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Implicit Implementation of Nonsmooth
Controllers to Nonsmooth Actuators
Ryo Kikuuwe , Member, IEEE, Yuki Yamamoto , and Bernard Brogliato

Abstract—This article presents an approach to imple-
ment a sliding-mode position controller to a plant equipped
with a nonsmooth actuator. The actuator is modeled as a
set-valued function from the control input and the velocity
to the actuator force, which is motivated by quasi-static
characteristics of hydraulic actuators shown in a previous
study. The implementation of the sliding-mode controller
is performed with the implicit discretization of the nominal
plant model and the controller, which copes with the dif-
ficulties caused by the set-valuedness, such as numerical
chattering. Stability analyses both in the continuous-time
and discrete-time domains are presented. Simulation re-
sults illustrate the theoretical findings.

Index Terms—Differential inclusions, hydraulic actua-
tors, implicit discretization, set-valuedness, sliding-mode
control.

I. INTRODUCTION

R ECENTLY Kikuuwe et al. [1] presented a quasi-static
modeling approach for hydraulic actuators used in com-

mercial excavators. The actuator model presented in [1] is
described as a nonsmooth function from the velocity to the
force that depends on the valve openings. The actuator force is
set-valued at zero velocity because the closed valves prevent the
oil flow as well as the motion of the piston, and the actuator
force is subject to velocity-dependent limits because of the
relief valves and the pressure drop at the control valves. This
quasi-static actuator model has a form that is quite unfamiliar to
the control community, and thus poses a new, interesting class
of control problems. Such problems would be worth tackling
not only for hydraulic actuators but also for yet-unknown future
actuators.

This article deals with the position-control problem of a
second-order plant driven by a nonsmooth actuator of a class
that includes Kikuuwe et al.’s [1] quasi-static model of hydraulic

Manuscript received 25 March 2021; revised 3 February 2022; ac-
cepted 22 March 2022. Date of publication 29 March 2022; date of
current version 30 August 2022. This work was supported by Kobelco
Construction Machinery Company, Ltd., Japan. Recommended by As-
sociate Editor C. Edwards. (Corresponding author: Ryo Kikuuwe.)

Ryo Kikuuwe and Yuki Yamamoto are with the Machinery Dynamics
Laboratory, Hiroshima University, Higashi-Hiroshima 739-8527, Japan
(e-mail: kikuuwe@ieee.org; y.yamamoto@mdl.hiroshima-u.ac.jp).

Bernard Brogliato is with the University Grenoble-Alpes, IN-
RIA, CNRS, Grenoble INP, LJK, 38000 Grenoble, France (e-mail:
bernard.brogliato@inria.fr).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TAC.2022.3163124.

Digital Object Identifier 10.1109/TAC.2022.3163124

Fig. 1. Position control problem discussed in this article.

actuators. The whole control system discussed in this article
is shown in Fig. 1. The actuator is assumed to be set-valued
and subject to velocity-dependent saturation. We consider im-
plementing a sliding-mode controller for the convenience of
dealing with the saturation and also of designing the convergent
behavior to the target position [2]–[4]. Practically speaking,
this problem setting is important for semiautomatic or remote-
controlled hydraulic excavators that may receive target position
commands set far from the current position. It cannot be easily
handled by many of the existing techniques, which are based
on simple proportional-integral control [5]–[9] or linearized
actuator models [10], [11], neglecting the actuator saturation
brought about by the relief valves. This article intends to prepare
theoretical foundations for this problem without restricting its
scope to hydraulic systems.

In the use of actuators of particular characteristics, one of the
common approaches is to use the inverse models of the actuator
models, which map the control input to the actuator force.
This approach has been employed mainly for actuators with
hysteresis [12]–[14]. Previous studies have investigated appli-
cations to piezoactuators [12], magnetostrictive actuators [14],
shape memory alloys [14], reluctance motors [15], and electro-
hydraulic systems [16]. Other types of nonlinearity, such as
dead-zone and backlash [13] and creep [12], have also been
considered. The application of such an approach to our problem
is not straightforward because of the set-valuedness of the ac-
tuator model, which makes the whole plant dynamics governed
by a differential inclusion. Moreover, using sliding-mode con-
trol injects another set-valuedness into the closed-loop system,
posing additional difficulty.

The mathematical treatment of nonsmooth dynamical systems
involving the set-valuedness has been investigated by some
researchers. For simulation purposes, implicit discretization has
been known to be useful for a long time [17]–[19]. With the
implicit discretization, the set-valuedness, such as Coulomb fric-
tion, rigid-body contact, and an ideal sliding-mode controller,

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-1500-6777
https://orcid.org/0000-0003-2855-055X
https://orcid.org/0000-0002-6193-9404
mailto:kikuuwe@ieee.org
mailto:y.yamamoto@mdl.hiroshima-u.ac.jp
mailto:bernard.brogliato@inria.fr
https://doi.org/10.1109/TAC.2022.3163124


4646 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 67, NO. 9, SEPTEMBER 2022

is enclosed within an algebraic loop, which is an algebraic
constraint between the input and output and can be seen as a
feedback loop without latency. At every timestep, the algebraic
constraints are solved either analytically or numerically. This
scheme has also been employed for control purposes, specifi-
cally, for the implementation of nonsmooth controllers, of which
the outputs are set-valued [20]–[27]. In the implicit implemen-
tation scheme, an algebraic loop is formed between a nominal
plant model and the nonsmooth controller, and the solution of the
algebraic constraint is used as the control input at every sampling
step. In other words, this implementation scheme employs a
one-step state predictor based on the nominal plant model.

This article presents an approach to implement nonsmooth
controllers to plants equipped with intrinsically nonsmooth
actuators. The actuator force to be generated is determined
by a one-step predictor based on the nominal model of the
plant. The determined force is converted into the control input
through the inverse map of the quasi-static actuator model using
the predicted velocity obtained by the nominal plant model.
Some theoretical analysis and illustrative simulation results are
presented.

The remainder of this article is organized as follows. Sec-
tion II introduces some preliminaries. Section III shows problem
settings including the details of the nonsmooth plant model.
Section IV proposes a simple sliding-mode controller and its
discrete-time implementation to the nonsmooth plant. Section V
shows some illustrative simulation results. Finally, Section VI
concludes this article.

II. MATHEMATICAL PRELIMINARIES

In this article, R denotes the set of all real numbers, R+

denotes the set of all non-negative real numbers, N denotes the
set of all non-negative integers, andB denotes the unit closed ball
in R, i.e., B � [−1, 1] ⊂ R, which is in fact a closed interval.
For a set Z , convZ stands for the convex hull of Z . It should
be recalled that a closed and bounded interval in R means a
compact convex subset of R. The notation f : X0 → X1 means
that f is a single-valued function from the set X0 to the set X1,
and f : X0 ⇒ X1 means that f is a set-valued function from the
set X0 to X1. The notation X0 ×X1 stands for the direct product
of the sets X0 and X1.

