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Torque-Bounded Admittance Control Realized by
a Set-Valued Algebraic Feedback

Ryo Kikuuwe,Member, IEEE,

Abstract—This paper proposes a new admittance controller
that realizes safe behavior even under torque saturation. The new
controller is analytically equivalent to a conventional admittance
controller as long as the actuator torque is not saturated, but is
free from unsafe behaviors such as snapping-back, oscillation, or
overshoots, which may happen with conventional admittance con-
trollers after torque saturation. The new controller is described
by a differential algebraic inclusion, and can be understood as a
conventional admittance controller expanded with an additional
algebraic loop through a normal-cone operator. Its continuous-
time representation involves a nonsmooth, set-valued function,
but its discrete-time implementation is free from set-valuedness
and given as a closed-form algorithm as a result of the use
of implicit (backward) Euler discretization. The controller was
tested with one joint of an industrial manipulator equipped with
a force sensor.

Index Terms—Force control, actuator saturation, normal cone,
differential inclusion

I. I NTRODUCTION

A DMITTANCE control is a control scheme to regulate the
reaction of the robot against the contact force applied to

the robot’s end-effector. It is one form of impedance control
in a broad sense and is also referred to as a “position-based
impedance control.” Typical implementation of admittance
controller is illustrated in Fig. 1(a). It employs a force sensor
mounted on the end-effector, and it consists of a “proxy”
(a virtual object) representing a simple dynamics, typically
a damped mass element, and a high-gain position controller.
The position qx of the proxy is updated according to the
force sensor measurementf and the commanded forcefd. The
resultant proxy positionqx is used as the position command to
the internal position controller that forces the robot’s position
qs to follow qx. The advantage of this controller structure is
that the internal position controller suppresses the hardware
dynamics such as joint friction. Its applications include haptic
interfaces [1], [2], manual guidance of industrial manipula-
tors [3], human-robot collaboration [4], robotic orthoses [5],
[6] and surgical robots [7].

One problem of this control scheme is that, when the
proxy is far separated from the robot position, the behavior
of the robot becomes unpredictable. Such situations happen
when a large external force is applied to a portion other
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than the force sensor and the torque1 exerted by the position
controller is saturated. Another complicated situation happens
when the robot position is constrained by an external object
while another force is applied to the force sensor. In such a
situation, the proxy may move away from the robot position,
even beyond the motion range of the robot. After these cases
happen, once the external force is removed, the robot is
attracted to the proxy, causing a snapping-back behavior with
overshoots and oscillations. Such behaviors may cause damage
to the robot hardware and surrounding objects and also injury
to human operators.

In a previous paper [8], the author proposed an internal
position controller for admittance control to attenuate the
undesirable effects of torque saturation. The controller was an
extension of a ‘proxy-based sliding mode control’ [9], [10],
which has been proposed by the author and his colleagues.
Experimental results have shown that the admittance control
scheme proposed in [8] is effective in cases where short-time

Fig. 1. Systems controlled with admittance controllers. (a) Typical imple-
mentation. (b) Proposed implementation.

1Because this paper mostly deals with one-dimensional systems, which can
be either translational or rotational, this paper does not strictly distinguish the
terminology of translational and rotational systems. Both “external force” and
“actuator torque” mean generalized forces in one dimensional systems.
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saturations frequently happen. It however was not intended for
the situation where the torque is saturated for a long time, e.g.,
where a human user intentionally interrupts the robot’s motion
by pushing the robot’s links.

This paper proposes a new admittance controller that allows
torque saturation in a more natural manner. It behaves as
an ordinary admittance controller as long as the actuator
torque is within the predetermined range, but it yields to the
external force without making overshoots or oscillations when
the torque is saturated. The proposed technique comprises
an algebraic loop, as in Fig. 1(b), which forms an algebraic
constraint between the proxy position and the actuator torque.
The whole controller is described as a differential algebraic
inclusion (DAI) and its discrete-time implementation is derived
through the implicit (backward) Euler discretization.

The rest of this paper is organized as follows. Section II pro-
vides mathematical preliminaries to deal with set-valued func-
tions and an overview on related work. Section III proposes a
new admittance controller and provides stability analysis. Sec-
tion IV shows results of experiments employing an industrial
manipulator. Section V presents some additional modifications
and the results of experiments showing the effects of the
modifications. Section VI provides some concluding remarks.

II. PRELIMINARIES

A. Mathematical Preliminaries

Let A be a closed interval of real numbers. This paper uses
the following functions:

projA(x) ∆= argmin
ξ∈A

(ξ − x)2 (1)

dznA(x) ∆= x − projA(x) (2)

NA(x) ∆=

 {ξ ∈ R | ξ(x∗ − x) ≤ 0 ∀x∗ ∈ A}
if x ∈ A

∅ if x ̸∈ A.
(3)

Here,projA is a projection function onto the setA, dznA is
a dead zone function with respect to the setA, andNA(x) is
the normal cone of the setA at the pointx. If the setA is
written asA = [A,B] whereA ≤ B, these functions can be
written as follows:

proj[A,B](x) =

 B if x > B
x if x ∈ [A,B]
A if x < A

(4)

dzn[A,B](x) =

 x − B if x > B
0 if x ∈ [A,B]
x − A if x < A

(5)

N[A,B](x) =


∅ if x > B ∧ x < A
[0,∞) if x = B ̸= A
0 if x ∈ (A,B)
(−∞, 0] if x = A ̸= B
(−∞,∞) if x = A = B.

(6)

These functions are illustrated in Fig. 2.
The following relation exists between the projection and the

normal cone [11, Section A.3]:

x + NA(x) ∋ y ⇐⇒ x = projA(y). (7)

Fig. 2. Functionsproj[A,B](x), dzn[A,B](x), andN[A,B](x) with A < B.

Here, the addition and subtraction between a setB and a single
valuex is understood as

B ± x =
∪
η∈B

(η ± x). (8)

This implies that, ifB = [A,B], B + x = [A + x,B + x].
This paper also uses the following set-valued signum func-

tion:

sgn(x) ∆=
{

[−1, 1] if x = 0
x/|x| if x ̸= 0.

