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A Nonsmooth Quasi-Static
Modeling Approach for
Hydraulic Actuators
This paper presents an analytical approach for modeling the quasi-static characteristics
of hydraulic actuators driven by four-valve independent metering circuits. The presented
model is described as a nonsmooth, set-valued function from the velocity to the set of
forces with which the equilibrium is achieved at the velocity. It is derived from algebraic
relations among the velocity of the actuator, the steady-state force generated by the actu-
ator, and the flowrate and the steady-state pressure at all valves in the circuit. This
approach is also applied to more involving circuits including a regeneration pipeline and
those with multiple actuators. The contribution of the paper can be seen as an example
case study of the fact that these complicated circuit structures are analytically tractable
through an extension of the conventional hydraulic–electric analogy. The obtained ana-
lytical expressions of the steady-state velocity–force relations allow for concise visualiza-
tion of the actuators’ characteristics. [DOI: 10.1115/1.4051894]

1 Introduction

Construction machines require continuing research on the con-
trol technology for future applications, such as remote and semi-
automatic operations. Physical models of the construction
machines are necessary for developing sophisticated controllers,
observers, and simulators. In particular, hydraulic actuators and
hydraulic circuits are important components of construction
machines, of which the physical behaviors need to be appropri-
ately modeled. The behavior of a hydraulic actuator is highly
involving, depending on the oil supply from the pump, the exter-
nal forces acting on the actuator, and the states and the character-
istics of many valves in the circuit.

A straightforward approach for modeling a hydraulic actuator is
to construct a quasi-static1 map from the steady-state velocity to
the actuator force. The force–velocity maps can be derived from
the balance between the flowrate and pressure at the valves,
depending on the valve openings. Such an approach is quite clas-
sical and is often referred to as the hydraulic–electric analogy
[1–4], which replaces the pressure and the flowrate by the voltage
and the current, respectively. Some researchers constructed con-
trollers in this approach [5–12], but its application is limited to
relatively simple circuits that do not involve many valves.

A more physically accurate modeling approach is to consider
the first-order dynamics of the pressure. In such an approach, the
circuit is often divided into several oil volumes, such as those in
the circuit pipelines and the actuator chambers. In each volume,
the pressure is determined by a first-order differential equation
depending on the oil flowrates in and out of the volume. It is
sometimes referred to as a lumped fluid approach and has been
employed for the controller design [13–16] and for simulation
purposes [17,18]. Although this approach can be applied to com-
plicated circuits with many valves, because of the high bulk mod-
ulus of the oil, the differential equations can be numerically stiff,
and thus it usually demands a small time-step and high computa-
tional cost. In addition, it requires iterative computation to obtain
the steady-state force–velocity relations.

This paper presents an approach for deriving mathematical rep-
resentations of quasi-static force–velocity relations of hydraulic
actuators with relatively complicated circuits. The circuit structure
shown in Fig. 1 is used as an example, being motivated by those
used in commercial hydraulic excavators. This approach focuses
on the quasi-static balance between the flowrate and the pressure,
which is the equilibrium of the first-order pressure dynamics.
More specifically, at the steady-state, the pressure difference
across each valve determines the oil flowrate through the valve,
the oil flowrate into the actuator determines the actuator’s veloc-
ity, the pressures in the actuator chambers determine the force
generated by the actuator, and the generated force equals the
external force acting on the actuator. This paper elaborates an ana-
lytical expression of the steady-state relation between the actuator
velocity and the external force from the quasi-static

1We use the term “quasi-static” because the model does not involve the pressure
dynamics but involves the motion of the actuator and the oil.

Contributed by the Dynamic Systems Division of ASME for publication in the
JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL. Manuscript received
March 12, 2021; final manuscript received July 13, 2021; published online
September 13, 2021. Assoc. Editor: Tatiana Minav.

Journal of Dynamic Systems, Measurement, and Control DECEMBER 2021, Vol. 143 / 121002-1
Copyright VC 2021 by ASME; reuse license CC-BY 4.0

https://crossmark.crossref.org/dialog/?doi=10.1115/1.4051894&domain=pdf&date_stamp=2021-09-13


representations of all valves in the circuit. One important feature
of the presented expression is that it is nonsmooth, allowing for
the set-valuedness2 of the force–velocity map especially when the
valves are closed or the actuator is stopped.

The presented nonsmooth formalism can be seen as one form of
the classical hydraulic–electric analogy [1–4], and it is also analo-
gous to the nonsmooth electronics [19–21]. From another perspec-
tive, the presented approach is close to those of some previous
papers [22–24] that apply the singular perturbation theory to the
dynamical models of hydraulic systems. In their approach, the
terms including the pressure rate-of-changes are removed from
the dynamical models assuming that the pressure dynamics is suf-
ficiently fast. In contrast to their approaches, the presented non-
smooth approach allows for multiple steady-states by involving
the set-valuedness.

In general, many force-exerting devices can be characterized by
quasi-static maps from the velocity to the force [25,26], which can
be used by engineers to choose devices that meet their require-
ments. The presented approach provides such quasi-static maps of
hydraulic actuators as closed-form analytical expressions, which
do not require iterative computation. The obtained quasi-static
map would also be useful as a nominal plant model to be used in
the design of controllers and observers, as has been the case with
relatively simpler circuits [5–12]. In addition, the map would be
used as a basis to construct a new dynamical model for simulation
purposes by including additional terms involving time derivatives.

This paper is organized as follows. Section 2 shows mathematical
preliminaries, including definitions of relevant functions and some
theorems. Section 3 constructs a nonsmooth representation of the
quasi-static characteristics of the hydraulic circuit of Fig. 1, which
describes the algebraic relation among the valve openings, the rod
velocity, and the external force. Section 4 presents an extension of
the approach to include a regeneration pipeline, and Sec. 5 presents
another extension to include multiple actuators driven by a single
pump. Section 6 provides some concluding remarks.