This article uses the following functions:

sgnX (x) �

⎧⎨
⎩

minX if x < 0
X if x = 0
maxX if x > 0

(1)

satX (x) �

⎧⎨
⎩

minX if x < minX
x if x ∈ X
maxX if x > maxX

(2)

where X is a closed and bounded interval in R. These functions
are illustrated in Fig. 2. For briefness, we write

sgn(x) � sgnB(x), sat(x) � satB(x). (3)

The functions have the following properties.
Lemma 1: Let X be a closed and bounded interval in R and

x, y ∈ R be real numbers. Then, the following statement holds

Fig. 2. Graphs of (a) sgnX (x) and (b) satX (x).

true:

y ∈ sgnX (x− y) ⇐⇒ y = satX (x). (4)

Proof: Let [A,B] � X . Then, y ∈ sgnX (x− y) ⇐⇒
(y = A ∧ x− y < 0) ∨ (y ∈ X ∧ x− y = 0) ∨ (y =
B ∧ x− y > 0) ⇐⇒ (y = A ∧ x < A) ∨ (y = x ∧ x ∈
X ) ∨ (y = B ∧ x > B) ⇐⇒ y = satX (x). �

Lemma 2: Let X be a closed and bounded interval in R, and
let a > 0 and b, x ∈ R be real numbers. Then, the following
statement holds true:

x = satX (b− ax) ⇐⇒ x = satX (b/(a+ 1)). (5)

Proof: Let [A,B] = X . Then, x = satX (b− ax) ⇐⇒
(b− ax < A ∧ x = A) ∨ (x = b− ax ∧ x ∈ X ) ∨ (b−
ax > B ∧ x = B) ⇐⇒ (x = A ∧ b/(a+ 1) < A) ∨ (x =
b/(1 + a) ∧ b/(a+ 1) ∈ X ) ∨ (x = B ∧ b/(a+ 1) <
B) ⇐⇒ x = satX (b/(a+ 1)).

It should be noted that these proofs can be greatly
simplified by using the tools of convex analysis, such
as normal cones. For example, Lemma 1 can be simply
proven as y ∈ sgnX (x− y) ⇐⇒ x− y ∈ NX (y) ⇐⇒ y =
proj(X ;x) = satX (x). (See Appendix B of [28] for definitions
and see Proposition 6.47 of [29] for a detailed proof.) �

This article uses the inequality signs (<, >, ≤, and ≥) with
the subscript ∀ to write inequalities involving sets, which should
be read as follows:

x <∀ Y ⇐⇒ (x < y, ∀y ∈ Y) (6)

X ∀< y ⇐⇒ (x < y, ∀x ∈ X ) (7)

X ∀<∀ Y ⇐⇒ (x < y, ∀x ∈ X , ∀y ∈ Y) (8)

where X and Y are sets of real numbers.
A set-valued function Φ is said to be monotone if (Φ(x1)−

Φ(x2))(x1 − x2) ∀≥ 0 for all x1 and x2. It is said to be strictly
monotone if (Φ(x1)− Φ(x2))(x1 − x2) ∀> 0 for all x1 and x2

satisfying x1 �= x2. A set-valued function Φ maps a set Z in the
following manner:

Φ(Z) =
⋃
x∈Z

Φ(x). (9)

As a consequence of (9), the expressions involving nested
set-valued functions (i.e., compositions of set-valued functions)
should be read as follows:

Φ1(Φ2(x)) =
⋃

y∈Φ2(x)

Φ1(y) (10)

as is the case also in [27].
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Fig. 3. Graph of Γ(v, u) presented in [1]; (a) 3-D surface plot, (b) cross-sectional plots at some u values, and (c) cross-sectional plots at some v
values. The function is set-valued at v = 0.

III. NONSMOOTH ACTUATOR

A. Actuator and Plant

Now, let F be a closed and bounded interval in R including
zero in its interior, i.e., F = [minF ,maxF ] and minF < 0 <
maxF . The core of the problem discussed in this article is a
class of set-valued functions Γ : R × B ⇒ F that possess the
following properties:

P1: For all v ∈ R andu ∈ B,Γ(v, u) is a closed and bounded
interval in R.

P2: For all v ∈ R, Γ(v,B) = conv(Γ(v,−1) ∪ Γ(v, 1)) ⊆
F , which is a closed and bounded interval in R.

P3: Γ is upper semicontinuous [30, p.32] in the set-valued
sense.

P4: For all u ∈ B, Γ(−v, u) is monotone with respect to v.
P5: For all v ∈ R, both maxΓ(v, u) and minΓ(v, u)

are monotone functions of u. (Note that Γ(v, u) =
maxΓ(v, u) = minΓ(v, u) if Γ(v, u) is a singleton.)

P6: Γ(v, 0) = sgnF (−v) for all v ∈ R.
P7: Γ(0, u) ∀< 0 for all u ∈ [−1, 0) and Γ(0, u) ∀> 0 for all

u ∈ (0, 1].
From the properties P1–P7, the following properties are de-

duced:
PD1: Γ(0, 0) = F (from P6).
PD2: Γ(v, u) = maxF if v < 0 and u > 0, i.e., in the sec-

ond quadrant of the v–u plane, and Γ(v, u) = minF
if v > 0 and u < 0, i.e., in the fourth quadrant of the
v–u plane (from P4, P5, P6, and P7).

PD3: The set Γ(v,B) coincides with F when v = 0 (from
P6), and becomes smaller as |v| increases (from P4).

This article uses this class of functions Γ as a quasi-static
model of an actuator that produces a force satisfying f ∈ Γ(v, u)
at the velocity v ∈ R according to the dimensionless control
input u ∈ B. It may or may not be set-valued when {v, u} �=
{0, 0}. The actuator force f belongs to the velocity-dependent
set Γ(v,B). It can be increased by increasing the control input u
(due to P5) and by decreasing the velocity v (due to P4), in such
a way as if the actuator includes an internal nonlinear viscous
resistance. When the control input u is zero, the actuator acts
exactly like the Coulomb friction (due to P6), of which the force
always opposes the velocity.

One example of Γ is illustrated in Fig. 3, which has been
presented in [1]. Another one, which is much simpler, can be
given as follows:

Γex(v, u)�
{

satFB(Fmsgn(u)−Bv/|u|) if |u|∈(0, 1]
sgnFB(−v) if u = 0

(11)

where Fm ≥ F > 0 and B > 0. This function Γex is shown in
Fig. 4. In Figs. 3(a) and 4(a), for example, the property P6 is
visible as the vertical line at {v, u} = {0, 0}, and the property
PD2 is visible as the highest and lowest plateaus.

This article discusses the position-control problem of the plant
with the following dynamics:

Mv̇
a.e.
= f + g, ṗ = v (12a)

f
a.e.
∈ Γ(v, u) (12b)

where “a.e.” stands for “almost everywhere in time.” The plant
(12) in combination with a position controller is illustrated in
Fig. 1. Here, we refer to (12a) as the controlled object, which
consists of a mass M > 0 with position p ∈ R and velocity
v ∈ R. The mass is subjected to the external force g ∈ R and
the actuator force f ∈ R. We assume that g is bounded and
is a piecewise-continuous function of time t. The actuator is
modeled as Γ in (12b) and it applies the force f to the plant,
depending on the plant velocity v and the control input u. The
control input u is provided by the controller to be combined
with this plant, as shown in Fig. 1. Because of the properties P1
and P3, the differential inclusion (12) always has an absolutely
continuous solution v, if u ∈ B is a measurable function of time
t. (See, e.g., [30, Th. 4.7], the three conditions therein being
satisfied.)

