Journal of Intelligent & Robotic Systems
https://doi.org/10.1007/510846-025-02335-z

(2026) 112:16

REGULAR PAPER l')

Check for
updates

Ensuring Viability: A QP-based Inverse Kinematics for Handling Joint
Range, Velocity and Acceleration Limits, as Well as Whole-body
Collision Avoidance

Yachen Zhang'® - Ryo Kikuuwe'

Received: 20 January 2025 / Accepted: 14 November 2025
© The Author(s) 2026

Abstract

This paper proposes a new quadratic programming (QP) based inverse kinematics (IK) method to simultaneously handle
physical joint limits and whole-body collision avoidance, including self-collision and collisions with static obstacles. These
constraints may conflict with each other and result in infeasible solutions of IK, which can subsequently produce unpredictable
motions. The proposed method incorporates an additional linear constraint to ensure that the robot state is viable, guaranteeing
the existence of solutions that do not violate the given constraints. Our IK method consists of two stages: the offline construction
stage and the online computation stage. In the offline construction stage, the parameters of the proposed constraint for ensuring
viable states are calculated. In the online computation stage, the proposed constraints are updated in realtime based on the
robot’s state, and the IK is solved as a QP problem. The proposed method can effectively handle most robots with DOFs below
10 and can also accommodate some robots with higher DOFs under simpler constraints. This marks a significant advancement

compared to previous studies. The validity of the proposed method is illustrated through some simulation results.

Keywords Inverse kinematics - Collision avoidance - Quadratic programming - Mixed-integer linear programming -

Viability kernel

1 Introduction

The inverse kinematics (IK) is one of the essential and foun-
dational aspects of robotics. It is the process of calculating
the corresponding joint angles in the joint space based on
the given target position and orientation of the end effector
in the task space. A significant challenge in IK is managing
the physical joint limits of the robot, specifically the joint
range, velocity, and acceleration limits. Pseudoinverse-based
IK can strictly satisfy all these physical limits by employing
task scaling techniques, which directly modify solutions that
exceed the limits [1], or compensate the solution through
projection onto the null space [2]. Nevertheless, merely sat-
isfying physical joint limits is typically insufficient to ensure
safe motion. Collision avoidance, including the prevention

B Yachen Zhang
yachenzhang @mdl.hiroshima-u.ac.jp

Ryo Kikuuwe
kikuuwe @hiroshima-u.ac.jp

Machinery Dynamics Laboratory, Hiroshima University,
Hiroshima, Japan

Published online: 05 January 2026

of both self-collisions and collisions with external obstacles,
is also essential. Optimization-based IK methods are more
suitable than pseudoinverse-based methods for addressing
physical joint limits in combination with collision avoidance,
as they are capable of explicitly handling multiple inequality
constraints. Collision avoidance can be translated into vari-
ous forms of constraints, such as inequality criteria involving
uniquely defined Jacobian matrices [3], differential inequal-
ities for barrier functions [4], and velocity field inequalities
at the acceleration level [5].

Unfortunately, optimization-based IK may encounter infea-
sible solutions, even when it only handles the physical joint
limits [6]. For example, when a single joint approaches its
boundary at a high velocity, it may be unable to avoid sur-
passing the boundary under an acceleration limit. Park et al.
[6] proposed an approach to estimate the joint angle over sev-
eral control loops, allowing buffer time for joint deceleration.
This method results in stricter bounds and does not guaran-
tee constraint compatibility. To provide formal guarantees of
satisfying all the physical joint limits forever, additional con-
straints are required to ensure that the robot’s state remains
viable [7]. Starting from a viable state guarantees the exis-

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10846-025-02335-z&domain=pdf
https://orcid.org/0000-0003-4818-2563
https://orcid.org/0000-0002-1500-6777

16  Page2of16

Journal of Intelligent & Robotic Systems (2026) 112:16

tence of a sequence of solutions that will satisfy all the
constraints in the future. Various constraints to ensure viable
states are proposed based on the fact that physical joint limits
are expressed as decoupled joint constraints, which indepen-
dently relate to each joint. Decre et al. [8] predicted the
future position trajectory under maximum deceleration to
ensure viable states, but their method may lead to conflicts
between velocity and acceleration constraints. Rubrecht et
al. [9] employed a conservative but safe constraint to ensure
viable states to avoid all the constraint conflicts. The optimal
constraints were proposed by [10] to obtain the maximum
number of viable states. But this method becomes numer-
ically unstable near the static state of robot and requires
fine-tuning of the sampling time to maintain stability.