(9)

With a non-negative scalarF ≥ 0, the normal cone of a
symmetric closed interval[−F, F ] can be seen as the inverse
map of the signum function as follows:

x ∈ F sgn(y) ⇐⇒ N[−F,F ](x) ∋ y. (10)

The relation between the signum function and the saturation
function can be written as follows:

x ∈ F sgn(y − x) ⇐⇒ x = proj[−F,F ](y), (11)

which is a special case of (7).
This paper also uses the notationco(X ) to denote the convex

hull of the setX . With two scalarsA andB, co({A,B}) =
co({B,A}) = [min(A,B), max(A, B)]. With two setsA and
B, the addition and the subtraction are defined as

A± B =
∪
ξ∈A

∪
η∈B

(ξ ± η), (12)

respectively. The following fact should be noted:

A− B ∋ 0 ⇐⇒ ∃η ∈ B s.t.A− η ∋ 0
⇐⇒ A∩ B ̸= ∅. (13)

In addition, with two set-valued functions2 Φ : R ⇒ R and
Ψ : R ⇒ R, the nested expressionΨ(Φ(x) + y) should be
understood as follows:

Ψ(Φ(x) + y) =
∪

η∈Φ(x)

Ψ(η + y). (14)

2The notationΦ : R « R means thatΦ is a set-valued function, as opposed
to a single-valued function, which is often declared asΦ : R → R.
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B. Conventional Admittance Controller

Let us consider a one-dimensional system composed of a
single mass, which is hereafter referred to as the controlled
object. Letqs ∈ R be the measured position of the controlled
object, τ ∈ R be the actuator force, andf ∈ R be the
force measured through the force sensor and applied to the
controlled object. In addition, letfd ∈ R be a force command
provided by an upper-level controller or the user. The task here
is to realize desired inertiaMx > 0 and viscosityBx > 0 in
the relation between the positionqs and the forcef + fd,
i.e., to realize the relationL[qs] ≈ L[f + fd]/(Mxs2 + Bxs).
We consider the following typical and conventional admittance
controller:

Mxq̈x + Bxq̇x = f + fd (15a)

ȧ = qx − qs (15b)

τ = Mq̈x + K(qx − qs) + B(q̇x − q̇s) + La. (15c)

Here, qx ∈ R is the position of the proxy, which has the
designed dynamics represented by (15a). The lines (15b) and
(15c) represent a PID position controller with a feedforward
of the desired acceleration. The coefficientsK, B andL are
proportional, derivative, and integral gains, respectively, which
should be set as high as permitted by the stability of the
closed-loop system. The coefficientM is a positive constant,
which should be chosen to be close to the inertia of the
controlled object. When the robot is statically in contact with
an environment surface,fd can be interpreted as the desired
value of−f . In such a situation, the quantityf + fd can be
seen as the error in the contact force. The controller (15) is
illustrated in Fig. 1(a).

Here we discuss stability and convergence properties of the
conventional admittance controller (15). Let us consider that
the controller (15) is applied to the following simple plant:

Mr q̈s + Br q̇s = τ + f + fe. (16)

This plant is a single massMr > 0 of which the position is
qs and is subject to an external disturbancefe. The forcef
applied to the force sensor is used in the controller (15) and
also affects the plant directly as in the right-hand side of (16).
From (15) and (16), one has the following relation:

L[qs] =
U1(s)L[f ] + U2(s)L[fd]

Mxs2 + Bxs
+ E1(s)L[fe] (17)

where L denotes the Laplace transform,s is the Laplace
operator, and

U1(s)
∆=

(M + Mx)s3 + (B + Bx)s2 + Ks + L

Mrs3 + (B + Br)s2 + Ks + L
(18)

U2(s)
∆=

Ms3 + Bs2 + Ks + L

Mrs3 + (B + Br)s2 + Ks + L
(19)

E1(s)
∆=

s

Mrs3 + (B + Br)s2 + Ks + L
. (20)

From the Routh-Hurwitz stability criterion, one can see that
the system is stable only ifK(B+Br) > LMr. If this inequal-
ity is satisfied andU1(s) ≈ 1, U2(s) ≈ 1 andE1(s) ≈ 0 are
also satisfied, we haveL[qs] ≈ L[f +fd]/(Mxs2 +Bxs), i.e.,
the desired admittance is achieved. Therefore, we can say that

the values of the parameters{L,K,B,M} should be chosen
so that these conditions are satisfied.

When the plant (16) controlled with (15) is in contact with
an elastic surface at the origin, the following relation holds
true:

f = −Krqs (21)

where Kr is the stiffness coefficient of the surface. Let us
focus on the quantityf + fd, which can be viewed as the
error in the contact force in this situation. From (15), (16) and
(21), the following relation holds true:

L[f + fd] = E2(s)L[fd] − E3(s)L[fe] (22)

where

E2(s)
∆= (KrE1(s) + 1)/(1 + KrA(s)) (23)

E3(s)
∆= KrE1(s)/(1 + KrA(s)) (24)

A(s) ∆= U1(s)/(Mxs2 + Bxs). (25)

The denominators ofE2(s) and E3(s) show that the system
(15)(16)(21) is stable only if the Nyquist plot ofKrA(jω)
does not encircle the point−1 + 0j in the complex plane.
To achieve this property with a higherKr, the phase lag
caused byU1(s) needs to be set smaller, and thus we
can see thatU1(s) ≈ 1 is desirable also in this case.
Becauselims→0 |A(s)| = ∞, we have lims→0 E2(s) =
lims→0 E3(s) = 0. Therefore,f + fd → 0 is realized for
step inputs infd andfe if this system is stable.

The definitions (18) and (19) imply that, in order to achieve
U1(s) ≈ 1 and U2(s) ≈ 1 in a sufficiently wide range of
frequencies, we should not prune the acceleration feedforward
term Mq̈x in the controller (15). It is especially necessary
for preventing the phase lag produced byU1(s), which may
cause the instability in the contact with stiff external objects,
considering the fact thatMx is usually set smaller thanMr.
The necessity of the termMq̈x has also been empirically
shown in the author’s previous paper [8].

This conventional approach to attenuate the contact insta-
bility by means of the acceleration feedforwardMq̈x is also
adopted in the proposed methods presented in the subsequent
sections. The upcoming Section V-C will discuss some compli-
cations caused by the termMq̈x, but the analysis here implies
that this term should not be pruned.

Remark 1. Recalling that the contact with an external object
is represented as a feedback loop (21) fromqs to f with the
gain Kr, one can see that the system tends to be unstable with
a high Kr if the controller and the robot dynamics result in
the phase lag of more than−π from f to qs. In the analysis in
this section, the phase lag is attributed solely to the transfer
function U1(s). In reality, however, there are other sources
of the phase lag, such as the latency in the controller due to
the time discretization and the sensor-actuator noncollocation,
which is the compliance between the force sensor and the
actuator [12]–[14]. That is, the above analysis depends on
the assumption that, roughly speaking, the controller latency
is small enough and the member connecting the sensor and
the actuator is stiff enough in comparison to the environment
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stiffnessKr. Nevertheless, the termMq̈x in (15c) can be
expected to act as a phase-lead compensator to attenuate the
phase lag fromf to qs, as well as the contact instability.

Remark 2. Calanca et al.’s [16] review paper provides an
overview of force control schemes, including admittance con-
trol, with noncollacated devices, such as those with elastic ac-
tuators and flexible joints. The author and his colleagues [15]
have presented an analysis on the influence of the sensor-
actuator noncollocation due to the joint compliance in a
force-projecting master-slave system, which is equivalent to
an admittance control system with the proxy replaced by a
slave manipulator (see Figs. 1 and 2 of [15]). The efficacy of
the phase-lead compensator has also been discussed therein.
This paper does not attempt to provide new approach to
this noncollocation issue, except the inclusion of the simple
acceleration feedforward termMq̈x.

C. Related Work

For an overview on related work on admittance control,
readers can refer to the author’s 2014 paper [8], which includes
brief historical notes and discussion on its relations to explicit
force control and impedance control. A more recent review
paper [16] discusses a broader class of force control schemes
including admittance control.

