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ABSTRACT This paper proposes a sliding-mode set-point position controller for hydraulic excavators. The
controller employs a simple switching surface that exponentially drives the actuator position to the desired
position with a specified time constant. The discrete-time algorithm of the controller is constructed through
a double-implicit implementation scheme, which is for implementing a simple sliding-mode controller
to nonsmooth actuators, including hydraulic actuators. We employ a nonsmooth quasistatic model of the
hydraulic actuator, which analytically accounts for the pressure saturation caused by the relief valves and
check valves and the square-root law of the pressure-flowrate relation. This paper elaborates the analytical
form of the model to be combined with the double-implicit implementation. A state predictor based on the
actuator model extends the controller to compensate for the deadtime in the hydraulic system. The proposed
controller is validated with some simulations and also through experiments employing the swing axis of a
13-ton class excavator.

INDEX TERMS Deadtime compensation, hydraulic actuator, hydraulic excavator, sliding-mode control.

I. INTRODUCTION
Hydraulic excavators are expected to expand their applica-
bility through the combination with more sophisticated con-
trol technology. In particular, automatic, semi-automatic, and
teleoperated excavators would be potentially useful in many
applications such as construction, disaster restoration, and
demolition. Position control technology of hydraulic actua-
tors is an essential building block for such future applications.
There have been many position controllers proposed for
hydraulic actuators.Many of them are intended for trajectory-
tracking control [1]–[6], with which the actuator tracks
time-varying position command. In many of the reported
experimental results, the excavators track smooth command
trajectories without making large positional errors.

In contrast to the trajectory-tracking problem, the set-point
control problem, i.e., position control from large positional
errors, is also important for semi-automatic or teleoper-
ated hydraulic excavators. Such large positional errors may
happen when the desired position discontinuously jumps
due to communication failures or in applications where
the excavator is commanded to move its bucket back to a
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registered position. The practical requirement for set-point
control of excavators is not only to ensure accurate conver-
gence but also to realize appropriate transient behavior con-
verging to the desired position without producing oscillation
or overshoots.

Some previous papers [7]–[11] report experimental results
of transient responses to a step-like position command. Many
of these papers employ proportional-integral-derivative (PID)
controllers with which the control gains are adjusted with
numerical, heuristic, or empirical methods, such as particle
swarm optimization method [7], [8], genetic algorithm [9],
and ant-colony optimization [10]. Kim et al. [11] approach
is based on an analytical model of the hydraulic system,
being based on a linearized system model with multiplicative
uncertainty. As far as the authors are aware, there have been
no set-point control methods that analytically account for the
nonlinearity of the hydraulic systems, such as the pressure
saturation caused by the relief valves and check valves, and
the square-root law (see, e.g., [12]) of the pressure-flowrate
relation.

One convenient approach to design the transient behavior
of set-point control is to employ the concept of sliding-mode
control, which constrains the system state to the prescribed
convergence law. Sliding-mode control is also convenient
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to deal with saturation because the bounds of the control
input can be explicitly specified in the controller structure.
The use of sliding-mode control from this perspective has
been proposed for robotic manipulators [13], [14] but not
for hydraulic systems. Previous sliding-mode controllers for
hydraulic excavators [1], [5], [6] are for ensuring accurate
convergence to the desired position, not for designing the
transient behavior.

This paper presents a sliding-mode set-point position
controller for hydraulic excavators. The controller employs
a simple switching surface that exponentially drives the
actuator position to the desired position with a specified
time constant. The discrete-time algorithm of the controller
is constructed through a double-implicit implementation
scheme [15], which is for implementing a simple sliding-
mode controller to a particular class of plants. We employ
a nonsmooth quasistatic model [16] of the actuator structure
illustrated in Fig. 1. This paper elaborates the analytical
form of the nonsmooth quasistatic model to be combined
with the double-implicit implementation and also extends the
controller by a model-based state predictor to compensate
for the deadtime in the plant. The controller is tested with
simulations and experiments employing the swing axis of a
13-ton class excavator.

One practical benefit of the proposed controller is that most
of the parameters can be uniquely chosen according to the
hardware specifications, without the necessity of parameter
tuning on a trial-and-error basis. It is in contrast to simple
linear controllers such as PD, PI, or PID controllers. It may
be possible to establish gain-tuning methods for linear con-
trollers based on locally linearizedmodels [11], [17], [18], but
they do not cope with strong nonlinearity or nonsmoothness
in the relation between the control input and the actuator
force, which are caused by relief valves and check valves.
Being based on the double-implicit implementation frame-
work [15], our approach fully accounts for nonlinear factors
that are not suited for local linearization, such as the pressure
saturation caused by the relief and check valves and the
square-root law between the valve flowrate and the pressure
drop.

The rest of this paper is organized as follows. Section II
provides preliminaries, including the nonsmooth quasistatic
model [16] of a hydraulic actuator and the double-implicit
implementation [15] of a sliding-mode controller. Section III
presents the proposed controller for excavators, which is
based on the nonsmooth quasistatic model and the double-
implicit implementation, and comprises the state predictor
to compensate for the deadtime in the plant. Section IV
and Section V presents simulation and experimental results,
respectively. Section VI concludes this paper.

II. PRELIMINARIES
A. MATHEMATICAL PRELIMINARIES
In this paper, R denotes the set of all real num-
bers, R denotes the set of extended real numbers,

FIGURE 1. Hydraulic actuator and its circuit.

i.e., R , R ∪ {−∞,+∞}, R+ denotes the set of all non-
negative real numbers, R− denotes the set of all non-positive
real numbers, andB denotes the closed unit ball inR, i.e.,B ,
[−1, 1] ⊂ R.

