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AN AMPLITUDE- AND RATE-SATURATED CONTROLLER FOR LINEAR
PLANTS

Nehal Baiomy and Ryo Kikuuwe

ABSTRACT

This paper proposes a new nonlinear controller applicable to single-input linear systems under bounded dis-
turbance. The controller provides control signals satisfying specified amplitude and rate-of-change limitations. This
feature is realized by its sliding mode-like structure comprising a set-valued function. The controller also employs a
state-dependent parameter to broaden the region of attraction and to shrink the terminal attractor. In addition, this
paper provides a discrete-time implementation of the proposed controller based on a model-based implicit discretization
scheme. Numerical examples show the validity of the proposed controller.

Key Words: Actuator constraints, amplitude limitation, ideal rate limiter, implicit discretization, rate limitation, sliding
mode.

I. INTRODUCTION

Some applications need special control techniques
that are suitable for specific limitations of hardware and
actuators. Not considering these limitations in the con-
troller design may cause performance degradation or
instability. The need for this type of controllers appears
in aircrafts [1,2] and ship steering autopilot systems [3].
Moreover, the limitations of both the amplitude and
rate-of-change of the control signal are needed for safety
reasons and to protect the controlled system from dras-
tic commands and physical wear such as in wind turbine
systems [4,5].

Many research studies have been done to study the
behavior of closed-loop systems under these limitations.
Some of the previous studies [6–8] focus on the stability
problems raised by the limitation of the amplitude of the
control signal. Imposing constraints on control signal’s
rate-of-change further complicates the stability problem,
as has been studied in [9–15].

The main interests of the previous studies on sys-
tems under amplitude- and rate-saturated controllers are
to avoid the instability and to realize smooth behaviors.
There have been two approaches for such systems. The
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first approach [9–11] is to model the actuator dynam-
ics as a nested saturation system, in which the ampli-
tude and the rate-of-change of the control signal are
saturated. Most of them employed linear matrix inequal-
ity (LMI)-based conditions to select the suitable linear
feedback gains that maintain the stability. The second
approach [12–15] is to construct a nonlinear controller
providing control signals that already satisfy the ampli-
tude and rate limitations, which are imposed by the
actuators.

Regarding the first approach, Gomes da Silva et al.
[10] proposed a state feedback controller for such lin-
ear systems with actuator limitations. They clarified the
trade off between the closed loop performance and the
size of the region of attraction, and they proposed an
algorithm based optimization problem to obtain the con-
troller parameters. Palmeira et al. [11] also introduced
a state feedback controller, in which the control signal
is sampled by non-periodic sampling interval. In order
to obtain the controller parameters, they introduced two
optimization problems based on two scenarios; one aims
to maximize the region of attraction, and the other aims
to maximize the sampling interval permissible for sta-
bility. It should be noted that the existence of external
disturbance was not taken into account in [10,11].

Regarding the second approach, Stoorvogel and
Saberi [12] presented a nonlinear state feedback con-
troller that produces a control signal with limited ampli-
tude and limited rate-of-change. They employed an
observer-based measurement feedback to reject the dis-
turbance effects. Gomes da Silva et al. [13] introduced
a controller with amplitude and rate-of-change limita-
tions involving two anti-windup loops, which requires
additional parameters to be tuned appropriately. This
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controller has been improved by Bender and Gomes
da Silva [14] to take the existence of disturbance into
account, where the disturbance tolerance and the sys-
tem output magnitude are treated in a framework of an
optimization problem under LMI constraints.

In this paper, we follow the second approach, where
we propose a new controller that provides a control sig-
nal limited in both its amplitude and its rate-of-change.
This controller has a structure in which the saturation
function and the signum function are used in a nested
way. This structure is similar to the one called an ideal
rate limiter [9,10,16], and it does not include anti-windup
loops. One of the main features of the new controller is
that it involves a state-dependent parameter to suppress
the effect of disturbance without affecting its conver-
gence behavior. More specifically, this state-dependent
parameter imposes low gain when the state is far from
the origin, and imposes high gain when the state is near
the origin. Another feature of our controller lies in its
discrete-time implementation, which is derived based on
the implicit Euler method to avoid chattering raised by
the discontinuous (or more strictly, set-valued) function.

The remainder of this paper is organized as fol-
lows. Section II presents the problem formulation in the
continuous time and shows two previous approaches for
linear systems subjected to amplitude- and rate-saturated
control signals. In Section III, we analyze the idea of
using the signum function to produce rate-saturated con-
trol signals. Section IV introduces a new control scheme
with a designed state-dependent parameter to improve
its convergence behavior and its insensitivity against the
disturbance near the origin. A new discrete-time algo-
rithm of the proposed control scheme is also presented
in Section IV. Section V shows illustrative numerical
examples of the proposed controller. Finally, concluding
remarks are provided in Section VI.

II. PRELIMINARIES

In the rest of this paper, R denotes the set of all
real numbers. The symbol 0 denotes the zero vector or
the zero matrix of appropriate dimensions. The symbols
cl() and  denote the closure and the complementary
set, respectively, of a set . The interior and the boundary
of a set  are denoted by Int() and 𝜕 , respectively. The
set of all subsets of a set  is denoted by 2 . For brevity,
Eig(X ) denotes the set of all eigenvalues of a matrix X .

In the following, we extensively use the following
function:

sat𝛼(x)
Δ
=

{
𝛼x∕|x| if |x| > 𝛼
x if |x| ≤ 𝛼.

(1)

We also use the following set-valued signum function:

sgn(x)
Δ
=

{
[−1, 1] if |x| = 0
x∕|x| if |x| > 0.