One important feature of the plant (12) is that when the
external force g is zero, v̇ = 0 can be established at the velocity
vss satisfying 0 ∈ Γ(vss, u), which means that the steady-state
velocity vss can be manipulated through the control input u. In
this sense, the actuator (12b) can be said to be a force-saturated,
weakly-velocity-commanded system. In the special case where
Γ = Γex in (11), we have vss = Fmu/B.

As far as the authors are currently aware, the hydraulic ac-
tuator model presented in [1] is the only example that can be
represented by the map Γ. Because it is a static map, actuators
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Fig. 4. Graph of Γex(v, u) defined in (11) with {F,Fm, B} = {50N, 60N, 30Ns/m}; (a) 3-D surface plot, (b) cross-sectional plots at some u values,
and (c) cross-sectional plots at some v values. The function is set-valued at {u, v} = ‖0, 0}.

exhibiting hysteresis, such as piezoactuators, would not fall
within this class of actuators.

Remark 1: The dependence of Γ(v, u) on the velocity v is
crucial in our problem setting. For example, if Γ is defined
as Γ(v, u) = F sgn(u) with F > 0 and u ≡ 0, the differential
inclusion (12) reduces to Mv̇ ∈ [−F, F ], which does not have a
unique solution obviously. According to [31, Th. 1], withΓ(v, u)
possessing the property P4, the differential inclusion (12) has
unique solutions from almost all initial values of v ∈ R.

B. Inverse Model of an Actuator

When an actuator is used in a control system, a controller
should usually be constructed so that it determines the actuator
force to be generated. In order to use such a controller with an
actuator of the form of (12b), one needs to convert the desired
actuator force f̂ to a control input u sent to the actuator using
an inverse model of the actuator. For this purpose, we define a
set-valued functionΘ : R ×F ⇒ B that satisfies the following:

u ∈ Θ(v, f̂) ⇐⇒ f̂ ∈ Γ(v, u). (13)

It means that Θ is the inverse function of Γ with respect to
its second argument. Note that Θ is set-valued because of the
property PD2 ofΓ, implying that multiple values ofu correspond
to a given pair {v, f̂}, especially if either f̂ = maxF or f̂ =
minF . It is worth noting that the highest and lowest plateaus in
Figs. 3(a) and 4(a) correspond to the set-valuedness of Θ(v, f).
With the case of Γ shown in Fig. 3, Θ(v, f̂) can be set-valued
also when v = 0, as can be visible as the gray rectangle areas in
Fig. 3(c). In addition, Θ is not a total function, i.e., its domain is
not the whole R × R, becauseΘ(v, f̂) = ∅ if f̂ �∈ Γ(v,B) ⊆ F .

The fact that Θ is set-valued and nontotal causes inconve-
nience in the use of Θ in the controller. To avoid the incon-
venience, it is better to prepare a total single-valued function
Θs : R × R → B that satisfies the following:

Θs(v, f̂) ∈ Θ
(
v, satΓ(v,B)(f̂)

)
∀f̂ ∈ R ∀v ∈ R, (14)

which means that if f̂ ∈ Γ(v,B), Θs(v, f̂) is a single-valued
selection of Θ(v, f̂), and otherwise, f = Γ(v,Θs(v, f̂)) is the
projection of f̂ ontoΓ(v,B) due to the property P1. In the special
case where Γ = Γex in (11), one example of Θs can be given as

follows:

Θs,ex(v, f̂)�

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sat
(
Bv/(Fm − sgn(v)f̂)

)
if v �= 0 ∧ Fm − sgn(v)f̂ > 0

sgn(v) if v �= 0 ∧ Fm − sgn(v)f ≤ 0
0 if v = 0.

(15)

This expression can be derived by carefully examining (11) un-
der different conditions, e.g., the sign of u and whether |f̂ | < F

or |f̂ | ≥ F .

C. Implementation of a Controller

Here, one should note that the equivalence in (13) is somewhat
misleading. In order to exert a nonzero force f̂ at the velocity v =
0, (13) allows for the control input u = 0 because 0 ∈ Θ(0, f̂)

for all f̂ ∈ F , but the control input u = 0 at v = 0 obviously
does not drive the actuator.

The source of the problem is that, for some velocities v, the
control inputu allowed byΘ(v, f̂)may not actually result in f =

f̂ , e.g., when v = 0 and minF < f̂ < maxF . One alternative
is to attempt to realize f = f̂ at a small time T later. That is,
with a desired force f̂ , one can consider determining u so that

f̂ ∈ Γ(v + T (f̂ + g)/M, u) (16)

or equivalently

u ∈ Θ(v + T (f̂ + g)/M, f̂) (17)

where v + T (f̂ + g)/M can be viewed as a predicted velocity
based on the nominal model (12a) of the plant. One may also
use a single-valued function Θs satisfying (14) to uniquely
determine u as follows:

u = Θs(v + T (f̂ + g)/M, f̂). (18)

It should be noted that, if T is viewed as the sampling interval
of the discrete-time device to which the controller should be
implemented, (18) can be seen as a solution of the implicit
(backward) Euler discretization of the plant model (12), which
is

M(v∗k+1 − vk)/T = f̂k + gk, f̂k ∈ Γ(v∗k+1, uk). (19)

This expression is derived by substituting v̇ ≈ (v∗k+1 − vk)/T
to (12). Here, k ∈ N denotes the discrete-time index, vk is the
current measured velocity, and v∗k+1 is the velocity predicted
by the plant model (12) or the velocity intended to be realized
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Fig. 5. Implementation of a smooth controller to a nonsmooth actuator.

in the next timestep. We are assuming that the plant parameter
M and the external force g are accurately known. The algebraic
constraints in (19) can be solved as follows:

v∗k+1 := vk + T (f̂k + gk)/M (20a)

uk := Θs(v
∗
k+1, f̂k), (20b)

which can be implemented as an algorithm to convert the desired
actuator force f̂k to the control input uk to the controller. To be
more accurate, the control input u is to be kept constant at the
value uk for the time period t ∈ [kT, (k + 1)T ). Fig. 5 shows
this implementation scheme. It can be seen as a variant of the
implicit implementation scheme [22]–[27], in which the implicit
discretizations of the nominal plant model and a controller
are algebraically combined. It should be emphasized that the
original scheme [22]–[27] is to deal with a nonsmooth controller,
whereas the scheme in Fig. 5 is to deal with a plant including a
nonsmooth actuator.

One justification of using (16) and (17), with the predicted
velocity v + T (f̂ + g)/M instead of the current velocity v, is
summarized as follows.

Theorem 1: Assume that v is an absolutely continuous func-
tion of the time that satisfies (12). Let T be a sufficiently long
time period starting from the time t = t0. At the time t = t0, let
v = v0 and g = g0. Let us also assume that g ≡ g0 for the period
T . Let T > 0 and v∗ = v0 + T (f̂ + g0)/M . Then, setting u ∈
Θ(v∗, f̂) for the period T results in v changing monotonically
from v = v0 toward v = v∗, until v = v∗ is achieved.

A proof of Theorem 1 is given in Appendix A. It should
be noted that this result also justifies the use of a nonunique
selection function Θs in (18) and (20b) because this result does
not depend on a particular choice of the value of u within the
set Θ(v∗, f̂).