2 Mathematical Preliminary

In this paper, R denotes the set of all real numbers. This paper
extensively uses mathematical notations of the nonsmooth system
theory, which involves set-valued functions. We use the following
set-valued functions:

N A;B½ �
�
xÞ ¼D

0;1½ Þ if x ¼ B
0 if x 2 A;Bð Þ
�1; 0ð � if x ¼ A
1 otherwise

8>><>>: (1)

gsgn a; x; bð Þ¼D
b if x > 0

convfa; bg if x ¼ 0

a if x < 0

8<: (2)

The definition (1) assumes A<B. Here, convfa; bg stands for the
convex closure of the set fa, bg, being the closed set a; b½ � if a �
b and b; a½ � if b � a. The function NA xð Þ is referred to as the nor-
mal cone of the set A at the point x. The function gsgn can be
seen as a generalized version of the set-valued signum function.
With the normal cone N , the following relation holds true:

0 � x? y � 0 () x 2 �N 0;1½ Þ yð Þ
() y 2 �N 0;1½ Þ xð Þ (3)

Each of the above three expressions means that x and y are non-
positive scalars at least one of which is zero. This relation is

convenient to describe the flowrate–pressure relation at check
valves. In addition, with A<B, the following relation holds true:

y 2 N A;B½ � xð Þ () x 2 gsgn A; y;Bð Þ (4)

The following function represents the projection onto a closed
set:

proj A;B½ �ðxÞ¼
D

maxðA;minðB; xÞÞ (5)

where A<B. The normal cone and the projection have the follow-
ing relation:

a� x 2 NA xð Þ () x ¼ projA að Þ (6)

which has been shown in previous publications (e.g., Refs. [27,
Proposition 2], [28, Section A.3], and [29, Proposition 6.47]). This
paper uses the following theorem:

THEOREM 1. Let x 2 R and let A � R be a closed convex subset
of R. Let f : R! R be a strictly decreasing continuous function.
Let xf 2 R satisfy f xfð Þ ¼ 0. Then, the following statement holds
true:

f xð Þ 2 NA xð Þ () x ¼ projA xfð Þ (7)

Proof. Because f is strictly decreasing, x < xf () f xð Þ > 0;
x > xf () f xð Þ < 0, and x ¼ xf () f xð Þ ¼ 0 are satisfied. This
means that f xð Þ 2 NA xð Þ () xf � x 2 NA xð Þ and Eq. (6)
implies that it is equivalent to x ¼ projA xfð Þ. �

The following single-valued functions are used in the paper:

SðxÞ¼D sgnðxÞx2 (8)

RðxÞ¼D sgnðxÞ
ffiffiffiffiffi
jxj

p
(9)

The functionsR and S are strictly increasing continuous functions
satisfyingR S xð Þð Þ ¼ S R xð Þð Þ ¼ x.

3 Nonsmooth Quasi-Static Model

3.1 Problem Setting. This section considers the hydraulic
circuit illustrated in Fig. 1, which is a four-valve independent
metering circuit to drive a double-acting hydraulic actuator, being
motivated by the circuits used in commercial hydraulic

Fig. 1 Hydraulic actuator and its circuit

2A function is said to be set-valued, as opposed to single-valued, if its return
value can be a set of values, as opposed to a single value. A set-valued function is
also said to be nonsmooth if it is not differentiable at some points.
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excavators. The actuator has two chambers separated by the pis-
ton, and the motion of the piston is extracted as the motion of the
rod, which applies forces to external objects. We are interested in
the quasi-static relation among the rod velocity v, positive when
the rod is extending, the external force f, positive when it is com-
pressing the rod, and the opening ratios of the valves.

The hydraulic circuit in Fig. 1 is similar to those studied in,
e.g., Refs. [5–12] and [30], where the quasi-static relations are
also considered. They however focus on rather simplified cases
where relief valves and check valves are neglected. Our main con-
tribution lies in an elaborate analytical representation of the whole
circuit, which is rather complicated than those in previous studies,
using the nonsmooth formalism to deal with relief valves and
check valves.

Although the circuit of Fig. 1 looks complicated, its configuration
can be seen as almost minimal from a practical point of view. For
example, the relief valves and the suction check valves connected
to the chambers are essential to prevent excessively high pressure
in the chambers. The pump relief valve and the bleed valve are also
essential to secure the oil outlet from the pump when the main con-
trol valves are closed. The pump check valve is necessary to pre-
vent the backflow into the pump, which may happen when the
velocity opposes the exerted force of the actuator. Previous papers
exclude these components by imposing assumptions on the combi-
nation of the speed and the valve openings. In contrast, this paper
aims to derive a single, unified representation that holds with any
combinations of the velocity and valve openings.

This paper uses the terminology for linear hydraulic actuators
(i.e., hydraulic cylinders), but the presented approach is also appli-
cable to rotary hydraulic actuators by replacing the velocity and
the external force by the angular velocity and the torque,
respectively.

3.2 Quasi-Static Relations. In Fig. 1, Q� and P� denote the
flowrates and the pressure at each point. The pump provides
the flowrate Q to the circuit via a pump check valve and two of
the four main control valves. These control valves are connected
to the head-side and the rod-side chambers of the actuator. The
chambers are also connected to the tank with the zero pressure via
the other two control valves. Each chamber of the actuator also
connects to the tank through a parallel combination of a relief
valve and a check valve, which are named as indicated in the fig-
ure. There is another control valve, referred to as a bleed valve,
and it leads to the tank in parallel to a relief valve, referred to as a
pump relief valve.

The degrees of the opening of the valves are represented by
dimensionless variables u� 2 0; 1½ � (� 2 fph; tr; pr; th; bg), which
are the ratios of the valve opening areas to their maximum values.
The control valves are manipulated by a controller that accepts
external commands, which are given through, e.g., operation levers
of an excavator. When the external command is to stop the actua-
tor, all the four main valves are closed. When the external com-
mand is to move the actuator in the positive direction (i.e., extend
the rod), both or either of uph and utr are set positive and uth and upr

are set zero. When the operator’s command is to move the actuator
in the negative direction (i.e., retract the rod), uph and utr are set
zero and both or either of uth and upr are set positive. Based on this
idea, we assume that the vector u¼D uph; utr;½ upr; uth; ub�T always
belongs to either of the following three subsets:

U0¼D u 2 R5 j u1 ¼ u2 ¼ u3 ¼ u4 ¼ 0 � u5 > 0
� �

(10a)

Uþ ¼D u 2 R5 j u2
1 þ u2

2 > 0 � u3 ¼ u4 ¼ 0 � u5 � 0

n o
(10b)

U� ¼D u 2 R5 j u1 ¼ u2 ¼ 0 � u2
3 þ u2

4 > 0 � u5 � 0

n o
(10c)

where ui (i 2 f1;…; 5g) stands for the ith element of the vector u.