(2)

It should be noted that the function sgn(⋅) can be seen as
an almost-everywhere point-wise limit of sat(⋅) as follows:

sgn(x) = lim
𝜀↘0

sat1(x∕𝜀) ∀x ≠ 0. (3)

This can be easily proven by considering the definitions
of sgn(x) and sat(x) for x ≠ 0 as follows:

lim
𝜀↘0

sat1(x) = lim
𝜀↘0

x∕𝜀
max(1, |x|∕𝜀)

= lim
𝜀↘0

x
max(𝜀, |x|)

= x∕|x| = sgn(x), ∀x ≠ 0. (4)

2.1 Problem setting

This paper considers linear controlled plants of the
following form:

ẋ = Ax + b(u + 𝜁) (5)

where x ∈ Rn is the state vector, u ∈ R is the con-
trol input, and 𝜁 ∈ R is the unknown perturbation. We
assume that there exists Lm > 0 with which the pertur-
bation 𝜁 satisfies |𝜁 | ≤ Lm for all t > 0. Throughout this
paper, the matrices A ∈ Rn×n and b ∈ Rn are constant,
and the pair (A, b) is controllable.

Here, we assume that the input signal u needs to
satisfy

|u| ≤ 𝛼 and |u̇| ≤ 𝛽 (6)

where 𝛼 and 𝛽 are positive constant scalars. We also
assume that Lm < 𝛼. For the convenience of further
derivation, we use another positive constant L that satis-
fies Lm < L < 𝛼.

2.2 Modeling of amplitude and rate limitation

To model the control input restriction of the form
of (6), many researchers employ the following differential
equation:

u̇ = −sat𝛽

(
1
𝛾1

(
u + sat𝛼(𝜎(x)∕𝛾)

))
. (7)

Here, 𝜎(x) is a scalar function of the state vector x,
and the scalars {𝛾, 𝛾1} are positive constants. This dif-
ferential equation has been used for the model of the
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hardware limitation of actuators [9,11] and for con-
trollers that have amplitude and rate-of-change limita-
tions [15].

When (7) is viewed as an actuator model, as shown
in Fig. 1(a), the constant 𝛾1 can be seen as a model param-
eter that is determined by the hardware and as the time
constant of the first-order lag. In this case, 𝜎(x)∕𝛾 and
u are the input and the output of the actuator model,
respectively. Bateman and Lin [9] employed this actu-
ator model and derived conditions for the controller
parameters to achieve the stability in the presence and in
the absence of disturbances. Other research work [11,16]
focused on the enlargement of the domain of attraction.

When (7) is viewed as a controller, as shown in
Fig. 1(b), the actuator is considered as a part of the lin-
ear plant that accepts the control input satisfying (6). The
extreme case where 𝛾1 ↘ 0 is considered by Stoovrogel
and Saberi [12], where (7) reduces to

u̇ ∈ −𝛽sgn
(
u + sat𝛼(𝜎(x)∕𝛾)

)
, (8)

Fig. 1. Some control structures involving amplitude and
rate-of-change limitations. (a) System with amplitude-
and rate-limited actuator. (b) System with amplitude-
and rate-limited controller. (c) System with controller
consisting of an "ideal rate limiter," which is an
extreme case of (b), i.e., 𝛾1 = 0.

as shown in Fig. 1(c). Note that the controller of this
extreme case is effective only if the time constant 𝛾1 of
the actuator is sufficiently close to zero. As is formally
pointed out in [9,10,16], (8) can be seen as an ideal
amplitude and rate limitation operator.

III. ANALYSIS OF THE SGN-SAT TYPE
CONTROLLER

By combining the controlled plant (5) with the con-
trol law (8), we obtain the following system:

�̇� ∈
[

Ax + b(u + 𝜁)
−𝛽sgn

(
u + sat𝛼

(
cT x∕𝛾

)) ]
(9)

|𝜁 | ≤ Lm < L < 𝛼 (10)

where

𝜒
Δ
= [xT , u]T ∈ R

n+1 (11)

cT b > 0, (12)

{𝛼, 𝛽, 𝛾} ⊂ R+, A ∈ Rn×n, b ∈ Rn and c ∈ Rn.
Let us define

𝜎
Δ
= cT x, 𝜂

Δ
= cT Ax∕(cT b), 𝜅

Δ
= cT b, 𝛽

Δ
= 𝛽∕(cT b).

(13)

Then, we can consider a subsystem of the system (9)(10)
as follows:

�̇� ∈
⎡⎢⎢⎣
𝜅(𝜂 + u + 𝜁)
𝜙(x, u, 𝜁)

−𝜅𝛽sgn (s(𝜉))

⎤⎥⎥⎦ (14)

|𝜁 | ≤ Lm < L < 𝛼 (15)

where

𝜉
Δ
=[𝜎, 𝜂, u]T ∈ R

3 (16)

s(𝜉)
Δ
= u + sat𝛼 (𝜎∕𝛾) (17)

and 𝜙(x, u, 𝜁) is a linear function of {x, u, 𝜁}. The subsys-
tem (14)(15) is obtained by projecting the system (9)(10)
to the subspace R3 with the following operation:

𝜉 =
[

M o2
oT

n 1

]
𝜒 =

[
Mx

u

]
∈ R

3 (18)

where

M
Δ
=

[
cT

cT A∕(cT b)

]
∈ R

2×n. (19)
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For the convenience of further discussion, let us
define the following subsets of the sub-state space R3:


Δ
=

{
𝜉 ∈ R3|| |𝜂| < 𝛼 − L

}
(20)


Δ
=

{
𝜉 ∈ R3|| |𝜂 + u| < 𝛽𝛾 − L

}
(21)


Δ
=

{
𝜉 ∈ R3|| s(𝜉) = 0

}
(22)

L
Δ
= {𝜉 ∈ | |𝜎| < 𝛼𝛾} (23)

C
Δ
= {𝜉 ∈ | |𝜎| > 𝛼𝛾} , (24)

which are illustrated in Fig. 2. We also define operators
̂ ∶ 2R

3
→ 2R

n+1
and  ∶ 2R

n+1
→ 2R

3
as follows:

Fig. 2. Subsets of the sub-state space R3. (a) The switching
surface  and its subsets. (b) The projection of some
subsets on the 𝜎-𝜂 plane. [Color figure can be viewed at
wileyonlinelibrary.com]

̂()
Δ
=

{[
x
u

]
∈ Rn+1

|||||
[

Mx
u

]
∈ 

}
(25)

(̂)
Δ
=

{[
Mx

u

]
∈ R3

|||||
[

x
u

]
∈ ̂

}
, (26)

which are to make correspondence between a subset of
the total state space Rn+1 and a subset of the sub-state
space R3. Throughout this paper, a calligraphic symbol
with or without a hat denotes a subset of Rn+1 or R3,
respectively.