As has been pointed out in [8], the actuator saturation in
admittance control has not attracted much attention. Recent
work includes the use of an acceleration limiter [5], [6], which
limits the derivatives of the desired position provided to the
internal position controller, to avoid the instability caused by
the torque saturation. This approach may be similar to the
author’s previous method [8] in that both of them intend to
impose restrictions on the post-saturation behaviors of the
robot. A method imposing restrictions on the proxy’s motion
has also been presented [17], which may somewhat contribute
to the prevention of torque saturation. There is another work
[18] that employs a neural network to attenuate the tracking
error caused by the actuator saturation. Neither of the afore-
mentioned methods explicitly prevents the separation between
the proxy’s position and the robot’s position. Therefore, they
do not cope with the case where the robot link is displaced
by an external force applied to a portion other than the force
sensor.

III. PROPOSEDCONTROLLER

A. Continuous-Time Representation

Here let us assume that we need to impose the constraint
τ ∈ F on the controller (15) whereF is a closed interval of
real numbers including zero. In order to deal with this case,
this paper proposes the following new controller:

Mxq̈x + Bxq̇x ∈ f + fd −NF (τ) (26a)

ȧ = qx − qs (26b)

τ = Mq̈x + K(qx − qs) + B(q̇x − q̇s) + La. (26c)

This set of equations can be seen as a differential-algebraic
inclusion (DAI) with respect toqx. Because the normal-cone
termNF (τ) does not permitτ outside the setF , the proxy’s

accelerationq̈x is determined so thatτ ∈ F is satisfied.
As long asτ is in the interior ofF , the controller (26) is
equivalent to the ordinary admittance controller (15) because
NF (τ) = 0. A block diagram of the proposed controller (26) is
shown in Fig. 1(b), in which the termNF (τ) in (26a) appears
as an algebraic feedback loop.

If F = [−F, F ] with a positive constantF > 0, the
expression (26) can be rewritten as follows:

τ ∈ −F sgn(Mxq̈x + Bxq̇x − f − fd) (27a)

ȧ = qx − qs (27b)

τ = Mq̈x + K(qx − qs) + B(q̇x − q̇s) + La. (27c)

Note that (27a) and (27c) constitute a pair of simultaneous
equations with two unknowns,τ and q̈x. This controller has
some similarity with the author’s previous controllers. The
expression (27) becomes equivalent to the proxy-based sliding
mode controller [9], [10] and its modified version [8] by
replacing the argument ofsgn in (27a) by other functions of
qx, q̇x and q̈x.

One interesting feature of the expression (26), or equiva-
lently, (27) is that, through tedious but straightforward deriva-
tion using the relation (7), one can equivalently rewrite it by
the following ODE:

τ = projF
(
M(f + fd − Bxq̇x)/Mx

+K(qx − qs) + B(q̇x − q̇s) + La
)

(28a)

q̈x = (τ − K(qx − qs) − B(q̇x − q̇s) − La)/M (28b)

ȧ = qx − qs. (28c)

It should be cautioned that this ODE (28) is not convenient
for implementation because it includes the divisions byM and
Mx, which may be very small or even zero. In order to avoid
this problem, we need careful discretization of (26), which
will be detailed in the next section.

B. Proposed Controller: Discrete-Time Representation

A discrete-time representation of the proposed controller
(26) is now derived based on the implicit Euler discretization.
Let T be the timestep size andk be the integer representing the
discrete-time index. By using the implicit Euler discretization,
e.g., q̇x := (qx(k) − qx(k − 1))/T , (26) can be discretized as
follows:

a(k) = a(k − 1) + T (qx(k) − qs(k)) (29a)

τ(k) = (K̂ + M/T 2) (qx(k) − q∗s (k)) (29b)

q∗x(k) − qx(k) ∈ NF (τ(k)) (29c)

whereK̂
∆= K + B/T + LT and

u∗
x(k) ∆=

Mxux(k − 1) + T (f(k) + fd(k))
Mx + BxT

(30)

q∗x(k) ∆= qx(k − 1) + Tu∗
x(k) (31)

ϕb(k) ∆=
B(qx(k − 1) − qs(k − 1))

T
− La(k − 1) (32)

ϕa(k) ∆= M
qs(k) − qx(k − 1) − Tux(k − 1)

T 2
(33)
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q∗s (k) ∆= qs(k) +
ϕb(k) − ϕa(k)
K̂ + M/T 2

(34)

ux(k) ∆= (qx(k) − qx(k − 1))/T. (35)

By eliminating qx(k) from (29b) and (29c) by using the
relation (7), one obtains the following expression:

τ(k) = projF ((K̂ + M/T 2)(q∗x(k) − q∗s (k))). (36)

In conclusions, the proposed controller (26) can be realized in
the discrete-time domain as the following algorithm:

u∗
x(k) :=

Mxux(k − 1) + T (f(k) + fd(k))
Mx + BxT

(37a)

q∗x(k) := qx(k − 1) + Tu∗
x(k) (37b)

ϕb(k) :=
B(qx(k − 1) − qs(k − 1))

T
− La(k − 1) (37c)

ϕa(k) := M
qs(k) − qx(k − 1) − Tux(k − 1)

T 2
(37d)

q∗s (k) := qs(k) +
ϕb(k) − ϕa(k)
K̂ + M/T 2

(37e)

τ∗(k) := (K̂ + M/T 2)(q∗x(k) − q∗s (k)) (37f)

τ(k) := projF (τ∗(k)) (37g)

qx(k) := q∗s (k) + τ(k)/(K̂ + M/T 2) (37h)

ux(k) := (qx(k) − qx(k − 1))/T (37i)

a(k) := a(k − 1) + T (qx(k) − qs(k)). (37j)

This controller will be referred to as ControllercP in subse-
quent sections.

Note that this algorithm (37) does not involve any set-
valued functions or non-closed form equations, although
its original continuous-time representation (26) involves set-
valuedness and differential-algebraic constraints. Although the
set-valuedness is not apparent in the algorithm (37),τ∗(k) ∈
F results inτ∗(k) = τ(k), q∗x(k) = qx(k) andu∗

x(k) = ux(k),
and thus further results in the followings:

ux(k) =
Mxux(k − 1) + T (f(k) + fd(k))

Mx + BxT
(38a)

τ(k) = M
ux(k) − ux(k − 1)

T
+ K(qx(k) − qs(k))

+
B(Tux(k) − (qs(k) − qs(k − 1))

T
+ La(k) (38b)

a(k) = a(k − 1) + T (qx(k) − qs(k)). (38c)

Note that this is exactly the discretization of the conventional
admittance controller (15). That is, the set-valuedness in the
original DAI (26) is implicitly preserved in the algorithm
(37) although it is not apparent. The use of the implicit
discretization for implicitly preserving the set-valuedness of
the original continuous-time representation has been presented
by some researchers [19]–[21] including the author and his
colleagues [8], [9], [22].

Fig. 3. System (16)(21) controlled with (a) the conventional controller (15)
and (b) the proposed controller (26). The system of (b) comprises a set-
valued feedback fromτ to λ. (The variablef∗

d is defined here only for the
convenience of illustration.)