Now, let us make an exhaustive list of algebraic relations
among the pressures, the flowrates, the external force, and the
actuator velocity at the steady-state. First, according to the princi-
ple of mass conservation, which is analogous to Kirchhoff’s law
in electric circuits, one can see that the following relations hold
true at junctions in the circuit:

Qhn ¼ Qph � Qth (11a)

Qrn ¼ Qpr � Qtr (11b)

Qh ¼ Qhn � Qho (11c)

Qr ¼ Qrn � Qro (11d)

Qt ¼ Qth þ Qtr (11e)

Qp ¼ Qph þ Qpr (11f )

Qb ¼ Q� Qp (11g)

Second, let us focus on the control valves. As indicated in
Fig. 1, Ph and Pr are the internal pressures of the head- and rod-
side chambers, respectively, Pc is the pressure at the check valve
connected to the pump, and P is the pressure at the outlet of the
pump. According to the conventional orifice model [14,31], we
can assume that the following flowrate–pressure relations are
satisfied:

Qph ¼ cphuphR Pc � Phð Þ (11h)

Qth ¼ cthuthR Phð Þ (11i)

Qpr ¼ cpruprR Pc � Prð Þ (11j)

Qtr ¼ ctrutrR Prð Þ (11k)

Qb 2 cbubR Pð Þ þ N �1;PMð � Pð Þ (11l)

Figure 2(a) illustrates the relation (11h). The coefficients c� are
defined as c� ¼ C�a�

ffiffiffiffiffiffiffiffi
2=q

p
(� 2 fph; tr; pr; th; bg), where C� is

the dimensionless coefficient named a discharge coefficient [32],
which is typically around 0.6 or 0.7 [33,34], a� is the maximum
opening area (m2) of the valve, and q is the mass density (kg/m3)
of the oil. Equation (11l) represents the combined effect of the
relief valve and the bleed valve, which limits the pump pressure
up to PM as illustrated in Fig. 2(b).

Third, let us consider the check valves and the relief valves.
The check valve connected to the pump imposes the following
constraint:

Qp 2 �N 0;1½ Þ Pc � Pð Þ (11m)

which means that the flowrate Qp is zero when Pc � P > 0, as
illustrated in Fig. 2(c). It can be seen as analogous to the ideal
diode [19] in electric circuits. The effects of the relief valves and
the suction check valves connected to the chambers are written as
follows:

Qho 2 N 0;PhM½ � Phð Þ (11n)

Qro 2 N 0;PrM½ � Prð Þ (11o)

Here, PhM and PrM are the pressure limits of the relief valves con-
nected to the head- and rod-side chambers, respectively. These
expressions mean that Ph and Pr are always in the ranges of
0;PhM½ � and 0;PrM½ �, respectively, as illustrated in Fig. 2(d).

When the pressure reaches the upper limit, the oil flows into the

Journal of Dynamic Systems, Measurement, and Control DECEMBER 2021, Vol. 143 / 121002-3



tank. When the pressure reaches zero, the oil is drawn into the
chamber from the tank.

Finally, we discuss the actuator. Let Ah and Ar be the cross-
sectional areas of the head- and rod-side chambers, respectively.
Then, at the steady-state where the rod inertia can be neglected,
the constraints imposed by the actuator can be written as follows:

v ¼ Qh=Ah (11p)

v ¼ �Qr=Ar (11q)

f ¼ AhPh � ArPr (11r)

If one deals with rotary actuators, both Ar and Ah (measured in
m2) should be replaced by the volume displacement per one
radian of rotation, which is measured in m3/rad.

In conclusion, now we have 18 algebraic constraints in Eq. (11)
and 19 variables, which are 13 flowrate values (Qho, Qro, Qhn, Qrn,
Qh, Qr, Qph, Qpr, Qth, Qtr, Qt, Qp, and Qb), four pressure values (P,
Ph, Pr, and Pc), the external force (f) to the rod, and the velocity
(v) of the rod.

For the convenience of derivation, we now normalize some
quantities in the following manner:

q� ¼D Q�=Ahð� 2 fho; hn; h; ph; thgÞ (12)

bu� ¼D c�u�=A
3=2
h � 2 fph; thgð Þ (13)

q� ¼D Q�=Ar � 2 fro; rn; r; pr; trgð Þ (14)

bu� ¼D c�u�=A3=2
r � 2 fpr; trgð Þ (15)

F� ¼D P�A�; F�M ¼D P�MA� ð� 2 fh; rgÞ (16)

Ub¼D cbub (17)

The regularized input vector is defined as bu ¼ buph; butr ; bupr;
�

buth;Ub�T . By using these definitions, Eq. (11) can be rewritten as
follows:

qhn ¼ qph � qth (18a)

qrn ¼ qpr � qtr (18b)

qh ¼ qhn � qho (18c)

qr ¼ qrn � qro (18d)

Qt ¼ Ahqth þ Arqtr (18e)

Qp ¼ Ahqph þ Arqpr (18f )

Qb ¼ Q� Qp (18g)

qph ¼ buphR AhPc � Fhð Þ (18h)

qth ¼ buthR Fhð Þ (18i)

qpr ¼ buprR ArPc � Frð Þ (18j)

qtr ¼ butrR Frð Þ (18k)

Qb 2 UbR Pð Þ þ N �1;PMð � Pð Þ (18l)

Qp 2 N �1;Pcð � Pð Þ (18m)

qho 2 N 0;FhM½ � Fhð Þ (18n)

qro 2 N 0;FrM½ � Frð Þ (18o)

v ¼ qh (18p)

v ¼ �qr (18q)

f ¼ Fh � Fr (18r)

Note that the equivalence between Eqs. (11m) and (18m) can be
derived from the definition of the normal cone.

3.3 Some Derivations to Obtain Fh and Fr. Now, let us
attempt to reduce the number of variables. Substituting
Eqs. (18m) and (18g) into Eq. (18l) yields

Q 2 N �1;Pcð � Pð Þ þ UbR Pð Þ þ N �1;PMð � Pð Þ
¼ UbR Pð Þ þ N �1;min Pc;PMð Þð � Pð Þ (19)

which is equivalent to

P ¼ min Pc;PM;S Q=Ubð Þð Þ (20)

because of Theorem 1. Since qh ¼ �qr ¼ v, we can eliminate the
two variables qh and qr. Moreover, qho, qro, qhn, qrn, qph, qth, qpr,
qtr, and Qt can also be eliminated. This gives the following five
equations for the five variables fP;Pc;Fh;Fr; fg:

�vþ buphR AhPc � Fhð Þ � buthR Fhð Þ 2 N 0;FhM½ � Fhð Þ (21a)

vþ buprR ArPc � Frð Þ � butrR Frð Þ 2 N 0;FrM½ � Frð Þ (21b)