Now, let us show that the sliding mode takes place
at a portion of  .

Theorem 1. Let us consider the system (9)(10). Then, the
sliding mode takes place at the portion ̂(C ∪ (L ∩  ))
of the surface ̂(), on which s(𝜉) = 0 is satisfied.

Proof. Let us consider the following function:

Vs(s)
Δ
= |s|. (27)

One can see that, for a 𝜉s ∈  , if there exists a 𝜆 > 0 that
satisfies

V̇s(s(𝜉)) ≤ −𝜆 (28)

in the intersection of an open neighborhood of 𝜉s ∈ 

and the subset S, where s(𝜉) ≠ 0, we can say that the
sliding mode takes place at 𝜉s ∈  . The following proof
shows that such a 𝜆 > 0 exists for every 𝜉 ∈ C ∪(L∩ ).

From (17), we can obtain the following:

V̇s(s(𝜉)) =
⎧⎪⎨⎪⎩
−𝛽 if |𝜎| > 𝛼𝛾 ∧ s(𝜉) ≠ 0

−𝛽
(

1 − sgn(s(𝜉)) �̇�

𝛽𝛾

)
if |𝜎| < 𝛼𝛾 ∧ s(𝜉) ≠ 0.

(29)

This means that, if |𝜎| > 𝛼𝛾 and s(𝜉) ≠ 0, (28) is satisfied
with 𝜆 = 𝛽 and thus the sliding mode takes place on the
set C , which is the portion of  that lies in the region|𝜎| > 𝛼𝛾.

Meanwhile, if |𝜎| < 𝛼𝛾, s(𝜉) ≠ 0 and also 𝜉 ∈  are
satisfied, (29) implies that the following is satisfied:

V̇s(s(𝜉)) = −𝛽
(

1 − sgn(s(𝜉)) �̇�
𝛽𝛾

)
≤ −𝛽

(
1 − |𝜂 + u + 𝜁 |

𝛽𝛾

)
≤ −𝛽

(
𝛽𝛾 − |𝜂 + u| − Lm

𝛽𝛾

)
≤ −𝜅(L − Lm)∕𝛾 (30)
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where we used the fact that

𝛽𝛾 > |𝜂 + u + 𝜁 | ∀𝜉 ∈  . (31)

This means that (28) is also satisfied in this case and
thus the sliding mode also takes place on the set L ∩  .
Therefore, we can see that the subsystem (14)(15) is in the
sliding mode on the patch C ∪ (L ∩  ) of the switch-
ing surface  . This implies that the total system (9)(10) is
in the sliding mode on the patch ̂(C ∪ (L ∩  )) of the
surface ̂(). This completes the proof.

This theorem indicates that, once the state 𝜉 reaches
the manifold  , the state may escape from  only from
the portion L∩ . Considering that u = −𝜎∕𝛾 is satisfied
on L, the subset L ∩  can be written as follows:

L ∩  =
{
𝜉 ∈ L

||| |𝜂 − 𝜎∕𝛾| < 𝛽𝛾 − L
}
. (32)

After reaching the set C , the state 𝜉 moves toward L as
long as it stays in C∩. The following theorem formally
states this fact.

Theorem 2. Let us consider the system (9)(10) and
assume that 𝜒 ∈ ̂(C ∩ ) at t = t0. Then, the state 𝜒

reaches ̂(cl(L)) or ̂(cl(C ∩)) in finite time.

Proof. When 𝜉 ∈ C ∩, the following is satisfied:

u = −𝛼sgn(𝜎) ∧ |𝜎| ≥ 𝛼𝛾 ∧ |𝜂| < 𝛼 − L, (33)

which leads to the following:

d|𝜎|∕dt = sgn(𝜎)�̇�
= −𝜅sgn(𝜎)(𝛼sgn(𝜎) − 𝜂 − 𝜁)
≤ −𝜅(𝛼 − |𝜂| − Lm)
< −𝜅(L − Lm). (34)

With the use of the comparison lemma [17, Lemma 3.4],
one can obtain the following from (34):

𝜉(t) ∈ C ∩ ∀t ∈ (t0, t1)
⇒ |𝜎(t1)| < |𝜎(t0)| − 𝜅(L − Lm)(t1 − t0). (35)

In C∩, |𝜎| is lower-bounded by 𝛼𝛾. Therefore, if we set

t1
Δ
= t0 +

|𝜎(t0)| − 𝛼𝛾

𝜅(L − Lm)
, (36)

we have the following

∃tm ∈ (t0, t1) s.t.((
𝜉(t) ∈ C ∩ ∀t ∈ (t0, tm)

)
∧

(
𝜉(tm) ∈ C ∩

))
.

(37)

This means that, at such a time instant tm shown in (37),
the state 𝜉 is outside the set C ∩ . Because the slid-
ing mode takes place on C ∩, the state does not move
directly from C ∩  into  . Therefore, possible transi-
tions at the time tm is only into cl(L) and cl(C∩). This
completes the proof.