C. Stability Analysis

The proposed controller (26) can be seen as the intercon-
nection of a linear subsystem:

Mxq̈x + Bxq̇x = f + fd + λ (39a)

ȧ = qx − qs (39b)

τ = Mq̈x + K(qx − qs) + B(q̇x − q̇s) + La (39c)

and a memoryless feedback law:

λ ∈ −NF (τ) (40)

where λ is a newly introduced scalar variable. That is, the
controller (26) is equivalently rewritten as (39)(40). It can
be seen that the only difference between the conventional
controller (15) and the proposed controller (26) is thatfd in
(15) is replaced byfd + λ and the contraint (40) is added
in the new controller. Fig. 3 illustrates the relation between
the conventional controller (15) and the proposed controller
(26), both combined with the plant (16) and the environment
(21). With the proposed controller (26), the whole closed-
loop system is composed of the nonlinear feedback (40) and
the linear subsystem composed of (16)(21)(39). Because (40)
implies λτ ≤ 0, the passivity of the linear subsystem is a
sufficient condition for the stability of the whole system in
Fig. 3(b).

With the subsystem (16)(39), the relation between the inputs
{f, fd, λ, fe} and the outputτ can be obtained as follows:

L[τ ] = Gf (s)L[f ] + G1(s)L[fd + λ] − U3(s)L[fe] (41)

where

Gf (s) ∆= G1(s) − U3(s) (42)

G1(s)
∆=

Mrs + Br

Mxs + Bx
U2(s) (43)

U3(s)
∆=

Bs2 + Ks + L

Mrs3 + (B + Br)s2 + Ks + L
. (44)

From this expression, we have the following result:

Proposition 1. Consider the system (16) combined with the
feedback controller (26) withf = fe = fd = 0. Then, the
origin [q̇x, q̇s, ȧ, a]T = 0 is globally asymptotically stable if
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the transfer functionG1(s) defined by (43) is strictly positive
real.

Proof: It can be seen that a minimal realization of the
transfer functionG1(s) is the system (16)(39) with the four-

dimensional state vectorx4
∆= [q̇x, q̇s, ȧ, a]T , the inputλ, the

output τ , andf = fe = fd = 0. If G1(s) is strictly positive
real, there exist positive definite functionsV4 : R4 → R
and ψ4 : R4 → R with which V̇4(x4) < λτ − ψ4(x4)
[23, Lemma 6.4]. Because (40) impliesλτ ≤ 0, we have
V̇4(x4) < 0 for all x4 ̸= 0, which indicates that the system
(16)(39)(40), or equivalently, the system (16)(26), is globally
asymptotically stable iff = fe = fd = 0.

When the subsystem (16)(39) is in contact with an elastic
surface as described by (21), the forcesf , fe and τ are
constrained by the following relation:

L[f ] = − Kr(L[τ ] + L[fe])
Mrs2 + Brs + Kr

, (45)

which is obtained from (16) and (21). Substituting (45)
into (41) shows that the transfer function from the inputs
{fd, λ, fe} to τ can be written as follows:

L[τ ] = G2(s)L[fd + λ] − G3(s)L[fe] (46)

where

G2(s)
∆=

(Mrs
2 + Brs + Kr)U2(s)

Mxs2 + Bxs + KrU1(s)
(47)

G3(s)
∆=

(Mxs2 + Bxs)U3(s) + KrU2(s)
Mxs2 + Bxs + KrU1(s)

. (48)

From this expression, we have the following result:

Proposition 2. Consider the system (16)(21) combined with
the feedback controller (26) withfe = fd = 0. Then, the origin
[q̇x, q̇s, ȧ, a, qs]T = 0 is globally asymptotically stable if the
transfer functionG2(s) defined by (47) is strictly positive real.

Proof: It can be seen that a minimal realization of the
transfer functionG2(s) is the system (16)(21)(39) with the

five-dimensional state vectorx5
∆= [q̇x, q̇s, ȧ, a, qs]T , the input

λ, the outputτ , andfe = fd = 0. If G2(s) is strictly positive
real, there exist positive definite functionsV5 : R5 → R
and ψ5 : R5 → R with which V̇5(x5) < λτ − ψ5(x5)
[23, Lemma 6.4]. Because (40) impliesλτ ≤ 0, we have
V̇5(x5) < 0 for all x5 ̸= 0, which indicates that the system
(16)(21)(39)(40), or equivalently, the system (16)(21)(26), is
globally asymptotically stable iffe = fd = 0.

These results indicate that the values of the parameters
{K,B,L,M,Mx, Bx} need to be chosen so thatG1(s) and
G2(s) are strictly positive real. These functions depend on
the functionsU1(s) and U2(s), which are defined in (19)
and (18), respectively. From these definitions, one can see
that K(B + Br) > LMr, U1(s) ≈ 1 and U2(s) ≈ 1
are necessary for the strict positive realness ofG1(s) and
G2(s). The design of controller parameters to achieve the
strict positive realness ofG1(s) andG2(s) may be possible by
using the linear matrix inequality associated with the Kalman-
Yakubovic-Popov (KYP) Lemma [24, Section 3.1] if the plant
parameters{Mr, Br,Kr} are known. It would be however

Fig. 4. Setup for experiments. (a) Configuration for Experiment I. (b)
Configuration for Experiment II.

difficult because the plant parameters are usually unavailable.
One practical approach is to setK andB as high as possible,
and chooseM to be an appropriate value that is close toMr

or Mr − Mx.
Lur’e systems comprising set-valued feedback loops have

been investigated by Brogliato and Goeleven [25], focusing
on the passivity of the linear parts. The presented results can
be seen as simplified cases of the results in [25]. Systems with
set-valued feedbacks have also been investigated by Miranda-
Villatoro and Castãnos [26]. They considered general cases, in
which the output is a multi-dimensional vector and the normal-
cone operator is combined with an output regulator. Discrete-
time versions of Propositions 1 and 2, which may be obtained
in a similar approach to those of Huber et al. [27], remain to
be addressed.

Remark 3. The analysis in this section is built upon the
same assumption as the one in Section II-B, which is that
the controller latency and the sensor-actuator noncollocation
are negligible. In the same reason as Remark 1 discussed
with the conventional admittance controller, the system with
the new method tends to be unstable when it is in contact
with a stiff external object. The term proportional toM is
expected to attenuate the instability due to its effect of phase
leading, as it does with the conventional admittance controller.
This point will be discussed with the results of experiments in
Sections IV-B and V-E.

IV. EXPERIMENTS

For the validation of the proposed controller (37), the 6-
DOF industrial robot MOTOMAN-HP3J (Yaskawa Electric
Corporation) shown in Fig. 4 was used. The robot had six
AC servomotors, which were integrated with harmonic-drive
gearings and optical encoders. A six-axis force sensor (Nitta
Corporation) was attached to the end-effector of the robot. A
circular holding knob was installed on the force sensor. The
whole system was controlled with a PC running the ART-
Linux operating system.

The experiments were performed with the third joint of the
manipulator, which produced the motion indicated in Fig. 4(a).
For the comparison, we used the following three controllers:
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Fig. 5. Results of Experiment I. The experimenter applied forces on the force sensor in Periods A and on the link in Periods B. In Periods C, the experimenter
held the link by one hand and applied an upward force on the force sensor by the other hand.