IV. IMPLEMENTATION OF NONSMOOTH CONTROLLER

A. Controller in the Continuous-Time Domain

One important feature of the actuator (12b) is that the control
input u is subject to the bound B and the actuator force f is
subject to a velocity-dependent bound Γ(v,B). The sliding-
mode control is a convenient choice for the use with bounded
input because it has modes in which the control input is at
its upper or lower limits [2]–[4]. Another beneficial aspect of
sliding-mode controllers is that they allow for the design of the
convergent behavior toward a desired state through the design of
the so-called sliding surface. This article considers the following

controller, which is intended to be a sliding-mode controller for
the plant (12):

u ∈ sgn(−σ) (21)

where

σ � p+Hv − pd. (22)

Here, pd ∈ R is the desired position and H > 0 is a positive
constant representing the time constant of the convergence of
p to pd. We assume that both position p and velocity v of the
plant are available to the controller and the desired position pd
is constant. The underlying intention of the controller (21) is to
make a full effort to attract the state to the sliding mode σ = 0
when σ �= 0. Using a time-variable pd would not be technically
difficult, but we leave it outside the scope of this article because
it would complicate the following stability analysis.

Now, we show that the controller (21) can be seen as a
sliding-mode controller for the plant (12). The closed-loop
system composed of the plant (12) and the controller (21) can
be written as follows:[

σ̇
v̇

]
a.e.
=

[
v
0

]
+

[
H/M
1/M

]
(f + g) (23a)

f
a.e.
∈ Γ(v, sgn(−σ)). (23b)

Here, the nested set-valued functions should be read as in
(10). Note that (23a) is equivalent to (12a). Because the set
Γ(v, sgn(−σ)) ⊆ F is compact and convex for all [σ, v]T ∈ R2

(due to the properties P1 and P2), the differential inclusion (23)
always has a solution with respect to [σ, v]T . (See, e.g., [30,
Th. 4.7] and the three conditions therein.) Properties of the
system (23) are summarized as follows:

Theorem 2: Consider the system (23). Let us assume that
there exist R > 0 and δ > 0, with which

|g|+ δ < R < min((−Γ(0,−1)) ∪ Γ(0, 1)) (24)

is satisfied for all t ∈ R+. [The right-hand side of (24) is positive
because of the property P7, as can be seen in Figs. 3(b) and 4(b).]
Then, a subset of the subspace S � {[σ, v]T |σ = 0} is finite-
time stable and positively invariant, and the origin [σ, v]T =
0 is asymptotically stable. In addition, the origin is globally
asymptotically stable if g ≡ 0.

A proof is presented in Appendix B. This result means that the
controller (21) can be seen as a sliding-mode controller with the
switching surface S , which makes the position p exponentially
converge to the desired position pd with the time constant H
under bounded disturbance g.
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It should be noted that the closed-loop system (23) does not
necessarily require u to be chosen as (21). It only requires f to
satisfy (23) and u to satisfy (12b). That is, the satisfaction of
(23) only needs the following relation:

u ∈ Θ(v,Γ(v, sgn(−σ))) ⊃ sgn(−σ). (25)

This means that, when σ < 0 for example, u does not have to
be +1 but can be a smaller value satisfying Γ(v, u) = Γ(v, 1).
In this sense, one may consider (23b), as opposed to (21), to be
a controller. Although it possesses a nested set-valued structure,
it is a consequence of the nonsmooth actuator. It may be seen
in contrast to Miranda-Villatoro et al.’s [27] controller, which is
designed on purpose to possess a nested set-valued structure.

B. Proposed Implementation Scheme

Now, we construct a discrete-time controller algorithm to
realize the closed-loop system (23), with which the switching
surface S in Theorem 2 is finite-time stable and the origin is
asymptotically stable. Our approach presented here is to calcu-
late the desired actuator force f̂ from the closed-loop system (23)
through the original implicit implementation scheme [22]–[27]
and to use f̂ to obtain the control input u through the algorithm
(12b) in Section III-C.

First, let us apply the original implicit implementation
scheme [22]–[27] to the system (23) to determine the desired
actuator force f̂ that realizes the closed-loop system (23). Let
us assume that the actuator force f perfectly realizes its desired
value f̂ and that the external force g is exactly known. Then,
considering the equivalence between (23a) and (12), an implicit
Euler discretization of the system (23) can be written as follows:

M(v∗k+1 − vk)/T = f̂k + gk (26a)

p∗k+1 = pk + Tv∗k+1 (26b)

f̂k ∈ Γ(v∗k+1, sgn(pd,k − p∗k+1 −Hv∗k+1)). (26c)

Eliminating v∗k+1 and p∗k+1 from (26c) by using (26a) and (26b)
yields the following:

f̂k ∈ Γ(vf,k + ηf̂k, sgn(vs,k − vf,k − ηf̂k)) (27)

where

vf,k � vk + ηgk (28a)

vs,k � (pd,k − pk)/(H + T ) (28b)

η � T/M. (28c)

Possible interpretations for the intermediate variables vf,k and
vs,k are that vf,k is the velocity that would be achieved if the
actuator force f̂k was equal to zero, and that vs,k is the velocity
that would be achieved in the ideal sliding motion if the actuator
force was unbounded.

In order to solve (27) with respect to f̂k, we define a single-
valued function Γη : R × B → F that satisfies the following
relation:

f = Γη(v, u) ⇐⇒ f ∈ Γ(v + ηf, u). (29)

The uniqueness of the single-valued function Γη satisfying (29)
is given as follows.

Theorem 3: The function Γη defined by (29) is a total, single-
valued function of v and u.

Proof: For any v ∈ R andu ∈ B, there exists a unique v1 ∈ R
that satisfies 0 ∈ Γ(v1, u)− (v1 − v)/η because the right-hand
side is unbounded and strictly monotone with respect to−v1 due
to the property P4. With such v1, one can obtain f = (v1 − v)/η
that satisfies f ∈ Γ(v + ηf, u). �

For example, the function Γη for the function Γex defined in
(11) can be obtained as follows:

Γη,ex(v, u) � satFB

(
Fmu−Bv

ηB + |u|

)
. (30)

This function can be derived from (11) by using Lemmas 1 and 2.
For the functionΓ in Fig. 3, a closed-form expression of the func-
tionΛ that satisfies v = Λ(β, f, u) ⇐⇒ βv + f ∈ Γ(v, u) has
been presented in [32]. It can be easily converted into Γη

through Γη(v, u) = (Λ(1/η,−v/η, u)− v)/η or Λ(β, f, u) =
(Γ1/β(−f/β, u)− f)/β.