The following functions are used in this paper:

satX (x) ,


minX if x < minX
x if x ∈ X
maxX if x > maxX

(1)

sgn(x) ,

{
x/|x| if x 6= 0
[−1, 1] if x = 0

(2)

gsgn(a, x, b) ,


b if x > 0
conv{a, b} if x = 0
a if x < 0

(3)

S(x) , sgn(x)x2 (4)

R(x) , sgn(x)
√
|x| (5)

NX (x) ,


[0,∞] if x = maxX
0 if x ∈ X ◦

[−∞, 0] if x = minX
∅ if x /∈ X

(6)

where X is a closed interval in R, and X ◦ is the interior
of X . Here, conv{a, b} stands for the convex closure of the
set {a, b}, being the closed set [a, b] if a ≤ b and [b, a] if
b ≤ a. In addition, the following relation holds true between
the functions N and sgn:

y ∈ NB(x) ⇐⇒ x ∈ sgn(y). (7)

A function of one or more sets should be understood in the
following manner:

8(X ) =
⋃
x∈X

8(x) (8)

8(X ,Y) =
⋃

{x,y}∈X×Y
8(x, y). (9)

With a set-valued function f : Cx ⇒ Cy where Cx ⊂ R and
Cy ⊂ R, recall that the inverse function f −1 : Cy ⇒ Cx is the
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function that satisfies the following condition:

y ∈ f (x) ⇐⇒ x ∈ f −1(y), ∀{x, y} ∈ Cx × Cy. (10)

A set-valued function f : Cx ⇒ Cy is said to be total if
f (x) 6= ∅ for all x ∈ Cx . It is said to be surjective if, for all
y ∈ Cy, there exists x ∈ Cx such that y ∈ f (x). If f is total
and surjective, f −1 is also total and surjective. A set-valued
function f is said to be monotone if it satisfies (x1− x2)(y1−
y2) ≥ 0 for all x1, x2 ∈ Cx , y1 ∈ f (x1), and y2 ∈ f (x2). With a
monotone function f , the following is satisfied:

f (x1) 3 y1 ≤ y2 ∈ f (x2)

⇐⇒ f −1(y1) 3 x1 ≤ x2 ∈ f −1(y2). (11)

This paper defines set-valued extensions of min and max
operators as follows:

max(X ,Y)

, {ξ ∈ R | X 3 ξ ≥ ∃y ∈ Y ∨ X 3 ∃x ≤ ξ ∈ Y} (12a)
min(X ,Y)

, {ξ ∈ R | X 3 ξ ≤ ∃y ∈ Y ∨ X 3 ∃x ≥ ξ ∈ Y}(12b)

where X ⊂ R and Y ⊂ R. If X and Y are closed intervals
in R, the followings are satisfied:

max(X ,Y) = [max(minX ,minY),max(maxX ,maxY)]

(13a)

min(X ,Y) = [min(minX ,minY),min(maxX ,maxY)].

(13b)

The following lemma is useful to deal with the inverse
functions and the min and max operators.
Lemma 1: Let f1 : C ⇒ R and f2 : C ⇒ R be

total, surjective, monotone, set-valued functions where C ⊂
R. Then, f (x) , min(f1(x), f2(x)) results in f −1(y) =
max(f −11 (y), f −12 (y)) and f (x) , max(f1(x), f2(x)) results in
f −1(y) = min(f −11 (y), f −12 (y)).

Proof: See Appendix A. �

B. NONSMOOTH QUASISTATIC MODEL OF A HYDRAULIC
ACTUATOR
This section overviews the nonsmooth quasistatic model [16]
of the hydraulic actuator driven by the circuit illustrated in
Fig. 1. As can be seen in the figure, the actuator has two
chambers separated by a piston, and the circuit has four main
control valves, a bleed valve, three relief valves, and three
check valves. The cross-sectional areas and the internal pres-
sures of the chambers are denoted by A∗ and P∗ (∗ ∈ {h, r}),
respectively, where h means the head-side and r means the
rod-side. The pressure limits of the head- and rod-side relief
valves are PhM and PrM , respectively. The oil flow in the
circuit is supplied by a single pump, of which the flowrate
is Q. The circuit comprises a pump relief valve, of which
the pressure limit is PM , to secure the oil outlet from the
pump, and a pump check valve to prevent the backflow into
the pump.

FIGURE 2. A numerical example of the quasistatic model f ∈ 0(v, u)
defined in [16]; (a) three-dimensional surface plot, (b) cross-sectional
plots at some u values, and (c) cross-sectional plots at some v values. The
function is set-valued at v = 0 and u = 0. An alternative analytical form of
0 is given in (24).

For each of the control valves (four main control valves
and one bleed valve), the ratio of the valve opening area
to its maximum value is denoted by u∗ ∈ [0, 1] (∗ ∈
{ph, pr, th, tr, b}). The flowrates Q∗ (∗ ∈ {ph, pr, th, tr, b})
through the valves can be assumed to satisfy the following
flowrate-pressure relations [12], [19]:

Q∗ = c∗u∗R(1P∗) (∗ ∈ {ph, tr, th, pr, b}) (14)

where c∗ , C∗a∗
√
2/ρ, 1P∗ is the pressure drop across the

valve, ρ is the mass density of the oil, a∗ is the maximum
opening area of the valve, and C∗ is the discharge coeffi-
cient [20] of the valve. The discharge coefficient C∗ is a
dimensionless quantity of which the value is typically around
0.6 or 0.7 [21], [22].

The nonsmooth quasistatic model gives the algebraic rela-
tion among the actuator force f , the ratios of the valve opening
areas u∗ ∈ [0, 1] (∗ ∈ {ph, pr, th, tr, b}), and the velocity v.
For simplicity, the ratios u∗ ∈ [0, 1] (∗ ∈ {ph, pr, th, tr}) can
be assumed to be determined by a control input u ∈ B as
follows:

uph = utr = max(0, u), upt = uth = −min(0, u). (15)

The model with this control input u can be represented by
a set-valued (thus nonsmooth) function 0 : R×B ⇒ R, with
which f , v and u are constrained in the form f ∈ 0(v, u). The
complete analytical expression of the function 0 is presented
in [16]. Fig. 2 illustrates a numerical example of the function
0 with the parameter values detailed in Section IV.
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C. DOUBLE-IMPLICIT IMPLEMENTATION OF
NONSMOOTH CONTROLLERS
This section gives an overview of the double-implicit imple-
mentation scheme proposed in [15], which is for implement-
ing a sliding-mode controller to a plant driven by a nonsmooth
actuator. It is an extension of the implicit implementation
scheme [23]–[28], which is to implement a nonsmooth con-
troller, such as a sliding-mode controller, to a smooth plant,
which can be described by an ordinary differential equation.
The implicit implementation scheme employs the implicit
Euler discretizations of the controller and the plant to con-
struct a discrete-time algorithm of the controller that does
not produce chattering. The double-implicit implementation
scheme [15] is its extension to deal with the case where both
controller and plant are nonsmooth.