After the state 𝜉 reaches the set L (i.e., the state
𝜒 reaches the set ̂(L)), the system is linear. As long as
the system state 𝜒 stays in ̂(L ∩  ) (i.e., the condition
(31) is satisfied), we can prove that the state is attracted
to a neighborhood of the origin through the following
Theorem.

Theorem 3. With the system (9)(10), there exists a set ̂ ⊂

̂(L ∩  ) that includes the origin and is asymptotically
stable if Lm is small enough and if A − bcT∕𝛾 is Hurwitz.

Proof. When 𝜉 ∈ L, the system (9)(10) reduces to the
following linear system:

ẋ = (A − bcT∕𝛾)x + b𝜁 (38)

u = −cT x∕𝛾. (39)

If A−bcT∕𝛾 is Hurwitz, for every positive definite matrix
Q ∈ Rn×n, there exists a positive definite matrix P ∈ Rn×n

that satisfies

P(A − bcT∕𝛾) + (A − bcT∕𝛾)T P = −2Q. (40)

With such Q and P, let us define the following function:

Vq(x)
Δ
= xT Px∕2. (41)

Then, we obtain

V̇q(x) = −xT Qx + xT Pb𝜁

≤ −𝜆Q‖x‖2 + Lm‖x‖‖Pb‖ (42)

where 𝜆Q stands for the minimum eigenvalue of Q. This
means that V̇q(x) < 0 is satisfied if

‖x‖ > Lm‖Pb‖∕𝜆Q. (43)
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Thus, we can define the following quantity:

𝜌a
Δ
= max

x∈Rn‖x‖≤‖Pb‖∕𝜆Q

Vq(x) = max
x∈Rn‖x‖≤Lm‖Pb‖∕𝜆Q

Vq(x)
L2

m

, (44)

which does not depend on Lm. Based on this, let us define
the following:

̂
Δ
= {𝜒 ∈ L | Vq(x) < L2

m𝜌a ∧ Vs(s(𝜉)) = 0}. (45)

Let us assume that ̂ ⊂ Int(̂(L ∩ )). Then, there

exists an open neighborhood ̂ of ̂ that is small enough
to satisfy ̂ ∩ ̂(L∖ ) = ∅. With such an ̂ , we can see
that V̇q(x) and V̇s(s(𝜉)) are bounded as

V̇q(x) < a1 ∧ V̇s(s(𝜉)) < −a2 ∀𝜒 ∈ ̂∖̂(L) (46)

V̇q(x) < 0 ∧ V̇s(s(𝜉)) = 0 ∀𝜒 ∈ ̂ ∩ ̂(L) (47)

where a1 and a2 are positive scalars. Therefore, if one set

Va(𝜒)
Δ
=max(0,Vq(x) − L2

m𝜌a) +
a1

a2
Vs(s(𝜉)), (48)

we can see that Va(𝜒) = 0 is satisfied for all 𝜒 ∈ ̂ and

V̇a(𝜒) < 0 is satisfied for all 𝜒 ∈ ̂∖̂. Thus, ̂ is asymp-
totically stable in a local sense if ̂ ⊂ Int(̂(L ∩ )). The
definition (45) implies that ̂ ⊂ Int(̂(L∩ )) is satisfied
if Lm is small enough. This completes the proof.

With respect to the terminal attractor ̂, a subset of
the region of attraction can be given as follows:

̂
Δ
=

{
𝜒 ∈ ̂(L)

|||Vq(x) < 𝜌b

}
(49)

where

𝜌b
Δ
= min

𝜒∈Rn+1

𝜒∈̂(L∩(𝜕 ))

Vq(x). (50)

If the set ̂ shares its boundary with the set ̂(L ∩  ),
then the state reaches the terminal attractor ̂, as long as
it stays in ̂(L ∩  ).

In conclusion, as long as 𝜒 is in the portion ̂(C ∩
), it is attracted to the subset ̂(L). Once 𝜒 reaches ̂,
which is a subset of ̂(L ∩  ), the state asymptotically
approaches the terminal attractor ̂.

It should be noted that a smaller 𝛾 results in a
smaller terminal attractor ̂ because it is a subset of
̂(L ∩ ), of which the width is 𝛼𝛾. It however results in
a smaller size of the linear sliding patch ̂(L ∩ ), which

includes a subset of the region of attraction ̂. Therefore,
one can conclude that 𝛾 should be large when the state is
far from the origin and should be small when the state is
close to the origin.

IV. PROPOSED CONTROLLER

Now, we propose a new controller algorithm based
on the discussion in Section III. The proposed controller
is built on the controller (8) but the parameter 𝛾 is deter-
mined by a particular function of the state variables x and
u. This state-dependent parameter 𝛾 is chosen to decrease
the size of the terminal attractor ̂ and to increase the
size of the linear sliding patch ̂(L ∩  ).

4.1 Continuous-time representation

For the application to the controlled plant (5), we
present a new controller as follows:

u̇ ∈ −𝛽sgn
(
u + sat𝛼(cT x∕𝛾(x, u))

)
(51)

where

𝛾(x, u)
Δ
=min

(
𝛾c,

|cT Ax| + cT b|u| + cT bL
𝛽

)
. (52)

Here, u is the control signal amplitude, 𝛾c is a positive
constant representing an upperbound of 𝛾(x, u), L is a
positive constant that is greater than the expected distur-
bance (i.e., L > |𝜁 |), and c ∈ Rn is a vector chosen so
that it satisfies cT b > 0. It is assumed that the maximum
control signal amplitude 𝛼 is greater than L, i.e.,

|𝜁 | < L < 𝛼. (53)

This choice of the state-dependent parameter 𝛾(x, u) is
motivated by the proof of Theorem 1, which shows that

𝛾 >
|cT Ax + cT bu + cT b𝜁 |

𝛽
(54)

needs to hold true to realize the sliding mode. To satisfy
this condition, one choice is to set 𝛾 as follows:

𝛾 = |cT Ax| + cT b|u| + cT bL
𝛽

. (55)

Here, we need to prevent 𝛾 from becoming excessively
large because a very large 𝛾 means a very low control
gain. Considering these points, we can see that the def-
inition (52) of 𝛾(x, u) is a natural choice, in which an
upperbound 𝛾c is set.
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With the state-dependent parameter 𝛾(x, u), the sta-
bility proofs in Section III do not strictly hold because
it will inject additional terms proportional to �̇� to the
derivatives of Vs(s(𝜉)) and Vq(x). They are still valid if �̇� is
small enough, although it is still unclear in what regions
of the state space |�̇�| can be said to be small enough. One
approach to this problem might be to use the fact that
the upperbound of �̇� can be given as a function of the
state vector 𝜒 . Leaving this problem as an open problem,
we attempt to support the usefulness of the controller
through some numerical examples in Section V.

4.2 Parameter tuning guideline

This section shows an approach to design the vector
c ∈ Rn and the parameter 𝛾c > 0, which comprise all
parameters that need to be designed. Here, we consider
the problem to choose c and 𝛾c so that the eigenvalues of
the matrix A − bcT∕𝛾 is within a given region  in the
complex plane for all 𝛾 ∈ (0, 𝛾c]. The region  can be
given according to required response characteristics, such
as damping ratio and settling time, of applications.

Let us define

Ad(𝛾)
Δ
=A − bcT∕𝛾. (56)

Then, one can see that, as 𝛾 ↘ 0, one of the eigenvalues
of the matrix Ad(𝛾) goes to −∞, while the others remain
finite because we have assumed that cT b > 0 in the con-
dition (12). Thus, we need to design the vector c so that
lim𝛾↘0 Eig(Ad(𝛾)) ⊂ . For this purpose, the following
theorem is useful.

Theorem 4 A special case of Theorem 2 in [18]. Let us
define the following matrices:

Ā =
[

Ā11 ā12
āT

21 ā22

]
, b̄ =

[
0n−1

1

]
(57)

c̄ =
[

c̄1
T 1

]T
(58)

where Ā11 ∈ R(n−1)×(n−1), {ā21, ā12, c̄1} ⊂ Rn−1, and ā22 ∈
R. Let us assume that 𝛾 > 0 and that the pair (Ā, b̄) is
controllable. Let us define the following matrix:

Āc(𝛾) = Ā − b̄c̄T∕𝛾. (59)

Then, as 𝛾 ↘ 0, one of the eigenvalues of Āc(𝛾) goes
to −∞ and the other (n − 1) eigenvalues converge to the
eigenvalues of Ā11 − ā12c̄T

1 ∈ R(n−1)×(n−1).

With this theorem, a pole placement problem of an
n × n system with one infinitely fast pole can be reduced
to another pole placement problem of an (n− 1) × (n− 1)

system. This theorem can be used to set the eigenvalues of
lim𝛾↘0 Ad(𝛾) to specified locations {qi, · · · , qn−1}, which
should be located in . To apply this theorem to system
(5), we define a matrix T ∈ Rn×n so that Tb = [0T

n−1, 1]
T

is satisfied. Once we obtain the vector c̄1 ∈ Rn−1 using
Theorem 4, the vector c can be chosen as follows:

c = TT[
c̄1

T 1
]T
. (60)

Now, we discuss the choice of 𝛾c, which is the
upperbound of the the state-dependent parameter 𝛾(x, u).
Recalling that Eig(Ad(𝛾)) ⊂  should be satisfied for
all 𝛾 ∈ (0, 𝛾c], the maximum of such values of 𝛾 can be
found by drawing the loci of Eig(Ad(𝛾)) with 𝛾 increasing
from zero and by searching for the critical value of 𝛾 with
which at least one of Eig(Ad(𝛾)) crosses the boundary of
. Fig. 3 is an illustrative graph to show Eig(Ad(𝛾)) as a
function of 𝛾 and to show the selection of 𝛾c according to
the region .

In conclusion, we propose the following procedure
for choosing the vector c and the upperbound 𝛾c:

1. Set a region  in the complex plane and the desired
eigenvalue locations {q1, · · · , qn−1} in  according
to required response characteristics of the applica-
tion.

2. Find an invertible matrix T ∈ Rn×n with which

Tb =
[

0n−1
1

]
(61)

is satisfied.
3. Calculate the matrix Ā11 ∈ R(n−1)×(n−1) and the

vector ā12 ∈ Rn−1 as follows:[
Ā11 ā12
āT

21 ā22

]
∶= TAT−1. (62)

Fig. 3. Illustrative graph for the region  (the gray area) and
the loci of Eig(Ad (𝛾)).
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4. Solve the pole placement problem to choose the
vector c̄1 ∈ Rn−1 so that Eig(Ā11 − ā12c̄T

1 ) =
{q1, · · · , qn−1}, and set c = TT [c̄1

T , 1]T .
5. Draw the loci of Eig(Ad(𝛾)) with 𝛾 increasing from

zero, and find the critical value of 𝛾c at which at least
one of the loci crosses the boundary of .

Note that the step 4 is to adjust Eig(Ad(𝛾)) at 𝛾 = 0
and that the step 5 is to adjust Eig(Ad(𝛾)) at 𝛾 ∈ (0, 𝛾c].

4.3 Discrete-time implementation

This section presents a discrete-time algorithm of
the proposed controller for its implementation to digi-
tal controllers. Since the proposed continuous-time con-
troller (51)(52) involves the set-valued function sgn(⋅),
inappropriate discretization prevents the exact sliding
mode and causes chattering. Here, we employ the
approach called an implicit method [19,20]. The idea of
the implicit method is to resolve the set-valuedness of the
controller’s equation by viewing the mutual dependence
between the control input and the system state as an alge-
braic constraint. This approach utilizes the model of the
controlled plant as a predictor of the system state that is
achieved by a given control input.