When collision avoidance and physical joint limits are
considered together, computing constraints to ensure viable
states becomes more challenging. A general method is via-
bility kernel algorithm [11], which involves gridding the state
space to find an alternate set of constraints ensuring the viabil-
ity of the state. Consequently, this algorithm faces the curse
of dimensionality, meaning the problem size grows exponen-
tially as the dimensionality of the state space increases. Some
researchers have proposed more efficient methods tailored
to IK. To avoid collision with obstacles, Rubrecht et al. [9]
use the minimum distance between the robot and obstacles to
trigger deceleration motion of joints, governed by their afore-
mentioned constraints of physical joint limits. This method
was improved in [12] by adding a prediction process with
mixable joint deceleration to eliminate potential oscillation
during deceleration. Faroni et al. [13] developed time-varying
joint bounds to guarantee viable solutions for hierarchical
QP-based IK when tracking a known collision-free trajec-
tory. These approaches prevent collisions by dynamically
adjusting joint limits, but causing the corresponding set of
viable states to vary over time. This adds the complexity of
computation of optimization.

This paper proposes a new QP-based IK method to
simultaneously handle physical joint limits and whole-body
collision avoidance, including self-collision and collisions
with static obstacles. In the proposed method, whole-body
collision avoidance and joint range limits are approximated
as constant, linear and coupled inequalities in joint space,
referred to as compound joint constraints. A new additional
constraint to ensure the viability is employed to make the
whole IK problem computationally tractable. Our IK method
consists of two stages: the offline construction stage and the
online computation stage. In the offline construction stage,
the determination of constant parameters relating to the pro-
posed additional constraint are formalized as mixed-integer
linear programming (MILP) and QP problems. In the online
computation stage, the proposed constraints are updated in
realtime based on the robot’s state, and the IK is solved as a
simple QP problem.

@ Springer

The contribution of this paper is summarized as follows:

e A new QP-based IK method is proposed to ensure viable
solutions while handling both physical joint limits and
whole-body collision avoidance.

e Unlike previous studies [9, 12, 13] that realize colli-
sion avoidance by adjusting join limits, we integrate both
types of constraints into a unified form that yields a static
set of viable states. This enables lower computation cost
of the optimization.

e For scenarios where only physical joint limits are
required, the proposed method guarantees high approx-
imation accuracy while maintaining superior numerical
stability compared to [10].

e In scenarios also requiring collision avoidance, the pro-
posed method efficiently determines appropriate param-
eters to guarantee the solution is viable. It is scalable to
robots with at least 10 DOFs, whereas the classical viabil-
ity kernel algorithm [11] is typically restricted to systems
with at most 3 DOFs.

The paper is organized as follows. Section 2 provides
mathematical preliminaries and the problem formulation.
Section 3 gives the derivation of the constraints to ensure
viable states. Section 4 describes the whole procedure of the
proposed IK method. Section 5 validates the proposed IK by
numerical simulations. Finally, Section 6 draws the conclud-
ing remarks.

2 Preliminaries
2.1 Mathematical Preliminaries

Throughout this paper, R and Z denote the sets of all real
numbers and integers, respectively, R.o and R>o denote
the sets of all positive and non-negative real numbers,
respectively, and Z~o and Zx( denote the sets of all pos-
itive and non-negative integers, respectively. Inequalities
between vectors are interpreted element-wise. The operator
©® denotes the element-wise multiplication of vectors, and
min(), max(), and /() applied to vectors are read as element-
wise functions. The bold-face 0 and 1 represent the vector of
zeros and ones with appropriate dimensions, respectively.
For conciseness, we define the following functions:

H@) 2 {xeR"| —a<x <a} (1a)

B, V)£ [Bwi, V1), -, Bug, V)" (1b)
Pifv>V

Bw,V)={1lifv=V (Ic)
0ifv <V,



Journal of Intelligent & Robotic Systems (2026) 112:16

Page3of16 16

wherea e RL;,v e R",V e R",v e R,and V € R(. With
a positive definite matrix W € R"*", the weighted Euclidean
norm ||z||w of z € R” is defined as || z||lw = vz Wz.