The double-implicit implementation scheme is to deal with
the position control of plants that can be written in the follow-
ing form:

Mv̇ = f + g (16a)

v = ṗ (16b)

f ∈ 0(v, u) (16c)

where p ∈ R, v ∈ R, and M ∈ R+ are the position, the
velocity, and the mass of the controlled object, respectively.
The controlled object is subjected to the external force
g ∈ R and the actuator force f ∈ R, and the force f is
generated by the actuator modeled as a nonsmooth function
0 : R× B ⇒ R. Here, u ∈ B is the control input that should
be given to the actuator from a controller.

For the position control of the plant (16), a simple sliding-
mode controller of the following form is considered:

f ∈ 0 (v, sgn(pd − p− Hv)) (17)

where pd ∈ R is the desired position and H > 0 is a
parameter for the controller. The control input u in (16c)
should be chosen so that (17) is realized. Theorem 2 in [15]
suggests that, with this controller, the sliding mode can be
established on the switching surface σ , p − pd + Hv = 0
and thus p exponentially converges to pd with the time
constant H .
In the double-implicit implementation scheme, a discrete-

time algorithm that realizes the controller (17) combined with
the plant (16) is derived. It is based on the implicit Euler
discretization of the nominal model of the plant (16) and the
controller (17), which are written as follows:

M (vk+1 − vk )/T = fk + gk (18a)

vk+1 = (pk+1 − pk )/T (18b)

fk ∈ 0(vk+1, uk ) (18c)

fk ∈ 0(vk+1, sgn(pd − pk+1 − Hvk+1)).

(18d)

Here, T denotes the sampling interval and k denotes the
discrete-time index. The control input uk needs to be obtained

FIGURE 3. Block diagram of the proposed controller. The OSP stands for a
one-step predictor. The sliding-mode controller is implementated by the
double-implicit implementation scheme [15].

from the set of algebraic constraints (18) according to the
inputs pk , vk , and gk .
Through tedious but straightforward algebraic manipu-

lations on (18), one obtains the following algorithm to
obtain uk :

vf ,k := vk + gkT/M (19a)

vs,k := (pd − pk )/(H + T ) (19b)

fk := sat0s(T/M ,vf ,k ,B)((vs,k − vf ,k )M/T ) (19c)

uk := 2s(vf ,k + fkT/M , fk ) (19d)

where 0s and 2s are functions that satisfy the followings:

f = 0s(η, v, u) ⇐⇒ f ∈ 0(v+ ηf , u) (20)

u ∈ 2(v, f ) ⇐⇒ f ∈ 0(v, u) (21)

2s(v, f ) ∈ 2
(
v, sat0(v,B)(f )

)
(22)

where η > 0. Here, 0s is a single-valued function that is
uniquely defined by (20) as detailed in Theorem 3 in [15],
2 is the inverse function of 0 with respect to its second
argument, and2s is a single-valued selection of2. Although
2s is not unique, its use in the algorithm can be justified
by Theorem 1 in [15]. The previous paper [15] provides the
algorithm (19) and the relations (20), (21), and (22), but
does not provide the analytical expressions of 0s, 2 or 2s
corresponding to the function 0 presented in [16].

As for the algorithm (19), it should be noted that vf ,k +
fkT/M , which is in (19d), can be interpreted as the velocity
predicted to be achieved in the next timestep if the desired
force fk is kept by the actuator for the time period t ∈
[kT , (k + 1)T ).

III. SET-POINT POSITION CONTROLLER FOR HYDRAULIC
EXCAVATORS
This section proposes a set-point position controller for
hydraulic excavators. Fig. 3 illustrates the overall structure of
the controller. The proposed controller consists of a sliding-
mode controller and a state predictor to compensate for
the deadtime. The sliding-mode controller is implemented
through the double-implicit implementation scheme [15],
which requires the inverse model of the actuator. This
section derives the inverse model of the nonsmooth qua-
sistatic model [16] and presents the controller algorithm.

153738 VOLUME 9, 2021



Y. Yamamoto et al.: Sliding-Mode Set-Point Position Controller for Hydraulic Excavators

The algorithm of the state predictor is also presented in
this section.

A. INVERSION OF THE NONSMOOTH QUASISTATIC
MODEL
As overviewed in Section II-B, the actuator model is rep-
resented by a function 0 : R × B ⇒ R, of which the
complete analytical form is given in [16]. This section gives
the analytical form of its inverse function 2 with respect to
the second argument, which satisfies (21).

For the convenience of the derivation of the func-
tion 2, we rewrite the function 0 in an expression differ-
ent from that in [16]. To this end, let us define functions
γ+ : (1+ε)B×R+×R⇒ R and γ− : (1+ε)B×R−×R⇒ R
as follows:

γ+(u; v̄, a) , a+N(1+ε)B(u)

+


−
S(v̄)
u2

if uv̄ > 0 ∨ (u 6= 0 ∧ v̄ = 0)

−∞ if u ≤ 0 ∧ v̄ > 0
[−∞, 0] if u = 0 ∧ v̄ = 0

(23a)

γ−(u; v̄, a) , a+N(1+ε)B(u)

+


−
S(v̄)
u2

if uv̄ > 0 ∨ (u 6= 0 ∧ v̄ = 0)

+∞ if u ≥ 0 ∧ v̄ < 0
[0,+∞] if u = 0 ∧ v̄ = 0.

(23b)

Here, ε is a positive scalar satisfying 0 < ε � 1. These
functions are monotone with respect to the first argument u ∈
(1+ε)B, and are single-valued as long as u ∈ B. The domain
of the first argument of γ± is (1 + ε)B, which is set slightly
larger than B to make γ± to be surjective from u ∈ (1+ ε)B
to f ∈ R. Setting them surjective is for the convenience of
employing their inverse functions and Lemma 1.
Using the functions γ± defined in (23), the function 0 :

R × B ⇒ R defined in [16] can be equivalently rewritten as
follows:

0(v, u) , gsgn(0−(v, u), v, 0+(v, u)) (24a)

where 0∗ : R× (1+ ε)B ⇒ R are defined as follows:

0+(v, u) , max (min (max (0+0a(v, u), 0+0b(v, u)) ,

max (0+1a(v, u), 0+1b(v, u)) ,max (0+2a(v, u),

0+2b(v, u))) , 0+3a(v, u), 0+3b(v, u)) (24b)

0−(v, u) , min (max (min (0−0a(v, u), 0−0b(v, u)) ,

min (0−1a(v, u), 0−1b(v, u)) ,min (0−2a(v, u),

0−2b(v, u))) , 0−3a(v, u), 0−3b(v, u)) (24c)

and

0+0a(v, u) , γ+(u;Ctrv,FhM ) (24d)