With the function Γη defined by (29), one can rewrite (27) as
follows:

f̂k = satΓη(vf,k,B) ((vs,k − vf,k)/η) (31)

because we have the following relations:

f ∈ Γ(vb + ηf, sgn(va − ηf))

⇐⇒ (f ∈ Γ(vb + ηf,B) ∧ ηf = va)

∨ (f ∈ Γ(vb + ηf, 1) ∧ ηf < va)

∨ (f ∈ Γ(vb + ηf,−1) ∧ ηf > va)

⇐⇒ (f ∈ Γη(vb,B) ∧ f = va/η)

∨ (f = Γη(vb, 1) ∧ f < va/η)

∨ (f = Γη(vb,−1) ∧ f > va/η)

⇐⇒ f = satΓη(vb,B) (va/η) (32)

for all va, vb, and f . Here, the following fact is used:

f ∈ Γ(v + ηf,B) ⇐⇒ ∃u ∈ B s.t. f ∈ Γ(v + ηf, u)

⇐⇒ ∃u ∈ B s.t. f = Γη(v, u)

⇐⇒ f ∈ Γη(v,B). (33)

Now, the desired actuator force f̂k is obtained as (31). With
this f̂k, one can apply the algorithm (20) in Section III-C to
obtain the control input uk to generate the actuator force f̂k.
That is, combining (31) and (20) and considering (28), one can
obtain an algorithm to calculate uk as follows:

vf,k := vk + ηgk (34a)

vs,k := (pd,k − pk)/(H + T ) (34b)

f̂k := satΓη(vf,k,B) ((vs,k − vf,k)/η) (34c)

uk := Θs(vf,k + ηf̂k, f̂k). (34d)

Note that (34) is the controller algorithm to be executed at every
timestep. Its inputs are {pk, vk, pd,k, gk}; the desired position is
pd,k, plant position is pk, velocity is vk, and estimated external
force is gk. The output is uk, which is to be used as the control
input u to the actuator for the period t ∈ [kT, (k + 1)T ). The
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Fig. 6. Proposed scheme: implicit implementation of a nonsmooth controller to a nonsmooth actuator.

other variables {vf,k, vs,k, f̂k} are temporary ones, which do
not have to be carried over to the next timestep.

One illustration of the proposed controller (34) is presented
in Fig. 6. This algorithm also uses a one-step predictor to
obtain v∗k+1 and p∗k+1. The predicted velocity v∗k+1 appears as

vf,k + ηf̂k in (34d) although the predicted position p∗k+1 does
not explicitly appear in the algorithm. The “algebraic loop” is
formed between the nominal model (i.e., the one-step predictor)
(12a) and the nonsmooth controller (23b), as has been the case
with the original implicit implementation scheme [22], [23]. The
analytical solution of the algebraic loop appears in (34c). After
the algebraic constraint is solved, the predicted velocity v∗k+1 is
used as the input to the function Θs in (34d) to obtain the control
input uk, as is in the case discussed in Section III-C.

C. Errors in the Nominal Model

It should be noted that the proposed scheme heavily depends
on the nominal model of the plant including the external force.
This section analyzes the effect of the modeling errors and un-
known disturbances to the discrete-time controller (34) applied
to the plant (12).

First, one can see that the real plant (12), from which p is
eliminated by using σ � p+Hv − pd, can be approximated by
the following discrete-time form:[

σk+1

vk+1

]
=

[
1 T
0 1

] [
σk

vk

]
+

[
ηHt

η

]
(fk + gk)

+ T 2

[
εσ,k+1

εv,k+1

]
(35a)

fk ∈ conv (Γ(vk, uk) ∪ Γ(vk+1, uk)) (35b)

where η � T/M and Ht � H + T . In the last term of the right-
hand side of (35a), T 2εσ,k+1 and T 2εv,k+1 are errors induced
by the discretization, which are scaled by T 2 considering the
fact that the errors of the Euler discretization are generally of
the order of O(T 2). Because the forces f and g may vary within
a timestep, fk and gk are set as the average values within the
timestep k. The errors caused by this approximation are also
included in εσ,k+1 and εv,k+1. The actuator force fk at the
timestep k cannot be determined strictly but one can assume
that it resides within the range indicated in (35b). The control
input uk is assumed to be kept constant within every timestep.

Next, by carefully tracing back the derivation in Section IV-B,
one can rewrite the discrete-time controller (34) in the following

form:[
σ∗
k+1

v∗k+1

]
=

[
1 T
0 1

] [
σk

vk

]
+

[
η̂Ht

η̂

]
(f̂k + ĝk) (36a)

f̂k ∈ Γ̂(v∗k+1, sgn(−σ∗
k+1)) (36b)

f̂k ∈ Γ̂(v∗k+1, uk) (36c)

where η̂ � T/M̂ . Here, the symbols with hats are the values
and functions of the nominal plant model, which may differ
from those in the real plant (35). It involves the set-valuedness
in (36b) and (36c), but they always have unique and closed-form
solutions as follows:

f̂k = satΓ̂η̂(v̂f,k,B) (−σ̂f,k/(η̂Ht)) (37a)

uk = Θ̂(v̂f,k + η̂f̂k, f̂k) (37b)

where v̂f,k � vk + η̂ĝk and σ̂f,k � σk + Tvk + η̂Htĝk.
One can see that (36), which is an implicit form the controller,

involves the predicted values σ∗
k+1 and v∗k+1, and they may

differ from the true values σk+1 and vk+1 of the plant (35). The
error between the predicted and the real states can be written as
follows: [

σ̃k+1

ṽk+1

]
�
[
σ∗
k+1

v∗k+1

]
−
[
σk+1

vk+1

]

= T

[
Ht

1

]
ãk − T 2

[
εσ,k+1

εv,k+1

]
(38a)

where

ãk � (f̂k + ĝk)/M̂ − (fk + gk)/M. (38b)

By using this, one can write the closed-loop system in the
following discrete-time form:[

σk+1

vk+1

]
=

[
1 T
0 1

] [
σk

vk

]
+

[
η̂Ht

η̂

]
(f̂k + ĝk)

+

[
σ̃k+1

ṽk+1

]
(39a)

f̂k ∈ Γ̂(vk+1 − ṽk+1, sgn(−σk+1 + σ̃k+1)) (39b)

where [σ̃k+1, ṽk+1]
T defined by (38) can be seen as the unknown

disturbance. Its major factor is ãk defined by (38b), which
depends on the error between the estimated external force ĝk
and the real (unknown) external force gk, and the modeling
error between M̂ and M . The discrete-time system (39) has
the following properties.

Theorem 4: Consider the system (39) and assume that ĝk,
ãk, εσ,k, and εv,k are appropriately bounded, as indicated in
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the proof, for all k ∈ N. Then, a neighborhood of a subset
of the subspace S � {[σ, v]T |σ = 0} is finite-time stable and
positively invariant. Moreover, a neighborhood of the origin of
the system (39) is asymptotically stable.

Appendix C presents a proof of this theorem, of which the
structure is very similar to that of the proof of Theorem 2 in
Appendix B. Theorem 4 means that a subset of the subspace
S approximately acts as a sliding surface, and that the state
approximately converges to the origin as long as the disturbance
is appropriately bounded. The theorem implies that the proposed
discrete-time algorithm (34) implemented to the plant (12) well
approximates the continuous-time closed-loop system (23) as
long as the prediction errors σ̃k+1 and ṽk+1 are small enough.
One can also see that, from (38), the prediction errors σ̃k+1 and
ṽk+1 depend on the unknown component of the external force
and the modeling error, but are of the order of the sampling
interval T .

In most applications of sliding-mode techniques, the con-
troller gains are usually set larger than the magnitude of distur-
bances. In contrast, our problem setting assumes that the actuator
force and the control input are bounded, as can be seen in (21)
and (23b), and thus the presented controller does not involve a
parameter that can be interpreted as a gain.