Let us start from the implicit Euler discretization of
the proposed controller (51)(52) as follows:

uk − uk−1

h
∈ −𝛽sgn

(
uk + sat𝛼

(
𝜎k

𝛾k

))
(63)

𝜎k = cT xk (64)

𝛾k = min
(
𝛾c,

|cT Axk−1| + cT b|uk−1| + cT bL

𝛽

)
. (65)

Here, h denotes the sampling interval. The system state x
at time step k needs to be predicted by the nominal model
of the controlled plant, which is

x̂k − xk−1

h
= Axk−1 + buk. (66)

This ’predictor’ equation is obtained by neglecting the
perturbation 𝜁 in the system model (5). Substituting xk
in (64) by the predicted value x̂k, we obtain the predicted
value of 𝜎k as follows:

�̂�k = cT (I + hA)xk−1 + cT bhuk. (67)

Let us define wk−1 =Δ cT (I+hA)xk−1 so that �̂�k is rewritten
as follows:

�̂�k = wk−1 + cT bhuk. (68)

Then, substituting 𝜎k in (63) by �̂�k in (68) yields the
following:

uk ∈ uk−1 − h𝛽sgn
(

uk + sat𝛼

(
wk−1 + cT bhuk

𝛾k

))
,

(69)

in which uk appears in both the right and left-hand sides.
By using Theorem 5 presented in Appendix, one can
solve (69) with respect to uk as follows:

uk = uk−1 − sath𝛽

(
uk−1 + sat𝛼

(
wk−1

𝛾k + cT bh

))
. (70)

Here, one can see that the set-valuedness in (69) is
resolved as in (70). In conclusion, the discrete-time con-
troller, which realizes the controller (51)(52), can be given
as follows:

wk−1 ∶= cT (I + hA)xk−1 (71)

𝛾k ∶= min
(
𝛾c,

|cT Axk−1| + cT b|uk−1| + cT bL

𝛽

)
(72)

uk ∶= uk−1 − sath𝛽

(
uk−1 + sat𝛼

(
wk−1

𝛾k + cT bh

))
.

(73)

Remark 1. In cases where the rate-of-change of the con-
trol signal is not limited (i.e., 𝛽 = ∞), the state-dependent
parameter 𝛾k holds at zero. In this case, the controller
(71)(72)(73) reduces to the following simpler controller,

wk−1 = cT (I + hA)xk−1 (74)

uk = −sat𝛼(wk−1∕(cT bh)), (75)

which is an implicit implementation of the conventional
sliding mode controller u = −𝛼sgn(cT x) combined with
the nominal plant model (66).

Remark 2. By setting 𝛽 < ∞ and holding 𝛾 = 0, the
controller (51)(52) reduces to

u̇ ∈ −𝛽sgn(u + 𝛼sgn(cT x)) (76)

for all x satisfying cT x ≠ 0. In order to deal with the
case of cT x = 0, a nested signum structure needs rig-
orous re-definition of the set-valued mapping sgn. A
similar nested signum structure appears in the work of
Miranda-Villatoro et al. [21], who also used the implicit
discretization scheme [19,20]. This paper does not discuss
the extreme case of 𝛾 = 0 because 𝛾 > 0 is always satisfied
in our controller.
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V. NUMERICAL EXAMPLES

In this section, we apply the proposed controller
to some numerical examples. We performed simulations
with MATLAB software in the discrete time.

5.1 Example 1

In this example, we use an example reported in
[9,16], which employs the controlled plant (5) with the
following matrices:

A =
[

0 −0.5
1 1.5

]
, b =

[
0
−1

]
. (77)

Here, note that the pair (A, b) is controllable. Let us con-
sider that this controlled plant is subjected to disturbance
and parameter uncertainty as in the following form:

ẋ = (A + ΔA)x + b(u + 𝜁) (78)

where

ΔA =
[

0 −0.05
0 0.1

]
, 𝜁 = 0.1 sin(t). (79)

The control input u is under the restriction of |u| ≤ 1
and |u̇| ≤ 2.5, and the initial states are x0 = [0, 0.4]T and
u0 = 0. The requirement is to set the 2% settling time to
be less than or equal to 8 s and the damping ratio to be
greater than or equal to 0.7.

We apply the discrete-time algorithm (71)(72)(73)
with the sampling interval h = 0.01. We here set L =
0.125, and we obtain c and 𝛾c based on the design proce-
dure in Section 4.2, which is as follows:

1. We set  as shown in Fig. 4, i.e.,  = {s ∈
C |ℜ(s) ≤ − ln(0.02)∕8 ∧ cos(arg(s)) ≤ −0.7}. We
also set q1 = −0.5 so that it resides in .

2. Set T = −I in order to realize Tb = [0, 1]T .
3. From (62), we find that Ā11 = 0 and ā12 = −0.5.
4. By solving Ā11 − ā12c̄T

1 = q1, we find that c̄1 = −1,
and thus we set c = [1,−1]T .

5. By drawing the loci of Eig(A − bcT∕𝛾) as shown in
Fig. 4, we obtain 𝛾c = 1∕3.62 = 0.277.

Fig. 5 shows the results of simulation under 𝜁 =
0.1 sin(t) andΔA = 0. Here, one can see that the use of the
small constant 𝛾 ≡ 0.6𝛾c results in the instability. In con-
trast, the use of the state-dependent 𝛾(x, u) provides best
convergent behavior in spite of the fact that the value of
𝛾(x, u) eventually becomes smaller than 0.6𝛾c. It should
be noted that the decrease of 𝛾(x, u) takes place only after
the state comes close to the origin. This decreasing leads

Fig. 4. Example 1: The region  and the loci of Eig(Ad (𝛾)).