0+0b(v, u) , FhM − FrM +N(1+ε)B(u) (24e)

0+1a(v, u) , γ+(u;Chrv,−ChbS(v− Vh)) (24f)

0+1b(v, u) , γ+(u;Cphv,−FrM − ChbS(v− Vh)) (24g)

0+2a(v, u) , γ+(u;Chrv,FhP) (24h)

0+2b(v, u) , γ+(u;Cphv,FhP − FrM ) (24i)

0+3a(v, u) , γ+(u;Ctrv, 0) (24j)

0+3b(v, u) , −FrM +N(1+ε)B(u) (24k)

0−0a(v, u) , γ−(u;Cthv,−FrM ) (24l)

0−0b(v, u) , −FrM + FhM +N(1+ε)B(u) (24m)

0−1a(v, u) , γ−(u;Crhv,−CrbS(v+ Vr )) (24n)

0−1b(v, u) , γ−(u;Cprv,FhM − CrbS(v+ Vr )) (24o)

0−2a(v, u) , γ−(u;Crhv,−FrP) (24p)

0−2b(v, u) , γ−(u;Cprv,−FrP + FhM ) (24q)

0−3a(v, u) , γ−(u;Cthv, 0) (24r)

0−3b(v, u) , FhM +N(1+ε)B(u). (24s)

The constants appearing in (24) are defined as follows:

Cph ,
√
A3h/c

2
ph Ctr ,

√
A3r/c

2
tr

Cth ,
√
A3h/c

2
th Cpr ,

√
A3r/c2pr

Chr ,
√
C2
ph + C

2
tr Crh ,

√
C2
th + C

2
pr

Chb , A3h/(cbub)
2 Crb , A3r/(cbub)

2

Vh , Q/Ah Vr , Q/Ar
FhP , AhPM FrP , ArPM
FhM , AhPhM FrM , ArPrM .

The graph of f ∈ 0(v, u) is illustrated in Fig. 2. As seen
from Fig. 2(c), the function 0 is monotone with respect to the
argument u and is single-valued when v 6= 0.
From tedious but straightforward derivation, one can see

that the following lemma holds true:
Lemma 2: Let f ∈ R, u ∈ (1 + ε)B, v+ ∈ R+,

v− ∈ R−, and a ∈ R. Recall that the functions γ+ and γ− are
defined as (23a) and (23b), respectively. Then, the following
statements hold true:

f ∈ γ+(u; v+, a) ⇐⇒ u ∈ θ+(f ; v+, a) (25)

f ∈ γ−(u; v−, a) ⇐⇒ u ∈ θ−(f ; v−, a) (26)

where the functions θ+ : R × R+ × R ⇒ (1 + ε)B and
θ− : R× R− × R⇒ (1+ ε)B are defined as follows:

θ+(f ; v̄, a) ,


v̄

max
(

v̄
1+ ε

,R(a− f )
) if v̄ > 0

gsgn(0, f − a, 1+ ε) if v̄ = 0

(27a)

θ−(f ; v̄, a) ,


−v̄

min
(

v̄
1+ ε

,R(a− f )
) if v̄ < 0

gsgn(−1− ε, f − a, 0) if v̄ = 0.

(27b)

Lemma 2 states that θ+ and θ− are the inverse functions of
γ+ and γ− with respect to the first argument, respectively.
Note that 0 in (24) is constructed from γ+, γ−, and NB,
and that the inverse function of NB is sgn from (7). Thus,
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one can see that the inverse function 2 of 0 can be derived
from θ+, θ−, and sgn. Here, the fact that γ+, γ−, and NB are
total, surjective, and monotone allows for the application of
Lemmas 1 to obtain the analytical expression of2 : R×R⇒
B as follows:

2(v, f ) , B ∩ gsgn(2−(v, f ), v,2+(v, f )) (28a)

where 2∗ : R× R⇒ (1+ ε)B are defined as follows:

2+(v, f ) , min (max (min (2+0a(v, f ),2+0b(v, f )) ,

min (2+1a(v, f ),2+1b(v, f )) ,min (2+2a(v, f ),

2+2b(v, f ))) ,2+3a(v, f ),2+3b(v, f )) (28b)

2−(v, f ) , max (min (max (2−0a(v, f ),2−0b(v, f )) ,

max (2−1a(v, f ),2−1b(v, f )) ,max (2−2a(v, f ),

2−2b(v, f ))) ,2−3a(v, f ),2−3b(v, f )) (28c)

and

2+0a(v, f ) , θ+(f ;Ctrv,FhM ) (28d)

2+0b(v, f ) , (1+ ε)sgn(f − FhM + FrM ) (28e)

2+1a(v, f ) , θ+(f ;Chrv,−ChbS(v− Vh)) (28f)

2+1b(v, f ) , θ+(f ;Cphv,−FrM − ChbS(v− Vh)) (28g)
2+2a(v, f ) , θ+(f ;Chrv,FhP) (28h)

2+2b(v, f ) , θ+(f ;Cphv,FhP − FrM ) (28i)

2+3a(v, f ) , θ+(f ;Ctrv, 0) (28j)

2+3b(v, f ) , (1+ ε)sgn(f + FrM ) (28k)

2−0a(v, f ) , θ−(f ;Cthv,−FrM ) (28l)

2−0b(v, f ) , (1+ ε)sgn(f − FhM + FrM ) (28m)

2−1a(v, f ) , θ−(f ;Crhv,−CrbS(v+ Vr )) (28n)

2−1b(v, f ) , θ−(f ;Cprv,FhM − CrbS(v+ Vr )) (28o)

2−2a(v, f ) , θ−(f ;Crhv,−FrP) (28p)

2−2b(v, f ) , θ−(f ;Cprv,−FrP + FhM ) (28q)

2−3a(v, f ) , θ−(f ;Cthv, 0) (28r)

2−3b(v, f ) , (1+ ε)sgn(f − FhM ). (28s)

Note that all2∗ are total and surjective with respect to their
second argument f ∈ R. The function2, however, is not total
or surjective because the definition (28a) restricts its return
value within B, which means that it may be ∅ for some pairs
of values of v ∈ R and f ∈ R.