• cO: The admittance controller consisting of the proxy
dynamics (15a) and the following internal position con-
troller:

ȧ = qx − qs (49a)

τ = projF (Mq̈x + K(qx − qs) + B(q̇x − q̇s) + La) ,

(49b)

which is the ordinary torque-saturated PID control.
• cS: The admittance control consisting of the proxy dy-

namics (15a) and the internal position controller proposed
in [8].

• cP: Proposed controller (37).
The parameters were chosen as:K = 20000 Nm, B =
140 Nms, L = 6000 Nm/s, M = 3 kg·m2, F = 7.5 Nm
andF = [−F, F ], Mx = 0.2 kg·m2 andBx = 0.2 Nms. The
gains{K,B,L} were chosen as high as the system remained
stable,F was set adequately larger than the magnitude of the
friction force in the joint, andM was chosen through trial and
error. The proxy’s parameters{Mx, Bx} were chosen as low
as the system remained stable with a firm grasping by hand.
The timestep size was set asT = 0.001 s.

A. Experiment I: Moved by Hand

In the first set of experiments, the robot was moved by the
experimenter’s hand through the holding knob. The desired
force fd was set zero. The results are shown in Fig. 5. In
Periods A, the experimenter moved the robot by grasping
the force sensor. In Periods B, the experimenter applied the
force on the link, not on the force sensor. In Periods C, the
experimenter held the link so that it should not move and
applied an upward (positive) force on the force sensor.

In Periods A, all controllers realized appropriate admittance
control, in which the proxy and robot positions well coincide

with each other. In Periods B, when a force was applied to the
link, the proxy did not move withcO andcS but it followed
the robot with cP. The separation between the proxy and
the robot produced bycO and cS resulted in snapping-back
motions after Periods B. The motion produced bycO was
overshooting and oscillatory while that produced bycS was
rather smooth and monotonic, due to the effect of the internal
position controller proposed in [8]. With the new controllercP,
in contrast, the proxy followed the robot in Periods B, after
which there was no snapping-back motion. (Fig. 5(c) includes
several Periods B because the experimenter pushed the link
several times to move it back to the original position.)

In Periods C, i.e., when an upward force was applied to
the force sensor and the link was held unmoved,cO and
cS resulted in the proxy’s moving away from the robot in
the positive (upward) direction. In the same situation,cP did
not produce such a proxy motion. After Periods C, when the
experimenter released the hands from the robot,cO and cS
drove the robot to catch up with the proxy that was already
far separated. It is clearly undesirable and unsafe behavior.
Such behaviors were not seen in the proposed controllercP.

B. Experiment II: Contact with Environment

Another set of experiments was performed to test the
stability of the proposed controller in contact with a stationary
external object. Specifically, it was to test the efficacy of the
acceleration feedforward term (with the coefficientM > 0),
which is for improving the contact stability, as has been
discussed in Section II-B. As shown in Fig. 4(b), a sponge
sheet was placed on a wooden board in front of the robot
and the third joint was controlled to push the sponge sheet
downward with its end-effector. A position controller was
initially used to hold the end-effector lightly in contact with
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Fig. 6. Results of Experiment II. The suffixo attached to the controllers’
names indicatesM = 0. The admittance controller started att = 2 s.

the sponge sheet, and at the timet = 2 s, it was switched
to an admittance controller with a constant force command
fd = −2 Nm. The admittance controllerscO and cP and
those withM = 0, denoted bycOo and cPo, respectively,
were used.

The results are shown in Fig. 6. The controllercOo resulted
in bouncing and jumping, while the other three controllers
maintained the contact with the surface, although the controller
cPoproduced vibratory contact force. It is clearly seen that the
acceleration feedforward (M > 0) contributes to the contact
stability not only with the conventional controllercO but also
with the proposed controllercP. These results support the
efficacy and the necessity of the acceleration feedforward term
with M > 0 in the proposed controller. It can also be observed
that, without the acceleration feedforward (i.e.,M = 0),
the proposed controllercPo realizes better stability than the
conventional onecOo, although the proposed technique is not
intended to improve the contact stability. This difference can
be attributed to the fact thatcPoprevents the separation of the
proxy from the actual position.

In these experiments, the sponge sheet was used to stabi-
lize the contact with the same parameter values as those in
Experiment I. In the direct contact with the wooden board,
the system was destabilized with the bouncing behavior both
with the conventional and proposed controllers. Even with the
sponge sheet, small oscillatory behaviors are still observed in
the results ofcP andcO in Figs. 6(a) and (c). These bouncing
and oscillatory behaviors can be reduced if one is allowed
to set the desired inertiaMx and the desired viscosityBx

higher. As discussed in Remarks 1, 2 and 3, such unstable
behaviors are attributed to the phase lag caused byU1(s), the
time discretization of the controller, and also to the sensor-
actuator noncollocation due to the compliance of the joint
transmissions. The conditionK(B + Br) > LMr mentioned
in Section III-C is supposed to be unrelated becauseL = 0
also results in bouncing or oscillation.

V. SOME MODIFICATIONS

This section presents three modifications on the controller
(37), of which the continuous-time representation is (26).
These modifications are not within the scope of the analysis in
Section III-C, but have been found useful through experiments.
Sections V-A to V-C will present the modifications and Sec-
tions V-D and V-E will show the results of some experiments.

A. Modification A: Including Proxy’s Coulomb Friction

One practical drawback of the controller (37), or equiva-
lently (26), is that, because of the linear proxy dynamics (26a),
the robot starts to drift even with a small force on the force
sensor, and it does not exactly stop in finite time but may
decelerate only exponentially. If one needs to remove these
features, one straightforward idea is to include a Coulomb fric-
tion term in the proxy dynamics, which extends the controller
(26) into the following form:

Mxq̈x + Bxq̇x ∈ −Fxsgn(q̇x) + f + fd −NF (τ) (50a)

ȧ = qx − qs (50b)

τ = Mq̈x + K(qx − qs) + B(q̇x − q̇s) + La. (50c)

Here,Fx > 0 is the magnitude of the Coulomb friction force
to which the proxy is subject. Note that (50a) includes two
set-valued functions in the right-hand side and it should be
understood according to the rule (12). IfF = [−F, F ], it can
be equivalently rewritten as follows:

τ ∈ −F sgn(Mxq̈x + Bxq̇x + Fxsgn(q̇x) − f − fd), (51)

which includes twosgn functions in a nested way and it should
be understood according to the rule (14).

