aeo − αη(eo1) (25)
is satisfied, the following is satisfied:

ė≈
[
−κ1 − α1η

′(eo1) 1
−κ2 − α2η

′(eo1) 0

]
(e − eo) . (26)

In this case, for an infinitisimal time period, the system
can be seen as a linear system with the equilibrium eo.

By observing the eigenvalues of the 2×2 matrix in (26), one
can see that the locations of the system poles continuously
vary according to eo1 from {(−κ1 ±

√
κ2

1 − 4κ2)/2} to
{−α2/α1,−∞} as eo1 approaches to zero because η′(eo1)
is not upperbounded. This is consistent with the fact that,
when the system is in the sliding mode at eo1, the system
has a pole at −α2/α1, as suggested by (22). If η′(eo1) is
upperbounded (i.e., if η is Lipschitz and if (3e) is not
satisfied), the poles would not reach {−α2/α1,−∞} as
long as eo1 ̸= 0 but would discontinuously jump from a
certain value to −α2/α1 when it reaches eo1 = 0. This
point supports the importance of the property (3e), the
non-Lipschitzness, of η.

Another observation can be obtained regarding the prop-
erty (3f), the unboundedness, of η. If η is bounded, (25)
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implies that ∥eo∥ linearly increases as v increases, but the
unboundedness of η results in smaller ∥ηo∥, which results
in smaller influence of the input v to the error state e.

When |e1| is very large, i.e., when the system (5) is very
far from the sliding mode, the term Ae becomes dominant
over the term αη(e1). In such a case, the system (5) is
close to the linear system ė ≈ Ae−v, which results in the
following:

L [w]≈ sGfar(s)L[y] (27)
where

Gfar(s)
∆= κ2/(s2 + κ1s + κ2). (28)

That is, the observer (2) becomes close to the second-
order LPF Gfar(s), from ẏ to w, and the influence of the
measurement noise v̇ is reduced by Gfar(s).

2.5 Choice of αi and κi: Cut-off Frequencies and Threshold

Previous sections have shown that the observer (2) behaves
as a first-order LPF, Gsm(s), in the sliding mode and be-
comes closer to a second-order LPF, Gfar(s), in a faraway
region from the sliding mode. In order to keep e2 small,
one reasonable way is to employ the following settings:

{α1, α2}= {γ, γωsm} (29a)

{κ1, κ2}= {2ωfar, ω
2
far} (29b)

where γ = α1 is an appropriately chosen threshold value
on |e2− v̇|, which defines the size of the sliding patch S(v̇),
and ωsm and ωfar are appropriately low cut-off frequencies.
Because the observer (2) behaves as Gsm(s) as long as |e2−
v̇| ≤ γ, the value of γ should be chosen as the upperbound
of |e2− v̇| under which the filtering performance of Gsm(s)
is acceptable. When |e2 − v̇| > γ, the observer (2) should
provide stronger filtering effect than Gsm(s). Therefore,
the filtering effect of Gfar(s) should be set stronger than
Gsm(s). With the same cut-off frequency, the filtering
effect of Gfar(s), which is of the second order, is stronger
than Gsm(s), which is of the first order. Therefore, it is
reasonable to choose ωsm = ωfar.

3. DISCRETE-TIME IMPLEMENTATION

For the implementation to digital computers, the continuous-
time representation (2) needs to be appropriately dis-
cretized. A direct use of the discontinuous function η in the
algorithm causes chattering. A common approach to elim-
inate chattering is the so-called boundary layer approach,
in which the discontinuous function is simply replaced by
a continuous function. A problem of this approach is that
it does not realize the exact sliding mode, although many
previous work (Slotine et al., 1987; Moura et al., 1997;
Qiao et al., 2013) employ this approach.

For the numerical integration of differential inclusions,
implicit (backward) Euler discretization has been known
to be useful to prevent chattering (Kikuuwe et al., 2010;
Jin et al., 2012; Acary and Brogliato, 2010; Huber et al.,
2016). Not only preventing chattering, as will be illustrated
in the following derivation, the implicit Euler discretiza-
tion preserves the set-valuedness. Due to this fact, what

theoretically happens in the continuous-time domain, such
as those described in Section 2.3, also happens in the
discrete-time domain.