B. SLIDING-MODE CONTROLLER FOR HYDRAULIC
ACTUATORS
As has been mentioned in Section III-A, the function 2
defined in (28) is not convenient for the use in the controller
because its output is not always a single value but can be a set
or even the empty set. This section presents a single-valued
total function 2s that is related to 2 through (22). A careful
observation of the definition (24) of 0 and Fig. 2 reveals
that the set-valuedness of 2(v, f ) takes place when f is at
the maximum FhM or the minimum −FrM . When f is above
FhM or below −FrM , 2(v, f ) is the empty set. In addition,

FIGURE 4. Inverse model of the actuator: (a) the graph of f ∈ 2(v, f )
defined in (21) and (b)(c)(d) the graph of f = 2s(v, f ) defined in (32). The
function 2s is obtained by removing the set-valuedness and
non-totalness of the function 2.

the definition (24a) implies that 2(v, f ) may be set-valued at
v = 0. It may also be the case if f = FhM − FrM because of
the definitions (28e) and (28m) of 2±0b.
The use of an arbitrary single value within the set 2(v, f )

is justified in Theorem 1 in [15]. The theorem, however,
depends on the assumption that the controller parameters are
accurate with respect to the real actuator parameters. The sys-
tem’s sensitivity to the parametric errors may depend on the
choice of the single value within the set. Through preliminary
investigations, we propose the function 2s obtained by the
following modifications of the definition (28) of 2:

• Replace θ± in (27) by

θ+s(f ; v̄, a) ,
v̄

max (v̄,R(a− f ))
(29a)

θ−s(f ; v̄, a) ,
−v̄

min (v̄,R(a− f ))
. (29b)

• Use 2±∗ (∗ ∈ {0a, 1a, 1b, 2a, 2b, 3a}) in (28d) to (28r)
with θ± being replaced by θ±s in (29).

• Replace 2±0b in (28e) and (28m) by

2+0b,s(v, f ) ,

{
1 if f ≥ FhM − FrM
−1 if f < FhM − FrM

(30a)

2−0b,s(v, f ) ,

{
1 if f > FhM − FrM
−1 if f ≤ FhM − FrM .

(30b)
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• Replace 2±3b in (28k), and (28s) by

2+3b,s(v, f ) ,

{
1 if f > −FrM
0 if f ≤ −FrM

(31a)

2−3b,s(v, f ) ,

{
0 if f ≥ FhM
−1 if f < FhM .

(31b)

• Use 2± in (28b) and (28c) as they are.
• Replace (28a) by

2s(v, f ) ,


2−s(v, f ) if v < 0
0 if v = 0
2+s(v, f ) if v > 0.

(32)

Note that the definitions (29) does not consider the case of
v = 0 because (32) implies that 2± is not used when v = 0.

The original set-valued function2 is illustrated in Fig. 4(a)
while the derived singled-valued function 2s is shown in
Figs. 4(b), (c) and (d). The motivation for this choice of the
single-valued 2s is summarized as follows:
• Equation (29) is chosen so that θ±s(f ; v̄, a) =

satB(θ±(f ; v̄, a)).
• Equation (30) is chosen to deal with the set-valuedness
of 2±0b that happens at f = Fh − FrM . It is designed
so that it allows2±0a(v, f ) to be chosen in the min-max
logic in (28b) and (28c). Nevertheless, 2±0b are rarely
in effect in the logic in (28b) and (28c) and actually have
no effect in the numerical and experimental examples in
this paper.

• Equation (31) is chosen to set 2s(v, f ) = 0 when
v > 0 ∧ f ≤ −FrM or v > 0 ∧ f ≥ FrM because,
in these cases, the actuator needs to produce the maxi-
mally decelerating force and setting u = 0 (closing all
main control valves) is the most robust way to realize it
against the parametric errors.

• Equation (32) is chosen to set 2s(v, f ) = 0 when v = 0
because setting u = 0 (closing all main control valves)
is the most robust way to achieve v = 0 against the
parametric errors.

Employing the obtained function 2s in (32), we construct
the algorithm to calculate the control input u as follows:

vf ,k := vk + ĝkT/Mc (33a)

vs,k := (pd − pk )/(H + T ) (33b)

fk := sat0s(T/Mc,vf ,k ,B)((vs,k − vf ,k )Mc/T ) (33c)

uk := 2s(vf ,k + fkT/Mc, fk ) (33d)

where Mc is the inertia of the controlled object and ĝk is
the estimated external force, which is set zero if unavailable.
The singled-valued function0s is the function satisfying (20).
It can be implemented as

0s(η, v, u) = (3(1/η,−v/η, u)− v)/η (34)

where the function 3 is a function of which the complete
analytical form is presented in [29]. Stability proofs for
the controller (33) applied to the plant (16) are shown in
Appendices B and C of [15].

The controller (33) depends on the inertia parameter Mc,
which should be known in advance. When it is applied to the
swing axis of an excavator, it should be the moment of inertia
of the upperstructure. The upperstructure is composed of the
cab and the links (the boom, arm, and bucket), which are
combined with one another through components having some
mechanical compliance. Therefore, it is not straightforward
to judge whether Mc should be the moment of inertia of the
whole upperstructure or only the cab part. The parameterMc
here is used to predict the actuator velocity vf ,k + fkT/Mc
after the time T , which is 10 ms in our setup. Therefore,
a suitable choice of Mc would depend on how far the effect
of the actuator force is propagated within the time T within
the structure. From some preliminary simulations and exper-
iments, we conclude that it is better to set Mc as the moment
of inertia only of the cab. Some supporting results will be
presented in Sections IV and V.

C. STATE PREDICTOR FOR DEADTIME COMPENSATION
Hydraulic systems usually include the deadtime between the
control input and the actuation. In order to compensate for the
deadtime, the proposed controller includes a state predictor
based on the quasistatic model [16] of the actuator.

To construct the predictor, we again consider the plant
dynamics model (16). The implicit discretization of the
model (16) is as follows:

vk+1 = vk + (fk + gk )T/M (35a)

pk+1 = pk + vk+1T (35b)

fk ∈ 0(vk+1, uk ). (35c)

Eliminating vk+1 in (35c) and employing 0s in (34),
we obtain the following expression:

fk = 0s(T/M , vk + gkT/M , uk ) (36a)

vk+1 = vk + (fk + gk )T/M (36b)

pk+1 = pk + vk+1T , (36c)

which can be seen as the algorithm of a one-step predictor of
the state {pk+1, vk+1} based on the inputs {pk , vk , uk , gk}.