V. NUMERICAL EXAMPLES

Some simulation results to illustrate the proposed scheme are
presented. We consider the plant (12) where a mass M = 1 kg
is driven by an actuator modeled by Γex defined by (11). The
external force g is given as a function g(t) of time. The plant
dynamics (12) are realized in the simulator with the backward
Euler discretization, which provides the following closed-form
algorithm:

fi := Γh/M (vi + hg(ih)/M, ui) (40a)

vi+1 := vi + h(fi + g(ih))/M (40b)

pi+1 := pi + hvi+1 (40c)

where the subscript i ∈ N stands for the discrete-time index in
the simulator, and the timestep size is set as h = 0.0001 s. This
timestep size h is for the plant simulation, not to be confused
with the sampling period T of the controller, which has been
discussed in the previous sections. The values of the actuator’s
parameters are set asF = 50N,Fm = 60N, andB = 30Ns/m,
which are the same as those in Fig. 4.

The controller is the algorithm (34) with Γη and Θs being
replaced by Γη,ex in (30) and Θs,ex in (15), respectively. The
controller’s sampling interval is set as T = 0.01 s, unless oth-
erwise noted, the time constant for the sliding surface is set as
H = 1 s, and the desired position is fixed as pd ≡ 1 m. Here,
note that the sampling interval T of the controller is set much
larger than the timestep size h of the plant simulation. It is
for approximating the discrete-time controller applied to the
continuous-time plant. The functions Γη,ex and Θs,ex depend
on the nominal values of the plant parameters {M,F, Fm, B}
and the disturbance g(t). Their values used in the controller are
hereafter denoted as {M̂, F̂ , F̂m, B̂, ĝ(t)}, respectively. Some

Fig. 7. Simulation results of the ideal case (M̂ = M , F̂ = F , F̂m =

Fm, B̂ = B, and ĝ(t) ≡ g(t) ≡ 0) with various initial states. The value vs
is defined as vs � FmH/(BH −M) = 2.11 m/s, which coincides with
the vs appearing in Appendix B.

Fig. 8. Simulation results of the explicit implementation (u = sgn(−σ))
and implicit implementations with T = 0.01 s and T = 0.25 s. Other
settings except the initial state are the same as those of Fig. 7.

different parameter settings for the controller are used in the
simulations.

Fig. 7 shows simulation results of the ideal situations where
the external force is set as g(t) ≡ 0 and the plant parameters are
assumed to be exactly known [i.e., M̂ = M , F̂ = F , F̂m = Fm,
B̂ = B, and ĝ(t) ≡ g(t) ≡ 0]. The results with various initial
states are shown. It can be seen that, from all initial states,
the state (σ, v) reaches the set S (defined in Theorem 2) in
finite time and reaches the origin asymptotically, illustrating
Theorems 2 and 4. More precisely, the subset satisfying |v| ≤
vs � FmH/(BH −M) = 2.11 m/s of S is reached, being
consistent with the content in the proof of Theorem 2. [A
simple calculus shows that the maximum vs satisfying (52) with
R = 0 and Γex defined in (30) is vs � FmH/(BH −M) when
BH > M .]
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Fig. 9. Simulation results with various modeling errors, in which the
values of {M̂, F̂ , F̂m, B̂} are varied between −23 % and +30 % of their
true values {M,F,Fm, B} of the plant. The thick gray curves represent
an almost ideal case with no modeling errors and ĝ(t) ≡ g0(t).

Fig. 8 shows results with the explicit implementation [u =
sgn(−σ), i.e., (21)] and the proposed algorithm (34) with dif-
ferent values of the sampling intervalT . It shows that the explicit
implementation results in intense chattering, which would make
it practically unusable. In contrast, the proposed implementation
(34) produces proper convergent behavior even with a large
sampling interval T = 0.25 s. The step-like behavior of v with
the larger T well illustrates Theorem 1, which implies that v is
attracted to the predicted velocity v∗ within each timestep.

In simulations reported hereafter, the external force g is given
as

g(t) = g0(t) +

{
−80 if t ∈ [2 s, 2.2 s]
0 otherwise

(41)

where

g0(t) � −20 sin(4πt), (42)

which is the sum of a sinusoidal force and an impulse-like force.
Fig. 9 shows some results. The thick gray curves represent an
almost ideal case, where the external force is known except the
impulse-like component [i.e., ĝ(t) ≡ g0(t)] and the plant param-
eters are exactly known (i.e., M̂ = M , F̂ = F , F̂m = Fm, and
B̂ = B). The black curves represent the results of controllers
whose parameter values are between −23% and +30% of the
true plant parameter values. It is shown that, in all cases, the
position p moves toward the target position pd = 1.0 m and it
actually converges after the large disturbance in t ∈ [2 s, 2.2 s].
The sinusoidal oscillations of the actuator force f indicate that
the force f reacts to the sinusoidal disturbance g even if ĝ is
not set to be consistent with g. It can be seen that, however, the
velocity v is more influenced by the external force g when ĝ �≡ g0
(the black curves) than when ĝ ≡ g0 (the gray thick curve),
although the position p eventually converges to the desired
position pd. These results exhibit a certain level of robustness of
the controller against the disturbance and modeling errors.

Fig. 10 shows results with much larger M̂ (= 3.0M ) and
much smaller B̂ (= 0.33B). It is shown that the control input u

Fig. 10. Simulation results with chattering caused by (a) an exces-
sively large M̂ and (b) an excessively small B̂. The thick gray curves
represent an almost ideal case with no modeling errors and ĝ(t) ≡ g0(t).

and the actuator force f exhibit chattering although the position
p converges to pd. The parameter B is an actuator parameter
that can be understood as the slope of the velocity-force curve.
These results suggest that the inertia of the plant should not be
overestimated and the slope of the force-velocity curve of the
actuator should not be underestimated.

In order to emulate the spool dynamics of the control valves of
hydraulic actuators (see, e.g., [33]), we consider the case where
the control input u generated by the controller is lagged by a
low-pass filtering effect of the plant. Specifically, we consider
the plant (12) with u being replaced by uf that is determined as
follows:

uf = L−1[L[u]/(τs+ 1)2] (43)

where u is the input from the controller,L stands for the Laplace
transform, and τ is a positive constant representing the time
constant of the filtering effect. Simulation results with different
values of τ are shown in Fig. 11. It is shown that, although the lag
in the plant affects the behavior, the position p still converges to
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Fig. 11. Simulation results with low-pass filtered inputs: τ = 0.4 s
(red), τ = 0.2 s (blue), and τ = 0 (black). The thick gray curves rep-
resent an almost ideal case with no modeling errors and ĝ(t) ≡ g0(t).

the desired position pd. These results suggest that the proposed
controller may be applicable to hydraulic actuators with spool
dynamics, while some extensions to take the lag into account
would improve the performance.

VI. CONCLUSION

This article has presented an implementation scheme of a
class of nonsmooth position controllers (i.e., sliding-mode con-
trollers) to a class of nonsmooth plants, being motivated by a
recently-proposed quasi-static model of hydraulic actuators. The
implementation is performed with the implicit discretization of
the nominal plant model and the nonsmooth controller. Some
stability proofs have been provided both in the continuous- and
discrete-time domains. Some illustrative simulation results have
also been presented.

Future improvements to the proposed controller would in-
clude the robustification of the controller against unmodeled
actuator dynamics or the incorporation of the actuator dynamics
model into the controller.

After the submission of this article, we have implemented an
extended version of the presented controller to the swing axis
of a hydraulic actuator. Some encouraging experimental results
are reported in [34].