Fig. 5. Results of Example 1 with 𝜁 = 0.1 sin(t) and ΔA = 0.
[Color figure can be viewed at wileyonlinelibrary.com]

to better disturbance rejection than the case with the
larger constant 𝛾 ≡ 𝛾c.

Fig. 6 shows the results of simulation under 𝜁 and
ΔA indicated in (79). The state still smoothly converges to
the neighborhood of the origin with the state-dependent
𝛾(x, u), although the constant 𝛾 values produce larger
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Fig. 6. Results of Example 1 with 𝜁 and ΔA indicated in (79).
[Color figure can be viewed at wileyonlinelibrary.com]

errors and overshoots. It should be noted that the
state-dependent 𝛾(x, u) results in smaller terminal error
than the larger constant 𝛾 ≡ 𝛾c and smaller overshoots
than the smaller constant 𝛾 ≡ 0.9𝛾c. It is also interest-
ing to see that, although the constant 𝛾 ≡ 0.8𝛾c results
in the instability, the proposed 𝛾(x, u), which eventually
falls far below 0.8𝛾c, maintains the stability and good
convergence.

5.2 Example 2

As an example of a third order system, we consider
the controlled plant (5) with the following controllable
pair of matrices:

A =
⎡⎢⎢⎣

0 0 1
172.6 −2.73 1.237
−195 2.538 −1.589

⎤⎥⎥⎦ , b =
⎡⎢⎢⎣

0
0

−1.0698

⎤⎥⎥⎦ .
(80)

Let us consider that this controlled plant is subjected to
disturbance and parameter uncertainty as in the follow-
ing form:

ẋ = (A + ΔA)x + b(u + 𝜁) (81)

where

ΔA =
⎡⎢⎢⎣

0 0 0.1
−3 0.1 −0.5
−2 −0.2 0.1

⎤⎥⎥⎦ . (82)

The disturbance 𝜁 is equal to 0.0184 sin(t) from 0 to 7
s, and after that, it changes into 𝜁 = 0.0184 sin(2t). The
control signal amplitude and its rate-of-change are set to
be subject to the following limitations: |u| ≤ 1.5 and |u̇| ≤
0.139. The initial states are set as x0 = [0.0, 0.1, 0.01]T
and u0 = 0.05. The requirement is to set the eigenvalues
of the overall system on the left side of the line ℜ(s) =
−1.9 and also it is required to set {q1, q2} = {−1.92 +
13.8j,−1.92 − 13.8j}.

In the use of the algorithm (71)(72)(73), we set h =
0.01 and L = 0.019. We obtain c and 𝛾c through the
design procedure in Section 4.2 as follows:

1. We set  as shown in Fig. 7, i.e.,  = {s ∈
C |ℜ(s) < −1.9}, and we set {q1, q2} = {−1.92 +
13.8j,−1.92 − 13.8j} so that they reside in .

2. To realize Tb = [0, 1]T , we set

T =
⎡⎢⎢⎣
−1 0 0
0 −1 0
0 0 −0.9348

⎤⎥⎥⎦ . (83)

3. From (62), we find that: Ā11 =
[

0 0
172.6 −2.73

]
and

ā12 =
[

1.0698
1.3233

]
.

Fig. 7. Example 2: The region  and the loci of Eig(Ad (𝛾)).
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Fig. 8. Results of Example 2 with ΔA = 0, 𝜁 = 0.0184 sin(t)
from 0 to 7 s, and 𝜁 = 0.0184 sin(2t) after 7 s. [Color
figure can be viewed at wileyonlinelibrary.com]

4. By solving the pole placement problem to
put Eig(Ā11 − ā12c̄T

1 ) at {q1, q2}, we find that
c̄1 = [−0.1177, 1.0549]T , and thus we set
c = [0.2681,−1.0556,−0.9348]T .

5. By drawing the loci of Eig(A − bcT∕𝛾) as shown in
Fig. 7, we obtain 𝛾c = 1∕1.44 = 0.69.

Fig. 8 shows the simulation results of Example 2
under the existence of 𝜁 . It is clearly seen that the con-
vergence is much faster with 𝛾(x, u) than with the smaller
constant 𝛾 ≡ 0.2𝛾c in spite of the fact that 𝛾(x, u) goes
below 0.2𝛾c. Fig. 8 also shows that the system with 𝛾(x, u)
is less sensitive to the disturbance than that with the
larger constant 𝛾 ≡ 𝛾c.

Fig. 9 shows the simulation results of Example 2
under the existence of both 𝜁 and ΔA. The states with

Fig. 9. Results of Example 2 with ΔA indicated in (82) and 𝜁

of the same setting as in Fig. 8. [Color figure can be
viewed at wileyonlinelibrary.com]

𝛾(x, u) converge faster than those with 𝛾 ≡ 0.2𝛾c, and are
less sensitive to the disturbance than those with 𝛾 ≡ 𝛾c.

5.3 Example 3

In this example, the proposed controller is com-
pared with a previous discrete-time controller introduced
by Palmeira et al.[11]. The plant considered in [11] is as
follows.

ẋ = Ax + bua + b𝜁 (84)

u̇a = sat𝛽

(
1
𝛾1

(
−ua + sat𝛼(u)

))
(85)

𝜁 = 0.1 sin(t), (86)

with the following controllable pair of matrices:
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A =
[

0 1
10 −0.1

]
, b =

[
0
1

]
. (87)

Here, (85) is regarded as an actuator having dynamics
with the time constant 𝛾1 as in Fig. 1(a). The actuator
provides the input ua to the plant (84) and the control
command u needs to be provided by the controller. The
initial states are set as x0 = [0.01,−0.24]T , and ua0 = 1.2.
The actuator parameters are set as 𝛾1 = 0.05, 𝛼 = 1 and
𝛽 = 10.