By iteratively using the one-step predictor (36), we can
construct the algorithm of a multi-step predictor for a look-
ahead time T̂d as follows:

for i← 1 to floor(T̂d/T )− 1 do

U [i+ 1]← U [i] (37a)

end for

U [1]← u (37b)

for i← floor(T̂d/T ) to 1 do

f ← 0s(T/Mp, v+ ĝT/Mp,U [i]) (37c)

v← v+ (f + ĝ)T/Mp (37d)

p← p+ vT (37e)

end for

return p and v

VOLUME 9, 2021 153741



Y. Yamamoto et al.: Sliding-Mode Set-Point Position Controller for Hydraulic Excavators

where floor means the maximum integer that does not exceed
the argument, Mp is the inertia of the controlled object,
and ĝ is the estimated external force. Here, U [i] (i ∈
{1, · · · ,floor(T̂d/T )}) is the buffer to store the control inputs
u of i timesteps ago. As has been illustrated in Fig. 3, the
finally obtained p and v are provided to the sliding-mode
controller (33) as the inputs.

The predictor (37) also depends on the prior knowledge
of the inertia Mp of the controlled object, as is the case with
the controller (33). When it is applied to the swing axis of
an excavator, we again need to consider that the moment of
inertia of which part of the upperstructure should be used
as Mp. The predictor (37) is for predicting the time T̂d later,
in our setup, it is about 150 to 450 ms, which is 15 to 45
times of T . Considering that the effect of the actuator force
in the upperstructure is propagated further in T̂d than in T ,
we can see that the moment of inertia Mp for the predic-
tor (37) should be larger than the moment of inertia Mc for
the controller (33). Our conclusion from some preliminary
simulations and experiments is that it is better to set Mp as
themoment of inertia of thewhole upperstructure. Supporting
results will be shown in Sections IV and V.

IV. SIMULATIONS
A. SIMULATION SETUP
The proposed controller, which is the sliding-mode con-
troller (33) combined with the state predictor (37), was val-
idated with our realtime simulator [30] of a 20-ton class
hydraulic excavator. The controller was constructed with
MATLAB/Simulink and the simulator is constructed with
Microsoft Visual C++. They are connected as illustrated in
Fig. 5 through TCP/IP sockets at the cycle of 10 ms, i.e., the
controller’s sampling interval is T = 10 ms. The simulator’s
timestep size is 0.1 ms. The proposed controller was tested
with the angle p of the swing axis, driven by a rotary hydraulic
actuator, of the simulated excavator. In the simulations, the
desired angle pd and the parameter H were fixed as 90◦ and
1.5 s, respectively. The estimated external force ĝ was set as
0 because the excavator was placed horizontally.

The simulator deals with links as rigid bodies connected by
virtual viscoelastic elements through virtual beams as illus-
trated in the green circle in Fig. 6. The stiffness and the viscos-
ity of the virtual viscoelastic elements are 5.0× 107 N/m and
3.0× 105 N·s/m, respectively, and the length of the virtual
beams is 2.0 m. The frictions in the joints are implemented
by the technique presented in [31].

In the simulator, the torque of the rotary hydraulic actua-
tor is calculated based on the nonsmooth quasistatic model
explained in Section II-B. The parameters of the actuator
are shown in Table 1. The torque is amplified by a geared
transmission with the reduction ratio 130. The output shaft of
the actuator is connected to the cab through a virtual torsional
viscoelastic element with the stiffness 5.0× 107 N·m/rad and
the viscosity 3.0× 105 N·m·s/rad as illustrated in the blue
circle in Fig. 6, employing the technique presented in [29].

FIGURE 5. Simulation setup.

FIGURE 6. Connections of links in the simulator: the figure in the green
circle illustrates the connections among links through the virtual
viscoelastic elements and the virtual beams, and the figure in the blue
circle illustrates the connection between the cab and the rotary actuator.

TABLE 1. Parameters of the rotary hydraulic actuator in the simulations.

The rotary hydraulic actuator accepts the control input u of
the deadtime Td ago. In addition, the responses of the main
control valves are assumed to be lagged by the dynamics of
the spool valves. In order to emulate the delay and the lag,
we include the following filter between the controller and the
actuator as shown in Fig. 5:

uf = L−1
[

ω2
0e
−Td sL[u]

s2 + 2ζω0s+ ω2
0

]
(38)

where L represents the Laplace transform. The deadtime Td ,
the cutoff frequency ω0, and the damping ratio ζ are set as
300 ms, 94.2 (≈ 30π ) rad/s, and 1, respectively.
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FIGURE 7. Configurations of the excavator in the simulation:
(a) the extended configuration and (b) the flexed configuration.

The simulations were performed in two different
configurations illustrated in Fig. 7, which are the exten-
ded configuration and the flexed configuration. In the
extended configuration, the moment of inertia of the whole
upperstructure, which is composed of the cab, the boom,
the arm, and the bucket, is Jup,ex , 1.34× 105 kg·m2.
In the flexed configuration, it is Jup,fl , 5.66× 104 kg·m2.
The moment of inertia of only the cab is Jcab ,
3.37× 104 kg·m2.

Other position controllers were not compared in the sim-
ulations. The main feature of the proposed controller is that
it explicitly intends to realize specified transient behaviors
in set-point control tasks with only a few adjustable con-
troller parameters. Other controllers, such as PID-based con-
trollers [7]–[10] and sliding-mode controllers [1], [5], [6]
may realize similar behaviors, but it would require careful
parameter tuning and careful design of the target trajectory.
Thus, we leave empirical comparisons outside the scope of
this paper.

B. EFFECTS OF SETTINGS OF INERTIA PARAMETERS AND
DEADTIME
Some simulations were performed to check the effects of
the inertia parameters {Mc,Mp} and the predictor and the
look-ahead time T̂d . We performed the simulations with the
following three settings of the inertia parameters {Mc,Mp}:
• Setting A:Mc = Mp = Jcab.
• Setting B:Mc = Jcab and Mp = Jup,∗.
• Setting C:Mc = Mp = Jup,∗.