With the implicit Euler discretization of (50), one obtains
a set of algebraic inclusions with two set-valued functions.
It can be analytically solved through the derivation presented
in Appendix. The resultant algorithm is the one obtained by
replacing the line (37a) of the proposed controller (37) by the
following line:

u∗
x(k) := dznVx

(
Mxux(k − 1) + T (f(k) + fd(k))

Mx + BxT

)
(52)

where

Vx
∆=

[
− TFx

Mx + BxT
,

TFx

Mx + BxT

]
. (53)

An admittance controller including Coulomb friction has
been presented by the author and his colleagues [22], where
the implicit Euler discretization has also been used. A nested
signum structure, similar to (51), has been investigated by
Miranda-Villatoro et al. [28], who provided a rigorous analysis
in terms of the uniqueness and existence of the solution in the
continuous-time domain. The presented modification, injecting
additional Coulomb friction, should not be confused with the
compensation techniques for joint friction [29], [30], which
have been shown to enhance the stability of admittance control
[31]. The influence of the additional Coulomb friction on the
closed-loop stability would need an extension of the analysis
in Section III-C, which is left outside the scope of this paper.
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B. Modification B: Preventing Saturation-Induced Kinetic En-
ergy Injection

One feature of the proposed controller (37) is that the
actuator saturation may inject kinetic energy to the robot.
When the robot is moved by an external force and the actuator
torque is saturated, the proxy follows the robot’s movement
and gains a velocityux(k). This velocityux(k) is then used to
calculate the proxy positionqx(k+1) of the next timestep. This
means that, when the actuator is saturated, the work done by
the external force is stored as the kinetic energy of the proxy,
as well as that of the robot. This feature may be undesirable
for safety reasons.

As indicated in the line (37a) of the algorithm (37),u∗
x(k)

is determined only by the predefined dynamics of the proxy,
and thus it can be referred to as thepre-saturationproxy
velocity. Meanwhile,ux(k) can be referred to as thepost-
saturation proxy velocity because it is determined by the
pre-saturation oneu∗

x(k) plus the saturation effect. Therefore,
one way to prevent the kinetic energy injection done by the
actuator saturation is to determineux(k) so that it satisfies
ux(k) ∈ co({0, u∗

x(k)}), which indicates that the saturation
only dissipates the proxy’s kinetic energy and that the direction
of u∗

x(k) is preserved inux(k). This idea can be realized by
replacing the line (37i) of the algorithm (37) by the following
line:

ux(k) := projco({0,u∗
x(k)}) ((qx(k) − qx(k − 1))/T ) . (54)

Note that this modification does not affect the current proxy
positionqx(k), but does modify only the proxy velocityux(k),
which influences the proxy positionqx(k + 1) in the next
timestep. The underlying idea is that the proxy positionqx(k)
needs to be consistent with the torqueτ(k) but the proxy
velocity, which is an independent state variable, does not need
to satisfyux(k) = (qx(k) − qx(k − 1))/T .

C. Modification C: Pre-Saturation Acceleration Feedforward

As has been discussed in Section II-B, the acceleration
feedforward term, which is the termMq̈x in the internal
position controller (15c) or (26c), enhances the stability of
admittance-controlled systems. Such an effect has also been
supported by results of experiments in Section IV-B and those
in a previous paper [8]. With some preliminary experiments,
however, it has been observed that the termMq̈x combined
with Modification B in Section V-B causes problematic be-
haviors of the robot. Such results will be shown in the next
Section V-D.

This section provides a workaround for this problem, of
which the efficacy will be shown through the experiments
in the next Section V-D. Considering that the termMq̈x

in (26c) is the source of problematic behaviors under the
saturation, we consider replacing it by a quantity that is not
affected by the actuator saturation. With a somewhat abusive
mathematical notation, we here consider the following variant

of the controller (26):

Mxq̈∗x + Bxq̇x = f + fd (55a)

Mxq̈x + Bxq̇x ∈ f + fd −NF (τ) (55b)

ȧ = qx − qs (55c)

τ = projF (Mq̈∗x) + K(qx − qs) + B(q̇x − q̇s) + La. (55d)

The difference between this controller and the original one
(26) appears in the feedforward term in (55d). Here, the
quantity q̈∗x can be seen as apre-saturationacceleration that
could have been achieved if the actuator saturation did not
happen. The projection operator imposed on the termMq̈∗x
in (55d) is to prevent the term from becoming excessively
large even when a large impulsive force is applied to the force
sensor.

In the algorithm (37) and its variants in the previous sec-
tions, the quantityu∗

x(k) is the proxy’spre-saturationvelocity
that could have been achieved if the saturation did not happen.
Therefore, it is reasonable to set the following relation:

q̈∗x ≈ (u∗
x(k) − ux(k − 1))/T. (56)

By using this, one can discretize (55) as follows:

a(k) = a(k − 1) + T (qx(k) − qs(k)) (57a)

τ(k) = K̂ (qx(k) − q∗s (k)) (57b)

q∗x(k) − qx(k) ∈ NF (τ(k)) (57c)

where

u∗
x(k) ∆=

Mxux(k − 1) + T (f(k) + fd(k))
Mx + BxT

(58)

q∗x(k) ∆= qx(k − 1) + Tu∗
x(k) (59)

ϕb(k) ∆=
B(qx(k − 1) − qs(k − 1))

T
− La(k − 1) (60)

ϕa(k) ∆= projF (M(u∗
x(k) − ux(k − 1))/T ) (61)

q∗s (k) ∆= qs(k) + (ϕb(k) − ϕa(k))/K̂ (62)

ux(k) ∆= (qx(k) − qx(k − 1))/T. (63)

The definitions ofu∗
x(k), q∗x(k), ϕb(k) and ux(k) are not

altered from the original ones in (37). In the same light as
the derivation from (29) to (37), one can analytically solve
the algebraic relation (57) by using the relation (7) and can
finally arrive at the algorithm that is identical to (37) except
the lines (37d)-(37h) replaced by the following lines:

ϕa(k) := projF (M(u∗
x(k) − ux(k − 1))/T ) (64a)

q∗s (k) := qs(k) + (ϕb(k) − ϕa(k))/K̂ (64b)

τ∗(k) := K̂(q∗x(k) − q∗s (k)) (64c)

τ(k) := projF (τ∗(k)) (64d)

qx(k) := q∗s (k) + τ(k)/K̂. (64e)

That is, the modification proposed here is to replace the lines
(37d)-(37h) of the algorithm (37) by the lines (64).
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Fig. 7. Results of Experiment III, with modified versions of the proposed controller. The actual position and the proxy position are almost overlapping except
(c). The experimenter applied a force on the force sensor during Periods A and on the link during Periods B.

The whole algorithm after the three modifications in Sec-
tions V-A, V-B and V-C is presented as follows:

u∗
x(k) := dznVx

(
Mxux(k − 1) + T (f(k) + fd(k))

Mx + BxT

)
(65a)

q∗x(k) := qx(k − 1) + Tu∗
x(k) (65b)

ϕb(k) :=
B(qx(k − 1) − qs(k − 1))

T
− La(k − 1) (65c)

ϕa(k) := projF (M(u∗
x(k) − ux(k − 1))/T ) (65d)

q∗s (k) := qs(k) + (ϕb(k) − ϕa(k))/K̂ (65e)

τ∗(k) := K̂(q∗x(k) − q∗s (k)) (65f)

τ(k) := projF (τ∗(k)) (65g)

qx(k) := q∗s (k) + τ(k)/K̂ (65h)

ux(k) := projco({0,u∗
x(k)}) ((qx(k) − qx(k − 1))/T ) (65i)

a(k) := a(k − 1) + T (qx(k) − qs(k)). (65j)

This algorithm (65) will be referred to as ControllercPABC
in subsequent sections. This modified algorithm (65) may
be more convenient than the original one (37) for some
applications, although it has not yet been theoretically sup-
ported. One difficulty in the analysis is that the modified
algorithm (65) does not have a continuous-time counterpart
in contrast to the fact that the original algorithm (37) has the
continuous-time counterpart (26). Another important fact is
that, as long as the actuator is not saturated, i.e.,τ∗(k) ∈ F ,
the modified algorithm (65) is analytically equivalent to the
implicit Euler discretization of the conventional admittance
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controller including Coulomb friction, which is described as
follows:

Mxq̈x + Bxq̇x ∈ −Fxsgn(q̇x) + f + fd (66a)

ȧ = qx − qs (66b)

τ = Mq̈x + K(qx − qs) + B(q̇x − q̇s) + La. (66c)

That is, the feedforward termMq̈x is still active as long as
the actuator is not saturated.