Palmeira et al.’s [11] controller is obtained by solv-
ing an optimization problem that maximizes the region of
attraction with a given sampling interval h ∈ [0.01, 0.07],
without considering the existence of disturbance 𝜁 . The
obtained controller is written as follows:

u =
[
−6.318 −1.966 0.502

] [ x
ua

]
. (88)

We apply our proposed controller to this example
with neglecting the actuator dynamics (85). The require-
ments are assumed to place the eigenvalues of the overall
system in the region ℜ(s) < −3 and {q1} = {−4}. We set
h = 0.01 and L = 0.11 to satisfy |𝜁 | < L. By using the pro-
posed tuning guideline, the vector c and 𝛾c are obtained
in the following procedure:

1. We set  as shown in Fig. 10, i.e.,  = {s ∈
C |ℜ(s) < −3}, and we set {q1} = {−4} so that it
resides in .

2. To realize Tb = [0, 1]T , we set T = I .
3. From (62), we find that: Ā11 = 0, and ā12 = 1.
4. By solving the pole placement problem to put

Eig(Ā11 − ā12c̄T
1 ) at {q1}, we find that c̄1 = 4, and

thus we set c = [4, 1]T .
5. By drawing the loci of Eig(A − bcT∕𝛾) as shown in

Fig. 10, we obtain 𝛾c = 0.17.

Fig. 10. Example 3: The region  and the loci of Eig(Ad (𝛾)).

In Fig. 11 and Fig. 12, we compare the proposed
controller and the previous controller [11]. Fig. 11 shows
the results under no disturbance (𝜁 ≡ 0), where the both
controllers realize smooth convergence. Fig. 12 shows the
results with non-vanishing disturbance 𝜁 = 0.1 sin(t),
where the proposed controller shows much better perfor-
mance against the disturbance than the previous one. The
graphs in Fig. 11 and Fig. 12 show that there exists a sig-
nificant lag between the actuator signals {ua, u̇a} and the
controller signal {u, u̇}, which is caused by the actuator
dynamics (85). We can see that the proposed controller
provides smooth and accurate convergence even under
this lag.

Remark 3. The controlled plants in Examples 1 and 3 are
unstable systems. As can be seen in these examples, the
proposed controller is applicable also to unstable plants.

Fig. 11. Results of Example 3 with no disturbance, i.e., 𝜁 = 0.
The red lines represent the results of our proposed
controller. The blue lines represent the results of
Palmeira et al.’s [11] controller. [Color figure can be
viewed at wileyonlinelibrary.com]
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Fig. 12. Results of Example 3 with 𝜁 indicated in (86). The
red lines represent the results of our proposed
controller. The blue lines represent the results of
Palmeira et al.’s [11] controller. [Color figure can be
viewed at wileyonlinelibrary.com]

VI. CONCLUSIONS

This paper has proposed a sliding mode-like con-
troller that produces control signal with limitations on
both its amplitude and rate-of-change. This paper is
motivated by the idea of the ideal rate limiter, which
involves the nested signum (sgn) function, while we used
a saturation (sat) function to produce limited control
signal amplitude. We have analyzed this sng-sat type
controller and have shown that the total closed-loop
system reduces to a linear system in the sliding mode.
Based on the analysis, we designed our controller using a
state-dependent parameter. As the state approaches the
origin, the value of this parameter is reduced, and it con-
tributes the reduction of the size of the terminal attractor.
A tuning guideline for other controller parameters is also

presented, which places the poles of the system in a given
region in the complex plane. We also have presented a
discrete-time implementation of the proposed controller,
which is based on a model-based implicit discretization.
This implementation does not produce chattering, which
could be caused by other discretization schemes.

Future study should address a more in-depth analy-
sis to obtain the region of attraction. In addition, optimal
placement of the poles in the complex plane should be
clarified.
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VII. APPENDIX

Lemma 1. For any y, z ∈ R and a > 0, the following is
satisfied:

y ∈ asgn(z − y) ⇐⇒ y = sata(z). (A1)

Proof. See [22, Sec.II].

Lemma 2. For any y ∈ R and a, b, c, d > 0, the following
is satisfied:

sgn
(

y + a + satb

(y + c
d

))
= sgn

(
y + a + satb

( c − a
1 + d

))
.

(A2)

Proof. Let us define the following function:

𝜙(y)
Δ
= y + a + satb

(y + c
d

)
. (A3)

It is obvious that the function 𝜙 is strictly monotonically
increasing function and it is unbounded. Thus, it is clear
that there is a unique real value Y that satisfies 𝜙(Y ) =
0, and that such a Y satisfies sgn(𝜙(y)) = sgn(y − Y ) is
satisfied. Then, one can see that the real value Y can be
obtained by solving 𝜙(Y ) = 0 as follows. First, if |Y +
c|∕d ≤ b, 𝜙(Y ) = 0 reduces to Y + a + (Y + c)∕d = 0,
which is equivalent to:

Y = −a − c − a
1 + d

. (A4)

Second, if (Y +c)∕d > b, 𝜙(Y ) = 0 reduces to Y +a+b =
0, which is equivalent to:

Y = −a − b. (A5)

Third, if (Y +c)∕d < −b, 𝜙(Y ) = 0 reduces to Y +a−b =
0, which is equivalent to:

Y = −a + b. (A6)

By combining these three cases (A4),(A5), and(A6), we
can obtain the solution Y as follows:

Y = −a − satb

( c − a
1 + d

)
. (A7)

Therefore, the left-hand side of (A2) is equal to sgn(y−Y )
with Y defined in (A7), and it is equal to the right-hand
side of (A2). This completes the proof.
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Using Lemmas 1 and 2, we can obtain the following
theorem:

Theorem 5. With any y ∈ R and a, b, c, d > 0 the
following is satisfied:

y ∈ −f sgn
(

y + a + satb

(y + c
d

))
⇐⇒ y = −satf

(
a + satb

( c − a
1 + d

))
. (A8)
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