The look-ahead time T̂d was set as seven different values
from 150 ms to 450 ms. The actuator-model parameters in
the controller were set idealistically, being equal to the plant
parameter values in Table 1. It should be noted that the
second-order lag (38) in the plant is not taken into consid-
eration in the controller.
Fig. 8 shows simulation results in the extended configura-

tion. It shows that the swing angle p converges to the desired
angle pd in all settings. From the comparison among different
settings of the inertia parameters, one can see that Setting B
is the most suitable because it results in the control input
u being non-oscillatory and the state {p, v} being closest to
the switching surface σ = 0. This result is consistent with
the discussions in Sections III-B and III-C, i.e., Mc should
be the moment of inertia of the cab and Mp should be that
of the whole upperstructure. The chattering-like behavior
in u of Setting C can be explained as that an excessively
large value of Mc results in an unnecessarily large value
of fk in (33c), leading to a saturated value of u. From the
comparison among the different T̂d values, one can see that
setting the accurate value to T̂d results in accurate sliding on
the switching surface.

Fig. 9 shows simulation results in the flexed configuration.
Also in this configuration, the swing angle p converges to the
desired angle pd in all parameter settings. It is also apparent
that the three settings of the inertia parameters do not cause
much difference, resulting in non-oscillatory input u and
reasonably accurate sliding on the switching surface σ = 0.
It can be attributed to the fact that the ratio Jup,fl/Jcab = 1.68
in the flexed configuration is much smaller than Jup,ex/Jcab =
3.98 in the extended configuration. One can also see that T̂d
closer to Td results in the state trajectory closer to the switch-
ing surface, as was the case with the extended configuration.

In Figs. 8 and 9, one can see that at least one of the chamber
pressures Ph and Pr was always saturated, which means
that the effects of the relief valves cannot be neglected in
situations like these simulations. These results show that the
controller appropriately constrains the state to the switching
surface σ = 0 even during these saturated periods, exhibiting
the benefit of the controller accounting for the strong nonlin-
earity caused by the valve behaviors.

It should be noted that the speed of convergence is deter-
mined by the parameterH and it can be made faster by setting
H smaller. The value of H , however, should not be set too
small because it can result in overshoots, i.e., penetration of
the state through the switching surface. Appendix B of [15]
details the conditions for the state constrained to the switch-
ing surface. Different types of switching surfaces, such as
those nonlinear, may be effective to make the convergence
faster without producing overshoots, but it is left outside the
scope of this paper.

C. EFFECTS OF MODELING ERRORS
Another set of simulations was conducted to test the influ-
ence of the parametric errors in the actuator model. For
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FIGURE 8. Simulation results in the extended configuration with three different settings of the inertia parameters {Mc , Mp} and different values
of the look-ahead time T̂d . Settings A, B, and C stand for {Mc , Mp} = {Jcab, Jcab}, {Jcab, Jup,ex}, and {Jup,ex, Jup,ex}, respectively. The red curves
represent results with T̂d = Td . The result of Setting B with T̂d = 300 ms can be seen as the most suited among those presented here.

FIGURE 9. Simulation results in the flexed configuration with three different settings of the inertia parameters {Mc , Mp} and different values of
the look-ahead time T̂d . Settings A, B, and C stand for {Mc , Mp} = {Jcab, Jcab}, {Jcab, Jup,fl}, and {Jup,fl, Jup,fl}, respectively. The red curves
represent results with T̂d = Td .

each configuration, 100 trials were performed with all
parameters listed in Table 1 being randomly varied by
−15%, 0%, or 15%. The inertia parameters were set as
Mc = Jcab and Mp = Jup,∗, i.e., Setting B. The
look-ahead time T̂d was fixed to 300 ms, i.e., the true
deadtime Td .

Fig. 10 shows the results. In all parameter settings, the
angle p converges to the desired angle pd , although some
settings result in chattering-like behaviors in u and separation
of the state from the switching surface σ = 0. These results
exhibit a certain robustness of the proposed controller against
the modeling errors.
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FIGURE 10. Simulation results with modeling errors that are randomly selected in {−15 %, 0%,+15 %} for each parameter listed in Table 1. The
red line shows an almost ideal case with no modeling errors. The number of trials is 100 for each configuration. The inertia parameters are set as
{Mc , Mp} = {Jcab, Jup,∗}, i.e., Setting B. The look-ahead time T̂d is 300 ms (=Td ).

V. EXPERIMENTS
A. EXPERIMENT SETUP
We tested the proposed controller with a 13-ton class excava-
tor, Kobelco ED160-5 (with its dozer blade removed), shown
in Fig. 11. The controller was applied to the angle p of
the swing axis driven by a rotary hydraulic actuator, which
has a structure similar to the one shown in Fig. 1. In the
circuit, a single four-port spool valve plays the role of four
main control valves. The spool valve is driven by a pair of
electromagnetic control valves that accept the control input u
so that the spool displacement is proportional to the control
input u. Further detailed specifications of the actuator and the
excavator are not reported here due to proprietary restrictions.

FIGURE 11. Kobelco 13-ton class excavator in the extended configuration
(a) and in the flexed configuration (b).

The controller was constructed with MATLAB/Simulink.
It was connected with the excavator through the Control Area
Network (CAN) to receive the sensor reading of the angular
velocity v, which was measured by a microelectromechanical
systems (MEMS) gyroscope, and send the control input u
to the spool valve at the sampling interval of T = 10 ms.
The angle p was obtained by simply integrating the mea-
sured angular velocity v, being reset at the beginning of
every trial. The internal pressures of the chambers, unfor-
tunately, could not be obtained for some hardware reasons.
The desired angle pd and the controller parameter H were
fixed at 90◦ and 1.5 s, respectively, as was the case with
the simulations in Section IV. The estimated external force
ĝ was set as 0 because the excavator was placed horizon-
tally. We used three different settings for the inertia param-
eters {Mc,Mp}, which were Settings A, B, and C introduced
in Section IV-B. The values of Jup,ex, Jup,fl, and Jcab (cf.
Section IV-A for definitions) were obtained from the nominal
specifications of the excavators, of which the ratios were
Jup,ex/Jcab = 9.92 and Jup,fl/Jcab = 4.61. Because the
deadtime Td was not accurately available, the look-ahead
time T̂d was tested at five different values, which were 0 ms
(i.e., without the state predictor), 300ms, 400ms, 500ms, and
600 ms.

We did not test other controllers in the experiments for the
same reasons as in the simulations in Section IV. Another
reason, more practical, was that the behavior of simple linear
controllers would be quite unpredictable, especially in the
early stage of parameter tuning, posing difficulty in ensuring
safety.