APPENDIX A
PROOF OF THEOREM 1

As a preparation for the proof of Theorem 1, we can use the
following lemma:

Lemma 3: Let Γ : R × B ⇒ R be a set-valued map possess-
ing the properties P1–P7. Then, the following statement holds
true:

(v1 − v2) (Γ(v2,Θs(v1, f))− f) ∀≥ 0

∀f ∈ Γ(v1,B) ∀v1, v2 ∈ R. (44)

Proof of Lemma 3: The property P4 of Γ implies that

(v1 − v2)(Γ(v2, u)− f) ∀≥ 0 (45)

is satisfied for all {f, u, v1, v2} ∈ X0, where

X0 � {{f, u, v1, v2} | f ∈ Γ(v1, u), u ∈ B, v1, v2 ∈ R}.
(46)

Because, using (13), u = Θs(v1, f) ∈ B implies f ∈
Γ(v1, u) ⊆ Γ(v1,B), we have

X1 �
{
{f, u, v1, v2} | u = Θs(v1, f), f ∈ Γ(v1,B),

v1, v2 ∈ R

}
⊆ X0. (47)

Therefore, (45) is satisfied for all {f, u, v1, v2} ∈ X1, and it
implies (44). �

Based on this lemma, we can prove Theorem 1.
Proof of Theorem 1: For the time period T , the velocity v

satisfies the following:

Mv̇
a.e.
∈ Γ(v,Θs(v

∗, f̂)) + g0, v(t0) = v0. (48)

Let us define W (v − v∗) � M(v − v∗)2/2. Then, considering
Lemma 3 and the fact that f̂ + g0 = M(v∗ − v0)/T by defini-
tion, we have the following:

Ẇ
a.e.
∈ (v − v∗)

(
Γ(v,Θ(v∗, f̂)) + g0

)
= −(v∗ − v)

(
Γ(v,Θ(v∗, f̂))− f̂

)
+ (f̂ + g0)(v − v∗)

∀≤ −M(v0 − v∗)(v − v∗)/T. (49)

Therefore, Ẇ
a.e.
≤ −|v0 − v∗|

√
2MW/T is satisfied as long as

t ∈ T and v ∈ conv{v0, v∗}. Considering that W is an abso-
lutely continuous function of time and that v = v0 at the time
instant t = t0, one can see that W monotonically decreases and,
thus, v monotonically approaches v∗ until it reaches v∗ in finite
time. �

APPENDIX B
STABILITY PROOF: CONTINUOUS TIME

Proof of Theorem 2: The proof proceeds in three steps: (a),
(b), and (c).

(a) Finite-time stability of a subset of S .
From (23), if σ �= 0, we have the following:

d

dt
|σ|

a.e.
∈
{
γ+(v, g) if σ > 0
γ−(v, g) if σ < 0

(50)

where

γ+(v, g) � (H/M)(Mv/H + Γ(v,−1) + g) (51a)

γ−(v, g) � (H/M)(−Mv/H − Γ(v, 1)− g). (51b)

Here, note that γ±(v, g) may be set-valued because Γ(v,±1)
may be set-valued, as shown in Fig. 3.

Let us choose vs > 0, so that

∀v ∈ vsB, −Mv/H +RB ⊂ Γ(v,B) (52)

or equivalently

∀v ∈ vsB, Mv/H +R+ Γ(v,−1) ∀≤ 0

∧ −Mv/H +R− Γ(v, 1) ∀≤ 0 (53)

is satisfied. Here, recall that Γ(v,B) = conv(Γ(v,−1) ∪
Γ(v, 1)). The existence of vs satisfying (52) is implied by the
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Fig. 12. Illustrations for the proof of Theorem 2. (a) Γ and vs.
(b) Subsets of the state space.

condition (24) [See Fig. 12(a)]. With such a choice of vs, we
can see that γ±(v, g) ∀< −Hδ/M for all v ∈ vsB because of

(51) and (53). Therefore, d|σ|/dt
a.e.
< −Hδ/M is satisfied when

[σ, v]T ∈ V \ S where

V �
{
[σ, v]T | v ∈ vsB

}
. (54)

This implies that the subset S ∩ V is finite-time stable and
the sliding mode at σ = 0 is established in this subset [See
Fig. 12(b)].

Assume that [σ, v]T ∈ S ∩ V , σ = 0 and

−Mv/H − g ∈ Γ(v,B) (55)

are satisfied. In this situation, (23) implies that f = −Mv/H −
g, which results in σ̇ = 0 and v̇ = −v/H . Therefore, when
[σ, v]T ∈ S ∩ V , σ remains zero and |v| monotonically de-
creases, and because 0 ∈ S ∩ V , [σ, v]T never deviates from
S ∩ V . Therefore, S ∩ V is positively invariant.

(b) Asymptotic stability of the origin.
Let us define a Lyapunov function candidate as follows:

V (σ, v) = κ|σ|+Hv2/2 (56)

whereκ is a positive constant. Whenσ = 0 and (55) are satisfied,
the system (23) is in the sliding mode, i.e., σ̇ = 0, and (23) results
in v̇ = −v/H and V̇ = −v2. On the other hand, when σ = 0 is
satisfied but (55) is not satisfied, σ̇ = 0 cannot be true and V̇
may not exist. Such a case may happen only at the time instants
at which the state [σ, v]T instantaneously penetrates the surface
σ = 0. Therefore, one can say that V̇ = −v2 is satisfied for
almost all t if σ = 0.

Including the case of σ �= 0, one can see that (23) implies the
following:

V̇
a.e.
∈ −v2 +

⎧⎨
⎩

γ+(v, g)(κ+ v) if σ > 0
0 if σ = 0
γ−(v, g)(κ− v) if σ < 0.

(57)

Recall that γ±(v, g) ∀< 0 if |v| ≤ vs. Therefore, by setting κ >
vs, one can see that [σ, v]T ∈ V is a sufficient condition for

V̇
a.e.
≤ −v2. When v = 0 ∧ σ �= 0, v̇ = 0 cannot happen because

of the definition (23) of the system and the condition (24). Thus,
invoking LaSalle’s invariance principle, one can see that the
origin (σ, v) = (0, 0) is asymptotically stable if (24) is satisfied.

Because V (σ, v) monotonically decreases in V , a subset of
the region of attraction of the origin can be given as follows:

A �
{
[σ, v]T |V (σ, v) ≤ Hv2s/2

}
. (58)

Moreover, because |σ| monotonically decreases in A and it
satisfies (S ∩ V) ⊂ A ⊂ V [see Fig. 12(b)], A is also a subset
of the region of attraction of the set S ∩ V . From an initial
state [σ(0), v(0)]T ∈ A, the maximum reaching time to S ∩ V
is M |σ(0)|/(Hδ) because d|σ|/dt < −Hδ/M .