This paper deals with a second-order system whose state
and input are [qT, qT]T € R*" and g € R", respectively,
where g € R". To discuss the problems in the discrete-time
domain, we assume that the discrete-time counterparts of ¢,
¢, and § have the following relations:

="+ 1@ +dH2 (2a)
i =¢" '+ 1§ (2b)

where k € Z>( denotes the discrete-time index and 7 is the
sampling interval. We also define the following map F based
on (2a):

F(g.4.0) = {ti*

[q+T(qj+q*)/2} EC} 3)
q* '

Here, C can be a subset of the state space R*". The following
relations can be given due to the definition (3) of F:

@ rgt e F@ @ o = 1@H . @H ec (4a)

i* e (F@ " ennF@ i @) ¢ iF e F@* i aine)
(4b)

i* e (F@ @ DU F@ " e) & i e F@ g eiue)
(4¢)

As revealed by (4a), F (qk’1 , q""1 , C) provides all pos-
sible velocities ¢* for states within C that are reached from
(g H", @ H"".

By observing the definition (3) of JF, one can see that
when a set C and a constant § € R” are given, all the states
(gD, @ DT satisfying

Gg=q""+1¢""2 5)
will cause the same F(g¥~!, ¢*~1, C). From a geometric per-
spective, (5) indicates the intersection of hyperplanes in R"
state space. On the other hand, obtaining F(g*~!, g*~1, C)
can be achieved by substituting (2a) into the expression for C
and solving it. Geometrically, this corresponds to finding the
intersection point between the hypersurface of the boundary
of C and the hyperplanes associated with

i =/T)¢" - ¢, (6)

which is obtained by replacing g¥~! and ¢¥~! in (2a) with
q based on (5). Therefore, when ¢ is given, every state
[(g* DT, (g~—hHT T satisfying (5) will reach the state sat-
isfying (6) in the next timestep. For a one-DOF system,
graphically obtaining F(g*~!, ¢*~!, C) can be described as
follows, which is also illustrated in Fig. 1:

1. Drawing a line with the slope of —2/T through (¢g¥~!,

¢*=1) and intersecting it with the horizontal axis to obtain
(g, 0). This line corresponds to (5).

2. According to (6), another line with the slope of 2/7 can
be plotted by passing through the obtained point (g, 0).

3. Intersecting the line obtained in the previous step with
the boundary of C to obtain all the intersection points
oo (xj, vi), -+ . Then, F(gk~1, g1, C) is determined
by the vertical coordinates y; of these intersection points.

<
9
L

Velocity [rad/s]
o

Yi1o-

Position [rad]

Fig.1 Illustration of obtaining F(g*~!, ¢*~1, C), where [¢* !, ¢*~ 117 e R2. The yellow area represents C, while the blue dotted and dash-dotted
lines correspond to (5) and (6), respectively. In the case of this figure, the vertical coordinates of intersection points between the blue dash-dotted
line and the boundary of C are y; and y,, which determine F(g*~1, g1, C) as {¢*|y; < ¢* < y2)

@ Springer



16  Page4of16

Journal of Intelligent & Robotic Systems (2026) 112:16

2.2 Viability Theory

Viability theory [7] is an area of mathematics to study dynam-
ical systems under various constraints that are imposed on
their state and inputs at every moment. In this paper, the
state and the input are subject to the constraint [g7, 4717 e
X A ¢ € Awhere X is a subset of the state space and A is a
subset of the input space. According to the viability theory,
a state [(g*)7, (¢*)T17 is said to be viable if there exists a
temporal pattern of § € A that keeps the state within X for-
ever once it starts from [(g*)7, (¢*)T17. The set of all viable
states can be formally written as