B. RESULTS
Fig. 12 shows results in the extended configuration. It shows
that the swing angle p converges to the desired angle pd
except the case without the deadtime compensation. It can be
seen that Setting B is more suitable than Settings A and C
because the state trajectory is the closest to the switching
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FIGURE 12. Experiments in the extended configuration with three different settings of the inertia parameters {Mc , Mp} and different values of
the look-ahead time T̂d . Settings A, B, and C stand for {Mc , Mp} = {Jcab, Jcab}, {Jcab, Jup,ex}, and {Jup,ex, Jup,ex}, respectively.

FIGURE 13. Experiments in the flexed configuration with three different settings of the inertia parameters {Mc , Mp} and different values of the
look-ahead time T̂d . Settings A, B, and C stand for {Mc , Mp} = {Jcab, Jcab}, {Jcab, Jup,fl}, and {Jup,fl, Jup,fl}, respectively.

surface σ = 0 and the chattering of the control input u is
smaller. One can see the importance of the chattering reduc-
tion by observing the fluctuation in the velocity v coinciding
with the chattering in u. From the comparison among the
different T̂d values, one can see that it is safer to set T̂d

larger, especially larger than 400 ms in this setup, to avoid
undesirable artifacts. For example, the undesirable velocity
fluctuation seen in t ∈ [3 s, 5 s] with T̂d = 300 ms is
suppressed with larger values of T̂d . Even larger T̂d were not
tested in the experiments, but it would be natural to assume
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that the range of suitable values of the look-ahead time T̂d are
upperbounded by the accuracy of the state predictor.

Fig. 13 shows results in the flexed configuration. It shows
that the swing angle p converges to the desired angle pd also
in this configuration, as long as the state predictor is used.
It can be seen that the setting of the inertia parameters does
not largely affect the results in this configuration, similarly to
the simulations in Section IV-B, presumably because the ratio
Jup,fl/Jcab was relatively closer to one. It can also be seen that
rather acceptable behavior was realized as long as the look-
ahead time T̂d was between 300 ms to 600 ms.

In both configurations with all settings, the state trajec-
tory penetrated the switching surface. It can be attributed to
the inaccuracy of the state predictor, which currently does
not consider the dynamics of the spool valve or the pres-
sure dynamics (i.e., the compressibility) of the oil. We do
not practically consider it as a primary concern because
it does not result in overshooting in the angle or abrupt
changes in the velocity. It may however be worth investigat-
ing to improve the state predictor by including unmodeled
dynamics by extending the quasistatic model [16] of the
actuator.

VI. CONCLUSION
This paper has proposed a sliding-mode set-point position
controller for hydraulic excavators that realizes appropriate
converging behavior to the desired position. The proposed
controller consists of a sliding-mode controller constructed
with a double-implicit implementation scheme [15] and a
state predictor based on a nonsmooth quasistatic model [16]
of the hydraulic actuator. The controller has been validated
through simulations and experiments, in which the swing
angle converged to the desired angle with an appropriate
transient behavior along the sliding surface. The effects of
the controller’s parameters, especially the inertia parameters
and the look-ahead time, have also been investigated in the
simulations and the experiments.

Future work should address extending the proposed con-
troller to a multi-DOF controller that simultaneously deals
with all actuators (the boom, arm, and bucket cylinders).
In many commercial excavators, a single pump drives more
than one actuator, and thus the motion of an actuator often
affects the motion of another actuator. Such effects would
need to be taken into account in multi-DOF position con-
trol, for which the model presented in Section II-B of [16]
would be useful. Moreover, for enhancing the efficiency of
positioning and trajectory-tracking tasks, different types of
switching surfaces may need to be employed. A previous
theoretical study [15] suggests that a steeper switching sur-
face realizes faster convergence but fails to maintain the
sliding mode in a high-velocity region. It is thus logical to
consider that a faster convergence would be realized by a
nonlinear switching surface whose slope is steeper in a lower-
velocity region. Therefore, switching surfaces with saturated
velocity [32] and a square-root-like nonlinearity [33] would
be worth investigating.

APPENDIX A
PROOF OF LEMMA 1
To provide the proof of Lemma 1, let us define the following
operators:

≥∃X , {ξ ∈ R | ξ ≥ ∃x ∈ X } (39a)

≤∃X , {ξ ∈ R | ξ ≤ ∃x ∈ X } (39b)

where X ⊂ R. With these operators, we have the following
lemma:
Lemma 3: Let f : C ⇒ R be a total, surjective, monotone,

set-valued function where C ⊂ R. Then, y ∈ ≥∃f (x) ⇐⇒
x ∈ ≤∃f −1(y) and y ∈ ≤∃f (x) ⇐⇒ x ∈ ≥∃f −1(y) are
satisfied.

Proof: The first statement can be proven as follows:

y ∈ ≥∃f (x) ⇐⇒ ∃y0 s.t. f (x) 3 y0 ≤ y

⇐⇒ ∃y0, x1 s.t. f (x) 3 y0 ≤ y ∈ f (x1)

(∵ surjectivity of f )

⇐⇒ ∃y0, x1 s.t. f −1(y0) 3 x ≤ x0 ∈ f −1(y)

(∵ monotonicity of f )

⇐⇒ ∃x1 s.t. x ≤ x1 ∈ f −1(y)

(∵ surjectivity of f −1)

⇐⇒ x ∈ ≤∃f −1(y). (40)

The second statement can also be proven in the same
manner. �
The definitions (12) of the min and max operators can be

equivalently rewritten as follows:

max(X ,Y) , (X ∩ ≥∃Y) ∪ (≥∃X ∩ Y) (41a)

min(X ,Y) , (X ∩ ≤∃Y) ∪ (≤∃X ∩ Y) (41b)

where X ⊂ R and Y ⊂ R. Now we are in position to provide
the proof of Lemma 1.
Proof of Lemma 1: If f (x) , min(f1(x), f2(x)), one has the

following:

y ∈ f (x) ⇐⇒
(
y ∈ f1(x) ∧ y ∈ ≥∃f2(x)

)
∨
(
y ∈ ≥∃f1(x) ∧ y ∈ f2(x)

)
⇐⇒

(
x ∈ f −11 (y) ∧ x ∈ ≤∃f

−1
2 (x)

)
∨

(
x ∈ ≤∃f

−1
1 (y) ∧ x ∈ f −12 (y)

)
⇐⇒ x ∈ max(f −11 (y), f −12 (y)). (42)

The first and second lines of the above are connected by
Lemma 3. The case of f (x) , max(f1(x), f2(x)) can also be
proven in the same manner.
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