The implicit Euler discretization of (2) can be written as
follows:

z1(k) − z1(k − 1)
h

= z2(k) − α1σ(k) − κ1e1(k) (30a)

z2(k) − z2(k − 1)
h

=−α2σ(k) − κ2e1(k) (30b)

w(k) = z2(k) (30c)

e1(k) = z1(k) − y(k) (30d)

σ(k) ∈ η(e1(k)) (30e)
where k denotes the discrete-time index and h > 0 is
the time-step size. It is easy to see that the following is
obtained.

z1(k) = y(k) + e1(k) (31a)

z2(k) =
z1(k) − z1(k − 1)

h
+ κ1e1(k) + α1σ(k). (31b)

This implies that, once σ(k) and e1(k) are obtained,
{z1(k), z2(k)} are obtained. Eliminating z1(k) and z2(k)
from (30a)(30b)(30d) yields

e1(k) = e∗(k) − Bσ(k) (32)
where

D
∆= 1 + hκ1 + h2κ2 (33)

B
∆= h(α1 + hα2)/D (34)

e∗(k) ∆= (z1(k − 1) + hz2(k − 1) − y(k))/D (35)
and substituting it into (30e) leads to the following:

σ(k)∈ η(e∗(k) − Bσ(k)). (36)

To obtain solutions of the algebraic inclusion (36), let us
consider the following function:

ψ(ξ) ∆= {z ∈ R | z ∈ η(B(ξ − z))}. (37)
With this function ψ, (36) can be equivalently rewritten
as follows:

σ(k) = ψ(e∗(k)/B). (38)
Because of the properties (3) of η, (37) implies that ψ(ξ)
satisfies the following conditions:

ψ(ξ) = ξ ∀ξ ∈ [−1, 1] (39a)

lim
ξ↘1

ψ(ξ) = 1, lim
ξ↗−1

ψ(ξ) = −1 (39b)

ψ′(ξ) ≥ 0 ∀ξ ∈ R (39c)

lim
ξ→±∞

ψ(ξ)/ξ = 0 (39d)

lim
ξ↘1

ψ′(ξ) = lim
ξ↗−1

ψ′(ξ) = 1 (39e)

lim
ξ→±∞

ψ(ξ) = ±∞, (39f)

which implies that ψ is a continuous (and also differen-
tiable) function. That is, despite the fact that the alge-
braic inclusion (36) involves the set-valued function η, its
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solution (38) only involves a continuous function. If one
chooses η = sgn by neglecting the conditions (3e)(3f), the
definition (37) implies that that ψ becomes

ψ(ξ) = sat(ξ) ∆= ξ/max(1, |ξ|), (40)

which violates (39e) and (39f).

By using (38), the discrete-time algorithm to obtain the
numerical solution of the proposed sliding mode differen-
tiator (2) is obtained as follows:

e∗(k) := (z1(k − 1) + hz2(k − 1) − y(k))/D (41a)

σ(k) := ψ(e∗(k)/B) (41b)

e1(k) := e∗(k) − Bσ(k) (41c)

z1(k) := y(k) + e1(k) (41d)

z2(k) :=
z1(k) − z1(k − 1)

h
+ κ1e1(k) + α1σ(k) (41e)

w(k) := z2(k). (41f)

Note that (41) is algebraically equivalent to (30) but (41)
is free from discontinuities and set-valuedness.

It is not straightforward to obtain ψ from a given η through
the definition (37). One approach is to give a closed-form
ψ that satisfies (39), which results in its correspondent
η satisfying (3). In this approach, η is given only as an
implicit function but the closed form of η is not necessary
for the implementation. One example of ψ that satisfies
(39) is as follows:

ψ(ξ) ∆=
{

ξ if |ξ| ≤ 1
sgn(ξ)(ρ|ξ|1/ρ − ρ + 1) if |ξ| ≥ 1 (42)

where ρ is a constant satisfying ρ > 1.