AhbuphR AhPc � Fhð Þ þ ArbuprR ArPc � Frð Þ 2 N �1;Pcð � Pð Þ
(21c)

Q 2 UbR Pð Þ þ AhbuphR AhPc � Fhð Þ
þ ArbuprR ArPc � Frð Þ þ N �1;PMð � Pð Þ

(21d)

and

f ¼ Fh � Fr (22)

Now we derive the relation between v and fFh;Frg from Eq. (21).
If bu 2 U0, Eq. (21) reduces to the following:

�v 2 N 0;FhM½ � Fhð Þ (23a)

v 2 N 0;FrM½ � Frð Þ (23b)

0 2 N �1;Pcð � Pð Þ (23c)

Q 2 UbR Pð Þ þ N �1;PMð � Pð Þ (23d)

Fig. 2 Flowrate–pressure relations at (a) one of main control
valves (11h), (b) the bleed and the pump relief valves (11l), (c)
the pump check valve (11m), and (d) the head-side relief and
the suction check valves (11n)
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from which

Fh 2 gsgn FhM; v; 0ð Þ; Fr 2 gsgn 0; v;FrMð Þ (24)

can be derived by using Eq. (4). This means that f can take any
values between FhM and �FrM when v¼ 0, which is consistent
with the fact that, when all the main control valves are closed, the
cylinder holds its position by producing the reaction force against
the external force as long as the relief valves are closed.

When bu 2 Uþ, Eq. (21) reduces to the following:

�vþ buphR AhPc � Fhð Þ 2 N 0;FhM½ � Fhð Þ (25a)

v� butrR Frð Þ 2 N 0;FrM½ � Frð Þ (25b)

AhbuphR AhPc � Fhð Þ 2 N �1;Pcð � Pð Þ (25c)

Q 2 UbR Pð Þ þ AhbuphR AhPc � Fhð Þ þ N �1;PMð � Pð Þ (25d)

By careful derivation detailed in the Appendix, one can eliminate
P and Pc from Eq. (25) to obtain the following:

Fh 2 gsgn FhM; v; proj 0;FhM½ � min AhPM;ðð
�

� A3
h

U2
b

S v� Q

Ah

� ��
� S vð Þbu2

ph

��
(26a)

Fr ¼ proj 0;FrM½ � S vð Þ=bu2
tr

	 

(26b)

When bu 2 U�, in the same manner, we have the following:

Fh ¼ proj 0;FhM½ � �S vð Þ=bu2
th

	 

(27a)

Fr2gsgn proj 0;FrM½ � min ArPM;
A3

r

U2
b

S vþQ

Ar

� � !
þS vð Þbu2

pr

0@ 1A;v;FrM

0@ 1A
(27b)

3.4 Main Result: Nonsmooth Quasi-Static Map From v
to f. Now we are in position to derive the relation between
the force f and the velocity v. Combining Eq. (24) forbu 2 U0, Eq. (26) for bu 2 Uþ, and Eq. (27) for bu 2 U� results
in the following:

Fh 2 ChðvÞ¼D gsgn Ch� vð Þ; v;Chþ vð Þð Þ (28a)

Fr 2 CrðvÞ¼D gsgn Cr� vð Þ; v;Crþ vð Þð Þ (28b)

where

Chþ vð Þ¼D proj 0;FhM½ � min AhPM;�
A3

h

U2
b

S v� Q

Ah

� � !
� S vð Þbu2

ph

0@ 1A
(28c)

Ch� vð Þ¼D proj 0;FhM½ � �
S vð Þbu2

th

!
(28d)

Crþ vð Þ¼D proj 0;FrM½ �
S vð Þbu2

tr

 !
(28e)

Cr� vð Þ¼D proj 0;FrM½ � min ArPM;
A3

r

U2
b

S vþ Q

Ar

� � !
þ S vð Þbu2

pr

0@ 1A
(28f )

By using Eqs. (22) and (28), the relation between v and f is
obtained as follows:

f 2 CðvÞ¼D ChðvÞ � CrðvÞ (29)

For the convenience of further derivations, we can also write the
set-valued map C vð Þ in the following form:

C vð Þ ¼ gsgn C� vð Þ; v;Cþ vð Þð Þ (30a)

where

Cþ vð Þ¼D Chþ vð Þ � Crþ vð Þ
¼ max min max Cþ0a vð Þ;Cþ0b vð Þð Þ;ðð

max Cþ1a vð Þ;Cþ1b vð Þð Þ;
max Cþ2a vð Þ;Cþ2b vð Þð Þ

�
; Cþ3 vð Þ;�FrM

� (30b)

C� vð Þ¼D Ch� vð Þ � Cr� vð Þ
¼ min max min C�0a vð Þ;C�0b vð Þð Þ;ðð

(30c)

C�ðvÞ¼D Ch� vð Þ � Cr� vð Þ
¼ min max min C�0a vð Þ;C�0b vð Þð Þ;ðð

min C�1a vð Þ;C�1b vð Þð Þ;
min C�2a vð Þ;C�2b vð Þð ÞÞ;C�3 vð Þ;FhMÞ

(30c)

Cþ0a vð Þ¼D FhM �
S vð Þbu2

tr

(30d)

Cþ0b vð Þ¼D FhM � FrM (30e)

Cþ1a vð Þ¼D � A3
h

U2
b

S v� Q

Ah

� �
� S vð Þbu2

ph

� S vð Þbu2
tr

(30f )

Cþ1b vð Þ¼D � A3
h

U2
b

S v� Q

Ah

� �
� S vð Þbu2

ph

� FrM (30g)

Cþ2a vð Þ¼D AhPM �
S vð Þbu2

ph

� S vð Þbu2
tr

(30h)

Cþ2b vð Þ¼D AhPM �
S vð Þbu2

ph

� FrM (30i)

Cþ3 vð Þ¼D �S vð Þbu2
tr

(30j)

C�0a vð Þ¼D �FrM �
S vð Þbu2

th

(30k)

C�0bðvÞ¼D �FrM þ FhM (30l)

C�1a vð Þ¼D � A3
r

U2
b

S vþ Q

Ar

� �
� S vð Þbu2

pr

� S vð Þbu2
th

(30m)

C�1b vð Þ¼D � A3
r

U2
b

S vþ Q

Ar

� �
� S vð Þbu2

pr

þ FhM (30n)

C�2a vð Þ¼D �ArPM �
S vð Þbu2

pr

� S vð Þbu2
th

(30o)
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C�2b vð Þ¼D �ArPM �
S vð Þbu2

pr

þ FhM (30p)

C�3 vð Þ¼D �S vð Þbu2
th

(30q)

Here, the divisions by bu2
� or U2

b do not cause troubles even when
they are zeros because Eq. (30b) implicitly includes upper and
lower bounds. One workaround in the use in computer programs

may be to replace the divisions by bu2
� by those by max e; bu2

�

	 

where e is a small positive number close to the machine epsilon.