D. Experiment III: Moved by Hand

Some experiments were performed with the modifications
presented in the last sections. The same setup as in Section IV
was used. The following six controllers were used:

• cP: The algorithm (37), which is the basic form of the
proposed controller.

• cPA: Controller cP plus Modification A (proxy’s
Coulomb friction), which is the algorithm (37) with (37a)
replaced by (52).

• cPB: Controller cP plus Modification B (prevention of
saturation-induced kinetic energy), which is the algorithm
(37) with (37i) replaced by (54).

• cPBo: Controller cPB with M = 0 (no acceleration
feedforward).

• cPBC: Controller cPB plus Modification C (pre-
saturation acceleration feedforward), which is the algo-
rithm (65) with Fx = 0 (no proxy’s Coulomb friction).

• cPABC: The algorithm (65), which includes all three
modifications.

The parameters were the same as the experiments in Sec-
tion IV except that the proxy’s friction force is set asFx =
0.2 Nm with cPA andcPABC. ControllercPBo was included
to show thatM > 0 is the source of problematic behaviors of
Modification B.

In the experiments, the experimenter pushed the force sensor
upward, and then pushed the link downward. The results are
shown in Fig. 7. The periods of upward pushing on the force
sensor are indicated as Periods A and the periods of downward
pushing on the link are indicated as Periods B.

With ControllercP, the robot continued moving both after
Period A and Period B with slight deceleration. The continued
motions can be explained by the proxy’s storing the work done
by the forces both on the force sensor and on the link. With
Controller cPA, the robot also continued moving for a while
after these two periods, but decelerated non-exponentially and
ceased to move eventually. These behaviors exhibit the effect
of the proxy’s Coulomb friction introduced as Modification A.

A problematic behavior took place with ControllercPB.
As can be seen in Fig. 7(c), in Period B,cPB produced a
separation between the robot’s positionqs and the proxy’s po-
sition qx. After this period, the separation caused a snapping-
back motion, followed by some oscillation. This undesirable
behavior is removed withcPBo andcPBC. ControllerscPBo
andcPBC realized almost the same motion ascP after Period
A, but almost immediately stopped after Period B, which was
the motion intended in Modification B. Therefore, one can see
that M > 0 is the source of the problematic behavior ofcPB
and it is removed by settingM = 0 or by Modification C.

One possible explanation on the cause of the problem of
cPB is presented as follows. The algorithm (37) implies that

τ(k) = K̂(qx(k) − qs(k)) − ϕb(k)
+M(qx(k) − qx(k − 1) − Tux(k − 1))/T 2 (67)

is satisfied whereϕb(k) is defined as (32). Whenτ(k) is
saturated asτ(k) = F andux(k − 1) is set asuk(k − 1) ≈ 0
as the effect of Modification B, (67) becomes as follows:

F ≈ K̂(qx(k)−qs(k))−ϕb(k) + M
qx(k)−qx(k − 1)

T 2
. (68)

In this situation, the proxy positionqx(k) is determined
according to the inputqs(k) and the relation (68), and the last
term proportional toM injects a strong damping in the proxy
motion with the viscosity coefficient ofM/T . The value of
M/T is 3000 Nms in this experiment and is much larger than
the derivative gainB = 140 Nms. Therefore, the separation
betweenqx(k) andqs(k) with cPB is attributed to the damping
produced by the last term of (68), which prevents the proxy
from following the robot. The motion of the proxy in Fig. 7(c)
is consistent with this explanation.

The fully modified versioncPABC, which is the algorithm
(65), showed intended features of both Modifications A and
B, which are the smooth and non-exponential halting after
Period A and the immediate stop after Period B.

E. Experiments IV and V: Contact with Environment

The modified controllers were also tested in contact with a
stationary object in another set of experiments, Experiment IV.
The experiments were performed in the same way as Ex-
periment II and the setup was used as shown in Fig. 4(b).
Four controllers,cPBo, cPBC, cPABC and cPABCo where
the suffix o stands forM = 0, were used to clarify the
effectiveness of the acceleration feedforward combined with
the presented modifications.

Fig. 8 shows the results. The comparison betweencPBo
andcPBC shows that the acceleration feedforward is effective
also with Modification B when it is combined with Mod-
ification C. The absence of Modification C. i.e.,cPB, was
not tested because it is already shown to be problematic
in Experiment III. The latter two controllers,cPABC and
cPABCo, show that Modification A (the proxy’s Coulomb
friction) is more effective than the acceleration feedforward to
improve the contact stability. The difference betweencPABCo
appeared in the transient response, in whichcPABCo is
smoother thancPABCo. Due to the proxy’s Coulomb friction,
the contact forcef is expected to converge to the interval
−fd + [−Fx, Fx] = [1.8Nm, 2.2Nm]. Figs. 8(c) and (d) show
that f became almost stationary within this range.

Because the difference betweencPABC and cPABCo was
not very apparent in contact with a sponge sheet, another set
of experiments, Experiment V, was performed with a stiffer
(i.e., more destabilizing) environment. The sponge sheet was
removed and the robot was made directly in contact with the
wooden board indicated in Fig. 4(b). Fig. 9 shows the results.
It shows that, with both controllers, the end-effector exhibited
continued bouncing on the environment surface and failed to
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Fig. 8. Results of Experiment IV: contact with a soft surface (sponge sheet).
The suffixo meansM = 0.

Fig. 9. Results of Experiment V: contact with a hard surface (wooden board).
The suffixo meansM = 0.

establish stable contact. Comparing these two, one can see
that the bouncing ofcPABC is smaller than that ofcPABCo,
indicating that the acceleration feedforward is effective even
in combination with Modification A. Again, the source of this
instability can be supposed to be those discussed in Remarks 1,
2 and 3. It should also be noted that this bouncing can be
removed if one is allowed to increase the desired inertiaMx

and the desired viscosityBx.
A conclusion drawn from the experiments is that, from a

practical point of view, the fully modified versioncPABC
is most recommended, although its properties have not been
fully clarified from a theoretical point of view. The unmodified
controller cP may be recommended if one needs controllers
of which the properties are theoretically clarified.