The observer algorithm (41) is said to be in the sliding
mode when |e∗(k)| ≤ B, which results in e1(k) = 0.
A straightforward derivation shows that, if this situation
continues for two successive timesteps (i.e., e1(k) = e1(k−
1) = 0), the algorithm (41) reduces to the following:

w(k) =
α1w(k − 1) + α2(y(k) − y(k − 1))

α1 + hα2
. (43)

This is exactly the implicit Euler implementation of
sGsm(s), which appears in (22a). Recall that, as Sec-
tion 2.3 suggests, the observer (2) reduces to sGsm(s) in
the sliding mode in the continuous time. It has now been
shown that the implicit Euler discretization realizes the
exact sliding mode also in the discrete time.

It should be emphasized that, because of the absence of the
discontinuity, the presented algorithm does not result in
chattering irrespective of the fact that the order of sliding
mode is only one. It is in contrast to second-order sliding
mode approaches, which intend to reduce chattering by
hiding the discontinuities in higher-order derivatives. It
should also be noted that the computational cost of the
algorithm (41) combined with (42) is negligible because
everything is in closed form. This feature is in contrast to
what a recent work (Efimov et al., 2017) has pointed out
regarding the implicit Euler implementation of a second-
order sliding mode algorithm.

Fig. 2. Results of open-loop simulation. The bottom figure
is an enlarged view of the top figure.

Fig. 3. Results of closed-loop simulation

4. NUMERICAL EXPERIMENTS

The algorithm (41) of the proposed differentiator was
experimentally tested. Two sets of simulations, open-loop
and closed-loop, were performed. The timestep size was
set as h = 0.002 s. For the comparison, the following
differentiators were used:

• new: The proposed algorithm (41) with the parame-
ter settings (29) with ωsm = ωfar = 20π rad/s, γ = 5,
and η defined by (42) and ρ = 4.

• diff-S: The proposed algorithm (41) with the same
setting as new except η = sgn. This can be seen as
the implicit Euler implementation of Slotine et al.’s
observer applied to the integrator (1).

• 1LPFs: First-order Euler differentiation plus the
first-order LPF, sGsm(s) with ω = ωsm.

• 2LPFs: First-order Euler differentiation plus a second-
order LPF, sGfar(s) with ω = ωsm.
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z2(k) :=
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h
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w(k) := z2(k). (41f)

Note that (41) is algebraically equivalent to (30) but (41)
is free from discontinuities and set-valuedness.

It is not straightforward to obtain ψ from a given η through
the definition (37). One approach is to give a closed-form
ψ that satisfies (39), which results in its correspondent
η satisfying (3). In this approach, η is given only as an
implicit function but the closed form of η is not necessary
for the implementation. One example of ψ that satisfies
(39) is as follows:

ψ(ξ) ∆=
{

ξ if |ξ| ≤ 1
sgn(ξ)(ρ|ξ|1/ρ − ρ + 1) if |ξ| ≥ 1 (42)

where ρ is a constant satisfying ρ > 1.

The observer algorithm (41) is said to be in the sliding
mode when |e∗(k)| ≤ B, which results in e1(k) = 0.
A straightforward derivation shows that, if this situation
continues for two successive timesteps (i.e., e1(k) = e1(k−
1) = 0), the algorithm (41) reduces to the following:

w(k) =
α1w(k − 1) + α2(y(k) − y(k − 1))

α1 + hα2
. (43)

This is exactly the implicit Euler implementation of
sGsm(s), which appears in (22a). Recall that, as Sec-
tion 2.3 suggests, the observer (2) reduces to sGsm(s) in
the sliding mode in the continuous time. It has now been
shown that the implicit Euler discretization realizes the
exact sliding mode also in the discrete time.