It should be noted that, at v¼ 0, the function C vð Þ is set-valued
and its value is the closed set Cþ 0ð Þ;C� 0ð Þ

� �
. The boundaries

Cþ 0ð Þ and C� 0ð Þ are obtained from a straightforward derivation
as

Cþ 0ð Þ ¼ Chþ 0ð Þ � Crþ 0ð Þ
C� 0ð Þ ¼ Ch� 0ð Þ � Cr� 0ð Þ (31a)

where

Chþð0Þ ¼ min FhM;AhPM;AhQ2=U2
b

� �
if buph > 0

0 if buph ¼ 0



(31b)

Crþð0Þ ¼
0 if butr > 0

FrM if butr ¼ 0



(31c)

Ch�ð0Þ ¼
0 if buth > 0

FhM if buth ¼ 0



(31d)

Cr�ð0Þ ¼ min FrM;ArPM;ArQ
2=U2

b

� �
if bupr > 0

0 if bupr ¼ 0



(31e)

As can be seen from the expression (30), the function C vð Þ is com-
posed of many segments. Interestingly, each segment has a clear
physical interpretation. For example, in the segments listed in
Eqs. (30d)–(30j), the last term, either �FrM or �S vð Þ=bu2

tr , repre-
sents the state of the rod-side relief valve, either closed or open,
respectively. In this way of consideration, we can summarize the
valve states at each curve segment as in Table 1. Such direct cor-
respondence between the mathematical representation and the
valve states would help analytically understanding the physical
characteristics of the actuator.

3.5 Numerical Examples. Some numerical examples are
now presented. We consider an asymmetric hydraulic cylinder
with the following parameter values:

C� ¼ 0:6; a� ¼ 0:0001 m2; q ¼ 850 kg=m3

Ah ¼ 0:024 m2;Ar ¼ 0:012 m2

PhM ¼ 42 MPa; PrM ¼ 40 MPa; PM ¼ 36 MPa

Q ¼ 500 L=min ¼ 0:00833 m3=s

(32)

A common control command uc 2 �1; 1½ � is used to set the open-
ings of the main control valves as follows:

uph ¼ utr ¼ max uc; 0ð Þ
upr ¼ uth ¼ max �uc; 0ð Þ (33)

The opening of the bleed valve was fixed at ub ¼ 0:2 unless other-
wise noted.

Results with different values of uc and ub are shown in Fig. 3.
Figure 3(a) shows the function C and its segments with a positive
uc, while Fig. 3(b) shows those with a negative uc. They show that
C vð Þ is always a decreasing function of v and it is set-valued at
v¼ 0. Figure 3(c) shows how the function C vð Þ varies according

to the change in uc. It shows that, at a constant external force, the
velocity v increases as uc increases, which is consistent with the
behavior of real hydraulic actuators. Figure 3(d) shows that the
velocity v decreases as the bleed valve opening ub increases. It
can be explained by the fact that the oil flow into the actuator
decreases as the bleed valve opens. In addition, Fig. 4 is a three-
dimensional plot of f 2 C vð Þ with different uc values, which is
another representation of the data in Fig. 3(c). The set-valuedness
of C is visible as a vertical line or vertical walls in Fig. 4.

It should be emphasized that dynamical models considering the
pressure dynamics of small oil volumes in the circuits would
demand iterative computation to obtain the steady-state character-
istics such as those illustrated in Figs. 3 and 4, while they are
obtained analytically from the presented quasi-static model. Con-
versely, the presented quasi-static representation may be extended
into a dynamical model, e.g., by including the first-order pressure
dynamics with appropriate time constants, considering that
dynamics models of various systems are often obtained as exten-
sions of static or steady-state models.

4 Extension 1: Regeneration Circuit

In some practical applications, the circuit of Fig. 1 includes an
additional pathway from the rod-side chamber to the head-side
chamber to make the extending movement faster. This section
considers the circuit of Fig. 5, which is an extension of the circuit
of Fig. 1. We assume that the regeneration pipeline has a valve
that flows only from the head side to the rod side and assume that
the cross-sectional areas of the cylinder satisfy

Ah � Ar (34)

There must be some cylinders that do not satisfy Eq. (34), but this
paper focuses on this case for brevity. Let aa is the maximum
opening area (m2) of the regeneration valve, and let ua 2 0; 1½ � be
the dimensionless input value, which is the ratio of the valve
opening area to its maximum value aa. Then, the flowrate of the
oil through the regeneration pipeline is written as follows:

Qa ¼ cauamax R Fr=Ar � Fh=Ah; 0ð Þð Þ (35)

where ca¼D Caaa

ffiffiffiffiffiffiffiffi
2=q

p
and Ca is the discharge coefficient of the

regeneration valve, typically around 0.6 or 0.7.

Table 1 States of valves at each segment of C(v )

C v U hR hSC pR rSC rR

�FrM þ Uþ [ U0 [ U� x o — x o
Cþ3 þ Uþ x o — x x
Cþ2b þ Uþ x x o x o
Cþ2a þ Uþ x x o x x
Cþ1b þ Uþ x x x x o
Cþ1a þ Uþ x x x x x
Cþ0b þ Uþ o x — x o
Cþ0a þ Uþ o x — x x
½Cþð0Þ;FhM� 0 Uþ x x — x x
½�FrM;FhM� 0 U0 x x — x x
½�FrM;C�ð0Þ� 0 U� x x — x x
C�0a � U� x x — x o
C�0b � U� o x — x o
C�1a � U� x x x x x
C�1b � U� o x x x x
C�2a � U� x x o x x
C�2b � U� o x o x x
C�3 � U� x x — o x
FhM � Uþ [ U0 [ U� o x — o x

hR¼ head-side relief valve; hSC¼ head-side suction check valve; pR
¼ pump relief valve; rSC¼ rod-side suction check valve; rR¼ rod-side
relief valve; o¼ open; x¼ closed; and -¼ either open or closed.
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With this regeneration pipeline and its flowrate Qa, Eq. (21) is
extended into the following:

�vþ buphR AhPc � Fhð Þ � buthR Fhð Þ 2 N 0;FhM½ � Fhð Þ � Qa=Ah

(36a)

vþ buprR ArPc � Frð Þ � butrR Frð Þ 2 N 0;FrM½ � Frð Þ þ Qa=Ar (36b)

AhbuphR AhPc � Fhð Þ þ ArbuprR ArPc � Frð Þ 2 N �1;Pcð � Pð Þ
(36c)

Q 2 UbR Pð Þ þ AhbuphR AhPc � Fhð Þ
þArbuprR ArPc � Frð Þ þ N �1;PMð � Pð Þ

(36d)

f ¼ Fh � Fr (36e)

With Qa¼ 0, which results from ua¼ 0, Eq. (36) reduces to
Eq. (21). Let us assume that ua is set positive only when bu 2 Uþ
because it is the case in many practical hydraulic circuits. In addi-
tion, we assume that utr> 0 for the simplicity. Under these condi-
tions, Eqs. (35) and (36) reduce to the following:

bAva � vþ buphR AhPc � Fhð Þ 2 N 0;FhM½ � Fhð Þ (37a)

v� va � butrR Frð Þ 2 N 0;FrM½ � Frð Þ (37b)

AhbuphR AhPc � Fhð Þ 2 N �1;Pcð � Pð Þ (37c)

Q 2 UbR Pð Þ þ AhbuphR AhPc � Fhð Þ þ N �1;PMð � Pð Þ (37d)

f ¼ Fh � Fr (37e)

va ¼ buamax R Fr � bAFh; 0
� �� �

(37f )

where va¼D Qa=Ar; bua¼D caua=A3=2
r , and bA ¼ Ar=Ah.

Fig. 3 Numerical examples of the quasi-static map f ‰C(v ). (a) uc 5 0:5; ub 5 0:2; (b) uc 5 20:5; ub 5 0:2; (c)
uc ‰ ½21;1�; ub 5 0:2; and (d) uc 5 0:7; ub ‰ ½0; 1�. The force f is positive when the external force is compressive
and the actuator force acts to extend the rod.

Fig. 4 Numerical examples of the quasi-static map f ‰C(v ) with
varying uc and the fixed ub 5 0:2. The force f is positive when
the external force is compressive and the actuator force acts to
extend the rod.
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By carefully observing Eq. (37), one can see that va > 0 implies
Fr > 0 from Eq. (37f), which implies va � v from Eq. (37b). Its
contraposition is that va > v implies va¼ 0. Therefore, Eq. (37)
imposes the condition 0 � va � max 0; vð Þ. When v< 0, the solu-
tions are obviously va¼ 0 and f 2 C vð Þ. Therefore, hereafter we
consider only the case v> 0, in which va > 0 may take place. By
using the functions defined in Eqs. (28a) and (28b), the first four

equations of Eq. (37) can be rewritten as Fh 2 Ch v� bAva

� �
and

Fr 2 Cr v� vað Þ with Pc and P being eliminated. Considering the

definitions of Ch and Cr , because of the conditions v� va � 0,

v> 0, utr> 0, and bA 2 0; 1ð Þ, Ch and Cr are always single-valued
and thus can be replaced by Chþ and Crþ, respectively. Therefore,
Eq. (37) can be rewritten as follows:

Nv v; vað Þ 2 �N 0;1½ Þ vað Þ (38a)

f ¼ Chþ v� bAva

� �
� Crþ v� vað Þ (38b)

where

Nv v; vað Þ¢S vað Þ � bu2
a Crþ v� vað Þ � bAChþ v� bAva

� �	 

(39)

This expression can be seen as an algebraic problem regarding
ff ; vag with a given v.

The function Nv v; vað Þ is an increasing function of va and it sat-

isfies Nv v; vð Þ > 0 because of Crþ 0ð Þ ¼ 0. With the algebraic con-

straint (38a), Nv v; 0ð Þ � 0 implies that the solution is va¼ 0,
Meanwhile, if Nv v; 0ð Þ < 0, the solution can be found within the
region va 2 0; v½ � by simple root-finding schemes. Once the solu-
tion va is obtained, f is obtained by Eq. (38b).

In conclusions, f and va satisfying Eq. (38) are obtained by the
following functions:

f 2 Creg

	
vÞ¼D

C vð Þif ua ¼ 0 � bu 62 Uþ � v � 0 � Nv v; 0ð Þ � 0

Chþ v� bAbva vð Þ
	 


� Crþ v� bva vð Þ
� �

otherwise

(
(40)

va ¼ bva

	
vÞ¼D 0ifua ¼ 0 � bu 62 Uþ � v � 0 � Nv v; 0ð Þ � 0

FindRoot Nv v; •ð Þ; 0; v½ �
� �

otherwise

8<:
(41)

Here, “FindRoot” is a function that finds a root of the argument
function within the range specified by the second argument. This
computation can be performed with a common iterative method,
such as the bisection method or the false position method, because
Nv v; vað Þ is continuous and monotonic. It may also be possible to
find analytical methods because Nv v; vað Þ is only a piecewise para-
bolic function. The function Creg can be seen as an extension of
the quasi-static map C given in Sec. 3.4.

Some numerical examples of Creg and bva are presented in
Fig. 6. It can be seen that, as ua increases (i.e., as the regeneration
valve opens), the extending velocity of the rod tends to increase
especially in the region f< 0, i.e., under stretching external forces.
It can also be seen that the flowrate Qa through the regeneration
valve increases as ua and v increase. These features are consistent
with those of actual hydraulic actuators.

5 Extension 2: Multiple Actuators Driven by One

Pump

In some excavators, more than one actuator is actuated by a sin-
gle pump as illustrated in Fig. 7. In such a circuit, the behaviors of
the actuators influence each other, e.g., the movement of one actu-
ator may decrease the supplied flowrate to other actuators. This

section presents an extension of the quasi-static model to deal
with such systems.

In circuits like Fig. 7, the actuators are connected to a junction
at which the pressure is P, and the total supplied flowrate Q from
the pump is equal to the sum of the supplied flowrates to all actua-
tors plus that discharged through the bleed valve and the pump
relief valve. On the other hand, the actuator model developed in
Sec. 3.4 assumes that the supplied flowrate Q from the pump is
the input to be given. Therefore, one can see that it is convenient

Fig. 5 Regeneration pipeline added to the circuit of Fig. 1

Fig. 6 Numerical examples of the quasi-static map f ‰Creg(v )
and va 5 bv a(v ) of the circuit of Fig. 5, which includes a regener-
ation pipeline. The parameters are set the same as in Sec. 3.5
except Ca 5 0:6 and aa 5 0:0001 m2. The valve openings are set
as uc 5 0:5 (see Eq. (33)) and ub 5 0:2.
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to have a modified version of the quasi-static map C of which the
input is the pressure P instead of the flowrate Q.