VI. CONCLUSIONS

This paper has proposed a new admittance controller that
operates with a bounded actuator torque. It is analytically
equivalent to a conventional admittance controller as long
as the actuator is not saturated, but it behaves safely even

when the actuator torque is saturated, without producing the
separation between the proxy position and the robot position.
The continuous-time representation of the proposed controller
is given as a differential-algebraic inclusion (DAI), which in-
cludes a set-valued function. The discrete-time implementation
is derived through the implicit Euler discretization of the DAI,
and the resultant algorithm is of the closed form and is free
from the set-valuedness. In addition to the proposed DAI-based
controller, some modifications have been presented to alleviate
practical inconveniences of the proposed controller. Although
theoretical properties of these modifications have not yet been
clarified, the efficacy of the modifications has been supported
with the results of some experiments.

Conventional admittance controllers produce unpredictable
behaviors when the proxy position is separated from the
robot position. Therefore, admittance-controlled robots had to
be prevented from gaining contact with external objects at
portions other than the force sensor. The proposed controller
casts aside such concerns, and thus is expected to be useful
for force control applications in human-centered environments
where the safety is of utmost importance.

This paper has assumed the use of a force sensor on the end-
effector. The proposed technique would be useful to cope with
the actuator saturation also in combination with sensorless
admittance control, e.g., [32], [33], using some means to
estimate external forces.

Future study should address theoretical details on the
presented modifications on the controller. Multidimensional
implementation of the proposed algorithms, e.g., admittance
control in the Cartesian task space with joint torque limits,
is also an important topic for industrial and human-centered
applications.
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APPENDIX

The process of discretizing (50) to obtain (52) is presented
here. The following lemmas are useful for this purpose:

Lemma 1. With x ∈ R, y ∈ R and F > 0, the following two
statements hold true:

x − F sgn(y − x) − [0,∞) ∋ 0 ⇐⇒ x ≥ proj[−F,F ](y)
x − F sgn(y − x) − (−∞, 0] ∋ 0 ⇐⇒ x ≤ proj[−F,F ](y).

Proof: The first statement is proven as follows:

x − F sgn(y − x) − [0,∞) ∋ 0
⇐⇒ (x − F ≥ 0 ∧ y > x) ∨ (x + F ≥ 0 ∧ y ≤ x)
⇐⇒ F ≤ x < y ∨ x ≥ max(−F, y)
⇐⇒ F ≤ x < max(−F, y) ∨ x ≥ max(−F, y)
⇐⇒ x ≥ min(F, max(−F, y))
⇐⇒ x ≥ proj[−F,F ](y). (69)

The second statement is proven in a similar way to (69).

Lemma 2. With x ∈ R, a ∈ R, b ∈ R, A > 0, and a closed
setF ⊂ R, the following statement holds true:

x + NF (x) + Asgn(x + b) ∋ a

⇐⇒ x = projF
(
dzn[−A,A](a + b) − b

)
. (70)

Proof: Let us define the following set-valued function
β : R × R × R ⇒ R:

β(x, a, b) ∆= a − x − Asgn(x + b). (71)

Then, we have the following:

β(x, a, b) ∋ 0 ⇐⇒ a − x ∈ Asgn(x + b)
⇐⇒ a − x ∈ Asgn(b + a − (a − x))
⇐⇒ a − x = proj[−A,A](a + b)

⇐⇒ β̂(x, a, b) = 0 (72)
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whereβ̂(x, a, b) is a single-valued function defined as follows:

β̂(x, a, b) ∆= −x − b + dzn[−A,A](a + b). (73)

Moreover, an analysis employing Lemma 1 shows that the
following two statements hold true:

β(x, a, b) − [0, +∞) ∋ 0 ⇐⇒ β̂(x, a, b) ≥ 0 (74)

β(x, a, b) − (−∞, 0] ∋ 0 ⇐⇒ β̂(x, a, b) ≤ 0. (75)

These three relations (72), (74) and (75) can be written in the
following unified expression:

∀X ∈ {{0}, [0,∞), (−∞, 0]},
X − β(x, a, b) ∋ 0 ⇐⇒ X − β̂(x, a, b) ∋ 0. (76)

Considering thatNF (x) takes only the three set-values{0},
[0,∞), and(−∞, 0], one can see that the following is satisfied:

x + NF (x) + Asgn(x + b) ∋ a

⇐⇒ NF (x) − β(x, a, b) ∋ 0
⇐⇒ NF (x) − β̂(x, a, b) ∋ 0
⇐⇒ NF (x) + x + b − dzn[−A,A](a + b) ∋ 0
⇐⇒ x = projF

(
dzn[−A,A](a + b) − b

)
, (77)

which completes the proof.
Now, let us start with (50). The difference between (50)

and (26) is the termFxsgn(ux(k)) added to the same place
asNF (τ(k)). Noting that (26) is discretized into (29), (50) is
discretized in the following form:

a(k) = a(k − 1) + T (qx(k) − qs(k)) (78a)

τ(k) = (K̂ + M/T 2) (qx(k) − q∗s (k)) (78b)

q∗∗x (k) − qx(k) ∈ NF (τ(k)) + TVxsgn(ux(k)) (78c)

whereK̂
∆= K + B/T + LT , Vx

∆= TFx/(Mx + BxT ),

ux(k) ∆= (qx(k) − qx(k − 1))/T (79)

q∗∗x (k) ∆= qx(k − 1) + Tu∗∗
x (k) (80)

u∗∗
x (k) ∆=

Mxux(k − 1) + T (f(k) + fd(k))
Mx + BxT

, (81)

and q∗s (k) is the one defined in (34). Eliminatingqx(k) and
ux(k) from (78b)(78c)(79) yields the following:

q∗∗x (k) − q∗s (k) − τ(k)
Â

∈

NF (τ(k)) + TVxsgn
(

τ(k)
Â

+ q∗s (k) − qx(k − 1)
)

(82)

whereÂ = K̂ +M/T 2. Lemma 2 suggests that it is rewritten
as follows:

τ(k) = projF
(
dzn[−TÂVx,T ÂVx](Â(q∗∗x (k) − qx(k − 1)))

−Â(q∗s (k) − qx(k − 1))
)

= projF
(
Â(Tu∗(k) + qx(k − 1) − q∗s (k))

)
(83)

where

u∗(k) ∆= dzn[−Vx,Vx] ((q∗∗x (k) − qx(k − 1))/T ) . (84)

A careful examination shows that (84) is equivalent to (52) and
that (83) is equivalent to (37g) substituted by (37b) and (37f).
Therefore, one can see that the solution of (78) is obtained by
the algorithm (37) withu∗

x(k) replaced by the one in (52).
Some additional remarks follow:

Remark 4. The functionβ̂(x, a, b) introduced in the proof of
Lemma 2 plays a similar role to complementarity functions
(C-functions) [34, Section 1], such as the Fischer-Burmeister
function [35]–[37], for nonlinear complementarity problems.
With the property (76), the single-valued function̂β(x, a, b)
can be used to replace the set-valued functionβ(x, a, b) to
simplify the problem.

Remark 5. The nested sign structure seen in (51) should be
read as follows:

b ∈ sgn(x + sgn(a))
⇐⇒ ∃η ∈ sgn(a) s.t. b ∈ sgn(x + η)
⇐⇒ ∃η ∈ sgn(a) s.t.N[−1,1](b) ∋ x + η

⇐⇒ N[−1,1](b) − sgn(a) ∋ x, (85)

which justifies the equivalence between (51) and (50a). The
derivation in (85) employs the fact (13).