It should be emphasized that, because of the absence of the
discontinuity, the presented algorithm does not result in
chattering irrespective of the fact that the order of sliding
mode is only one. It is in contrast to second-order sliding
mode approaches, which intend to reduce chattering by
hiding the discontinuities in higher-order derivatives. It
should also be noted that the computational cost of the
algorithm (41) combined with (42) is negligible because
everything is in closed form. This feature is in contrast to
what a recent work (Efimov et al., 2017) has pointed out
regarding the implicit Euler implementation of a second-
order sliding mode algorithm.

Fig. 2. Results of open-loop simulation. The bottom figure
is an enlarged view of the top figure.

Fig. 3. Results of closed-loop simulation

4. NUMERICAL EXPERIMENTS

The algorithm (41) of the proposed differentiator was
experimentally tested. Two sets of simulations, open-loop
and closed-loop, were performed. The timestep size was
set as h = 0.002 s. For the comparison, the following
differentiators were used:

• new: The proposed algorithm (41) with the parame-
ter settings (29) with ωsm = ωfar = 20π rad/s, γ = 5,
and η defined by (42) and ρ = 4.

• diff-S: The proposed algorithm (41) with the same
setting as new except η = sgn. This can be seen as
the implicit Euler implementation of Slotine et al.’s
observer applied to the integrator (1).

• 1LPFs: First-order Euler differentiation plus the
first-order LPF, sGsm(s) with ω = ωsm.

• 2LPFs: First-order Euler differentiation plus a second-
order LPF, sGfar(s) with ω = ωsm.
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In the open-loop simulation, we used the “true” signal
x1 artificially generated by combining some sinusoidal
functions and constants. The input signal y was generated
as y := x1 + v where v was a noise signal obtained from a
real hardware, a capacitive six-axis force sensor under zero
load. Fig. 2 shows the results. It can be seen that the new
differentiator is less noisy than 1LPF as well as diff-S and
2LPF, but its phase lag is much smaller than diff-S and
2LPF. This shows an advantage of the new differentiator.

In the closed-loop simulation, the plant was chosen as the
following third order system:

L[p] = L[f ]/(As3 + Ms2 + Bs) (44)

where f and p are the input and the output of the plant,
respectively, and A = 0.01, M = 0.5 and B = 10. The
measurement was obtained as yo = p + v where v is
the same one as the above. To compensate the phase
lag caused by the differentiator, the input signal y to the
differentiator was set as

yk = yo,k + (yo,k − yo,k−1)/(hωn) (45)

where ωn = 2ωsm. The controller was constructed as

f = Kp(pd − yo) + Kd(ṗd − w) (46)

where w is the output of the differentiator and Kp = 100
and Kd = 50.

Fig. 3 shows the results of closed-loop simulation. This in-
dicates that diff-S and 2LPF produced oscillatory (nearly
unstable) behaviors but 1LPF and the new differentiator
resulted in stable tracking, although the output of the new
one is slightly more oscillatory than 1LPF. The data of
f shows that the control input f is noisier with 1LPF
than the new differentiator. This shows that the new
differentiator is effective for realizing better stability and
lower noisiness than the other methods.

5. CONCLUSIONS

This paper has presented a new sliding mode differentiator
for estimating the first-order derivatives of noisy signals.
The differentiator is a first-order sliding mode system,
which can be seen as a non-Lipschitz variant of Slotine
et al.’s (1987) sliding mode observer. The paper has also
analyzed the proposed differentiator based on its analytical
relations to linear LPFs and showed the global asymptotic
and input-to-state stability. In addition, the paper has
provided a discrete-time implementation of the proposed
differentiator based on the implicit Euler discretization,
which does not produce chattering and realizes the exact
sliding mode. The proposed algorithm was tested through
numerical examples.

Future research should address better guidelines for pa-
rameter tuning, especially about γ, and the design of the
function ψ. A more in-depth analysis to clarify the relation
with higher-order sliding mode systems such as Levant’s
(2003) differentiator, considering the homogeneity issues
(e.g., Cruz-Zavela and Moreno, 2017; Angulo et al., 2013),
is also subject to future studies.
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