With a close look at the definition (30) of the function C in
Sec. 3.4, one can see that a P-input version of the quasi-static map
C can be obtained by replacing Pm by P and removing the seg-

ments depending on Q. Specifically, the modified version bC P; vð Þ,
which maps the velocity v to the force f of an actuator depending
on P, can be given as follows:

f 2 bCðP; vÞ¼D gsgn bC�ðP; vÞ; v; bCþðP; vÞ	 

(42a)

where

bCþ P; vð Þ¼D max min max Cþ0a vð Þ;Cþ0b vð Þð Þ;ðð

maxðbCþ2a P; vð Þ; bCþ2b P; vð ÞÞÞ; Cþ3 vð Þ;�FhMÞ
(42b)

bC� P; vð Þ¼D min max min C�0a vð Þ;C�0b vð Þð Þ;ðð

minðbC�2a P; vð Þ; bC�2b P; vð ÞÞÞ; C�3 vð Þ;FhMÞ
(42c)

bCþ2a P; vð Þ¼D AhP� S vð Þbu2
ph

� S vð Þbu2
tr

(42d)

bCþ2b P; vð Þ¼D AhP� S vð Þbu2
ph

� FrM (42e)

bC�2a P; vð Þ¼D �ArP�
S vð Þbu2

pr

� S vð Þbu2
th

(42f )

bC�2b P; vð Þ¼D �ArP�
S vð Þbu2

pr

þ FhM (42g)

Here, the functions without hats are those defined in Eq. (30). In
the same manner as Eq. (31), we also have the following:

bCþ P; 0ð Þ ¼ bChþ P; 0ð Þ � bCrþ P; 0ð ÞbC� P; 0ð Þ ¼ bCh� P; 0ð Þ � bCr� P; 0ð Þ
(43a)

where

bChþ P; 0ð Þ ¼ min FhM;AhPð Þ if buph > 0

0 if buph ¼ 0



(43b)

bCrþ P; 0ð Þ ¼ 0 if butr > 0

FrM if butr ¼ 0



(43c)

bCh� P; 0ð Þ ¼ 0 if buth > 0

FhM if buth ¼ 0



(43d)

bCr� P; 0ð Þ ¼ min FrM;ArPMð Þ if bupr > 0

0 if bupr ¼ 0



(43e)

The flowrate Qp into an actuator is determined by the pressure P
at the junction and the pressure Ph or Pr of the chamber connected
to the pump, specifically, as follows:

Qp ¼ Ahbuphmax R AhP� Fhð Þ; 0ð Þ
þArbuprmax R ArP� Frð Þ; 0ð Þ

(44)

If bu 2 Uþ, we have Fh ¼ f þ Fr and Fr ¼ proj 0;FrM½ � S vð Þ=bu2
tr

	 

.

If bu 2 U�, we have Fh ¼ proj 0;FhM½ � S vð Þ=bu2
th

	 

and Fr ¼ Fh � f .

Therefore, Qp is obtained as follows:

Qp ¼ bQp P; v; bC P; vð Þ
	 


(45)

where

bQp P; v; fð Þ ¼D

Ahbuphmax R AhP� proj 0;FrM½ � S vð Þ=bu2
tr

	 

� f

	 

; 0

	 

if bu 2 Uþ

0 if bu 2 U0

Arbuprmax R ArP� proj 0;FhM½ � �S vð Þ=bu2
th

	 

þ f

	 

; 0

	 

if bu 2 U�

8>>>>>>>>><>>>>>>>>>:
(46)

The function bC appearing in Eq. (45) may be set-valued at v¼ 0,
but a careful observation of its limits of both sides of zero shows

that bQpðP; 0; bC P; 0ð ÞÞ ¼ 0, single-valued, under all three condi-

tions, Uþ; U0, and U�.
By using the function bQp, the algebraic constraint between the

total flowrate Q from the pump and the pressure P can be
described as follows:

NP Pð Þ 2 N �1;PMð � Pð Þ (47a)

where

NPðPÞ¼D Q� UbRðPÞ �
XN

j¼1

bQp;j P; vj; bC j P; vjð Þ
	 


(47b)

Here, the symbols with the subscript j stand for those associated
with the jth actuator, and N denotes the number of actuators. The
value of NP Pð Þ can be interpreted as the flowrate from the pump
relief valve (see Fig. 7), which is the difference between the oilFig. 7 Multiple actuators driven by one pump
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supply from the pump and the sum of the oil supplies to all actua-
tors plus that to the bleed valve. As long as P < PM, Eq. (47a)
reduces to NP Pð Þ ¼ 0, which means that the pump relief valve is
closed. When P¼PM, Eq. (47a) reduces to NP Pð Þ � 0, which
means that the oil is discharged from the pump relief valve, of
which the pressure limit is PM. The pressure P can be found by
solving the algebraic problem (47) as follows:

P ¼ PM if NP PMð Þ � 0

FindRoot NP •ð Þ; 0;PM½ �
� �

otherwise



(48)

This FindRoot is also easy because of the monotonicity of the
function NP.

By using the value of P obtained by Eq. (48), the quasi-static

relation between the forces f ¼ f1;…; fN½ �T and the velocities v ¼
v1;…; vN½ �T of N actuators is written in the following form:

f 2 Cmul vð Þ¼D bC1 P; v1ð Þ;…; bCN P; vNð Þ
h iT

(49)

where P is the one obtained by Eq. (48).
Some numerical examples are shown in Fig. 8. In these exam-

ples, two identical actuators 1 and 2 share a single pump. The
parameters of the actuators are the same as those in Sec. 3.5. The

force f1 obtained by the map f1; f2½ �T 2 Cmul v1; v2½ �T
	 


according

to the variable v1 and some fixed values of v2 are shown in

Figs. 8(a) and 8(d). Intermediate values P and NP Pð Þ, which are
the immediate output of the root finding in Eq. (48), are presented
in Figs. 8(b), 8(c), 8(e), and 8(f). It can be seen that an increased
speed v2 of the actuator 2 results in a decreased speed v1 of the
actuator 1, a decreased pressure P at the junction, and a decreased

flowrate NP Pð Þ from the pump relief valve, which are consistent
with what can happen in real hydraulic circuits. Note that this
example uses two identical actuators only for simplicity. This
approach can also be applied to circuits comprising different
actuators or more than two actuators.