(c) Global asymptotic stability in the case of g ≡ 0.
Let us set a Lyapunov function candidate as follows:

Vg(σ, v) = max(−κpσ, κnσ) +Hv2/2 (59)

where κn and κp are positive constants. When g ≡ 0, its time
derivative can be written as follows:

V̇g

a.e.
∈

⎧⎨
⎩

γg+(v)− κ2
n if σ > 0

−v2 if σ = 0 ∧ −Mv/H ∈ Γ(v,B)
γg−(v)− κ2

p if σ < 0

(60)

where

γg+(v) � (κn + v)(κn +HΓ(v,−1)/M) (61)

γg−(v) � (κp − v)(κp −HΓ(v, 1)/M). (62)

The functions γg±(v) can be made negative everywhere by
setting κn and κp so that the following is satisfied:

Γ(−κn,−1) � −Mκn/H, Γ(κp, 1) � Mκp/H. (63)

The properties P3 and P4 of Γ imply that such κn and κp always
exist and satisfy Γ(0,−1) ∀≤ −Mκn/H < 0 < Mκp/H ≤∀
Γ(0, 1). Therefore, with the choice of κn and κp satisfying (63),

(60) implies that V̇g

a.e.
< 0 is satisfied except at the origin. There-

fore, one can conclude that the origin [σ, v]T = 0 is globally
asymptotically stable if g ≡ 0. �

Remark 2: The set A is a conservative estimate of the region
of attraction. It does not include initial states from which the state
converges to the origin after penetrating the subspace S several
times. A more accurate estimate of the region of attraction may
be obtained by using a more complicated Lyapunov function
based on the solution trajectory under the most destabilizing
external force as in [4].

APPENDIX C
STABILITY PROOF: DISCRETE TIME

Proof of Theorem 4: Let us assume that ĝk, ãk, εσ,k, and
εv,k are bounded as |ĝk| < R̂− δ, |ãk| < Ua, |εσ,k| < Uσ , and
|εv,k| < Uv , respectively, for all k ≥ 0, where R̂, δ, Ua, Uσ ,
and Uv are positive constants. Let wσ,k � (H + T )ãk−1 +

Tεσ,k and wv,k � ãk−1 + εσ,k −Hεv,k. They are bounded as
|wσ,k| < Wσ and |wv,k| < Wv , where Wσ � (H + T )Ua +

TUσ and Wv � Ua + Uσ +HUv . Let us assume the following:

R̂+ M̂Wσ/H < min((−Γ̂(0,−1)) ∪ Γ̂(0, 1)). (64)

Let us define x � [σ, v]T , which is the real state vector,
and x∗ � [σ∗, v∗]T , which is the predicted state vector. In the
following, we consider two sequences: {xk}k∈N and {x∗

k}k∈N .
The proof proceeds in two steps: (a) and (b).

(a) Finite-time stability of a subset of S .
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From (36) and (38), one can see that the predicted states
{x∗

k}k∈N are recursively obtained as

x∗
k+1=

[
1 T
0 1

]
x∗
k+

[
η̂Ht

η̂

]
(f̂k + ĝk)+

[̃
σk + T ṽk

ṽk

]
(65a)

f̂k ∈ Γ̂(v∗k+1, sgn(−σ∗
k+1)) (65b)

and that the real states {xk}k∈N are in the neighborhoods of the
predicted states, as can be written as xk ∈ x∗

k + TE where

E �
{[

Htã−Tεσ
ã− Tεv

]∣∣∣∣ |ã| < Ua, |εσ| < Uσ, |εv| < Uv

}
.

(66)

Therefore, the rest of the proof focuses on the properties of the
sequence {x∗

k}k∈N of the predicted states.
Equations (65) and (38) yield the following:

|σ∗
k+1| − |σ∗

k|
T

≤∀

⎧⎪⎨
⎪⎩

γ+(v
∗
k+1, ĝk, wσ,k) if σ∗

k+1 > 0

−|σ∗
k|/T if σ∗

k+1 = 0

γ−(v
∗
k+1, ĝk, wσ,k) if σ∗

k+1 < 0

(67)

where

γ̂+(v, g, wσ) �
H

M̂

(
M̂v

H
+ Γ̂(v,−1) + g +

M̂wσ

H

)
(68)

γ̂−(v, g, wσ) �
H

M̂

(
−M̂v

H
− Γ̂(v, 1)− g − M̂wσ

H

)
.

(69)

Let us choose v̂s so that

∀v ∈ v̂sB, −
M̂v

H
+

(
R̂+

M̂Wσ

H

)
B ⊂ Γ̂(v,B). (70)

The existence of v̂s satisfying (70) is implied by the condi-
tion (64). Then, these functions satisfy γ̂+(v

∗
k+1, ĝk, wσ,k) ≤

−Hδ/M̂ and γ̂−(v
∗
k+1, ĝk, wσ,k) ≤ −Hδ/M̂ if x∗

k+1 ∈ V̂ ,
where

V̂ �
{
[σ, v]T | v ∈ v̂sB

}
. (71)

This means that |σ∗
k+1| < |σ∗

k| −Hδ/M̂ is satisfied for all

σ∗
k+1 �= 0. Therefore, the subset S ∩ V̂ can be reached from a

neighborhood of it by the sequence {x∗
k}k∈N in a finite number

of timesteps. It is also the case with the subset (S ∩ V̂) + TE
and the sequence {xk}k∈N .

A careful observation on (65) and (38) shows that if x∗
k+1 ∈

S ∩ V̂ , we have σ∗
k+1 = 0 and

v∗k+1
2 − v∗k

2

2T
< −

v∗k+1

H
(v∗k+1 + Twv,k + σ∗

k/T ). (72)

This implies that if x∗
k+1 ∈ S ∩ V̂ and x∗

k ∈ S (i.e., σ∗
k = 0),

|v∗k+1| ≤ |v∗k| if |v∗k+1| ≥ TWv . Let us define

T �
{
[σ, v]T | |v| < TWv

}
(73)

and assume that Wv is small enough to satisfy T ⊂ V̂ . Then,
one can see that, once x∗ ∈ S ∩ V̂ is achieved, {x∗

k}k∈N does
not deviate from the subset S ∩ V̂ (which, thus, can be said
to be positively invariant) and eventually reaches the terminal
attractor S ∩ T . It means that the real state sequence {xk}k∈N

reaches (S ∩ V̂) + TE in finite time, stays there after that, and
eventually converges to the terminal attractor (S ∩ T ) + TE .

(b) Asymptotic stability of the origin.
Let us define

V̂ ([σ, v]T ) = κ|σ|+Hv2/2 (74)

where κ is a positive constant. Careful derivation shows that

V̂ (x∗
k+1)− V̂ (x∗

k)

T
≤∀ −v∗k+1(v

∗
k+1 + TWv)

+

⎧⎨
⎩

γ̂+(v
∗
k+1, ĝk, wσ,k)

(
κ+ v∗k+1

)
if σ∗

k+1 > 0
0 if σ∗

k+1 = 0
γ̂−(v

∗
k+1, ĝk, wσ,k)

(
κ− v∗k+1

)
if σ∗

k+1 < 0.
(75)

Let us choose κ > v̂s. Then, one can see that V̂ (x∗
k+1) < V̂ (x∗

k)

if σ∗
k+1 �= 0 and x∗

k+1 ∈ V̂ and if σ∗
k+1 = 0 and x∗

k+1 �∈ T .
Therefore, V (x∗

k) monotonically decreases in a neighborhood
of S ∩ T and thus a level set including S ∩ T is asymptotically
stable in terms of the predicted state x∗. It also implies that
the real state arrives in a neighborhood of a level set including
(S ∩ T ) + TE , which thus can be said to be asymptotically
stable. �

Remark 3: The approach of the abovementioned proof is
similar to that adopted in Section V.B and V.C of [25] in that they
involve the predicted states, real states, and error between them,
and the sliding surface is achieved by the predicted states. One
feature of the abovementioned proof is that a relatively com-
plicated Lyapunov function constructed for the continuous-time
system is reused in a discretized form.
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