6 Conclusions

This paper has presented a nonsmooth representation of the
quasi-static characteristics of a hydraulic actuator driven by a
four-valve independent metering circuit, being motivated by those
used in commercial excavators. It is described as a nonsmooth
map between the velocity and the force. The representation is
derived from the algebraic constraint between the flowrate and the
pressure at every valve in the circuit in the steady-state. In addi-
tion, the presented approach is extended to include a regeneration
pipeline and to deal with a collection of actuators driven by a sin-
gle pump. This paper has shown that these complicated circuit
structures are analytically tractable through an extension of the
conventional hydraulic–electric analogy.

The presented approach has been illustrated through the visual-
ization of the actuator’s steady-state force–velocity relation with
some sets of graphs. To obtain these graphs, one would need itera-
tive computation if a dynamical model is used, but they are
obtained as a closed-form analytical representation with the quasi-
static model. The obtained force–velocity maps can be seen as
potentially useful to grasp “nominal” characteristics of the actua-
tors. Usually, grasping the steady-state characteristics can be a
basis to grasp the whole characteristics including the dynamics.
Future studies should address the extension of the model to
include the pressure dynamics and the transient response, which
may be realized by including some additional terms regarding the
pressure derivative in the presented representation.

Because the presented model only deals with the steady-states,
which is only an aspect of the whole physical characteristics of
the actuator, its quantitative or empirical validation would not be
very straightforward. Direct experimental validation of the model
would require that the measurement of the force be performed
while maintaining a constant velocity of the actuator for a certain
period of time, but it might not always be possible. The validation
would need to be performed on applications or extensions of the
model, rather than on the model alone. For example, some
quantitative validation would need to be performed on dynamical
models that could be obtained as extensions of the presented

Fig. 8 Numerical examples regarding the quasi-static map ½f1; f2�T ‰Cmul(½v1; v2�T ) of a circuit including two identical
actuators driven by a single pump. Positive commands uc;1 5 uc;2 5 0:5 (see Eq. (33)) and some different values of
v2 between 0 m/s and 0.3 m/s are given in (a)–(c). Negative commands uc;1 5 uc;2 5 20:5 and some different values
of v2 between 0 m/s and 20.3 m/s are given in (d)–(f).
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quasi-static model. It would also be the case with controllers built
upon the proposed model, of which the control performance in
terms of accuracy and robustness would need to be evaluated.

For the convenience of the computation, analytical methods
should be sought for the root-finding routines that have appeared
in the proposed algorithms in Secs. 4 and 5. Integration of the
schemes of Secs. 4 and 5, i.e., multiple actuators with regeneration
pipelines driven by a single pump, is also an open problem.
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Appendix: Derivation From Eq. (25) to Eq. (26)

This appendix section presents the details of the derivation
from Eq. (25) to Eq. (26) under the condition bu 2 Uþ. First, one
can rewrite Eqs. (25a)–(25c) as follows:

Fh ¼ proj 0;FhM½ � AhPc � S vð Þ=bu2
ph

	 

(A1a)

Fr ¼ proj 0;FrM½ � S vð Þ=bu2
tr

	 

(A1b)

Pc ¼ max P;Fh=Ahð Þ (A1c)

respectively, because of Theorem 1. Now Fr is obtained as
Eq. (A1b), which is Eq. (26b), and thus we hereafter attempt to
obtain Fh from Eqs. (A1a), (A1c), and (25d). Substituting Eq.
(A1c) into Eqs. (A1a) and (25d) results in the following:

Fh ¼ proj 0;FhM½ � max AhP;Fhð Þ � S vð Þ=bu2
ph

	 

(A2a)

Q 2 UbR Pð Þ þ AhbuphR max AhP� Fh; 0ð Þð Þ þ N �1;PMð � Pð Þ
(A2b)

If v< 0, Eq. (A2a) implies that Fh ¼ FhM. If v¼ 0, Eq. (A2a)
implies that min AhP;FhMð Þ � Fh � FhM. If v¼ 0 and Fh < FhM,
Eq. (A2a) implies Fh � AhP and substituting it into Eq. (A2b)

yields P ¼ min PM;Q
2=U2

b

� �
. Therefore, if v¼ 0, the condition

(A2) implies the following:

Fh 2 min FhM;AhPM;AhQ2=U2
b

� �
;FhM

� �
(A3)

The case of v> 0 with Eq. (A2) needs some considerations. If
v> 0, Eq. (A2a) implies AhP>Fh and thus Eq. (A2) can be rewrit-
ten as follows:

Fh ¼ proj 0;FhM½ � AhP� S vð Þ=bu2
ph

	 

(A4a)

Q 2 UbR Pð Þ þ AhbuphR AhP� proj 0;FhM½ �
�

AhP� S vð Þ=bu2
ph

	 


þN �1;PMð � Pð Þ

(A4b)

If AhP� S vð Þ=bu2
ph 2 0;FhM½ �, Eq. (A4b) can be rewritten as

follows:

ð53bÞ () Q 2 UbR Pð Þ þ AhbuphR S vð Þ=bu2
ph

	 

þN �1;PMð � Pð Þ

() Q 2 UbR Pð Þ þ AhvþN �1;PMð � Pð Þ

() P ¼ min PM;�
A2

h

U2
b

S v� Q

Ah

� � ! (A5)

and substituting it into Eq. (A4a) results in the following:

Fh ¼ proj 0;FhM½ � min AhPM;�
A3

h

U2
b

S v� Q

Ah

� � !
� S vð Þbu2

ph

0@ 1A
(A6)

This means that AhP� S vð Þ=bu2
ph 2 0;FhM½ � reduces Eq. (A4) into

Eqs. (A5) and (A6). Meanwhile, if AhP� S vð Þ=bu2
ph � 0, Eq.

(A4a) results in Fh¼ 0. In the same light, if AhP� S vð Þ=bu2
ph � FhM, Eq. (A4a) results in Fh ¼ FhM and it also reduces Eq.

(A6) to Fh ¼ FhM. Therefore, if v> 0, Eq. (A2) leads to Eq. (A6)
in any cases.

In conclusions, unifying the three cases, i.e., Fh ¼ FhM for
v< 0, Eq. (A3) for v¼ 0, and Eq. (A6) for v> 0, we have the
expression (26a) for the case bu 2 Uþ. Recalling that Eq. (26b) has
already been obtained from Eq. (A1), one can see that Eq. (25)
results in Eq. (26) in the case of bu 2 Uþ.
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