*

Ke(A, X) = ! [g*] ex ‘ 3G :Rsp — As.t.

q(O)} [q*} [q(t)] }

. =L A e XVt eRxgyt. 7
[qw) | " Law =0 @
Here, ICc(A, X) can be said to be the viability kernel of the
second-order integrator on the set X under the constraint

¢ € A.Based on (2), we can define a discrete-time analogue
IC of the viability kernel &C; as follows:

*

KA, X) & { |:Z*i| e X | 3{'q'k € Alrezy St

0 * k
BO}=[2*} A Q) A [gk}eXVkeZZ()}. ®)

It should be noted that IC.(A, X) € X and K(A, X)) C X
are always satisfied by definition.

The viability kernel X (A, X) is commonly challenging to
obtain. One approach is to compute a conservative approxi-
mation (a subset) of (A, X). We consider using another set
V to trim X so that the set V N X is a subset of IC(A, X), as
illustrated in Fig. 2. We name such a set V, which satisfies

VNX CKA X)X, ©)

Fig.2 Illustration of the subset X of the state space, the viability kernel
K(A, X) and an auxiliary viability set V

@ Springer

as an auxiliary viability set corresponding to X’ and A. There
can be various methods to derive an auxiliary viability set.
In this paper, we consider a set V* whose representation
includes unknown parameters. These parameters are then
determined on the basis of the following lemma to ensure
that V* serves as an auxiliary viability set:

Lemma 1 Consider the discrete-time system (2) and subsets
ACRY X C R, and V* C R**. Assume that the follow-
ing condition holds:

Vigh, 41T eVvinx), 3je A (10a)
st. (§+T§) € F(q.q.V") (10b)
NG+TG) eF(q.q,X), (10c)

then V* serves as an auxiliary viability set under X and A.

Proof According to (2), (4a) and (4b), if (10) is satisfied,
thenVk € Z-oand V[(¢g* )T, (¢*"HTT € (V*NX), there
exists §* € A such that [(¢©)T, (¢©)T1T € (V* N X). Thus,
every state in V* N X' is viable as indicated by (8), which
implies V*NAX C K(A, X). This confirms that V* serves as
an auxiliary viability set under X" and A due to (9). O

2.3 Problem Formulation

Consider a robot with n DOFs, and let ¢ € R” be the joint
variable vector of the robot. The position and orientation
in task space are represented by p(g) € R3 and R(q) €
R3*3, respectively, both of which can be obtained via forward
kinematics from q. The desired position and orientation are
denoted by p,; € R3 and R; € R3*3. We assume that Pd»
R, and ¢ are functions of time 7.

In general, a robot may be required to simultaneously
satisfy multiple task-space objectives. For example, the posi-
tions and orientations of multiple frames attached to different
links, such as the end-effectors, cameras, and force sensors,
may need to track corresponding desired values. Let p;(q)
and R;(q) denote the position and orientation of the i-th
task-space frame, and let py; and Ry; denote their desired
values.

We consider the problem of determining g or either
of its derivatives, such that a set of task-space variables
{---, pi(q@), Ri(q), - - - } closely track their respective desired
values under various constraints. The pure inverse kinematics
(IK) problem is the problem to solve the following nonlinear
equation with respect to q:

e(q) =0, (11)

where the track error e(q) € R’ is defined as e(q) =
[---,ei(q), - 17, with each component e;(q) € R3 given



Journal of Intelligent & Robotic Systems (2026) 112:16

Page50f16 16

by

) pai — pi(q) for position variable

N (InRy; RiT (g))¥ for orientation variable.

ei(q) 12)

Here, the notation (InR, RbT )V represents the rotation vector
from the attitude R}, to the attitude R,, which is explained in
detail in Section 2.2.7 of [14] .

Directly solving the pure IK (11) at every moment, how-
ever, may be practically inconvenient because (11) may not
have solutions when it is infeasible to achieve all desired val-
ues pgi and Ry;. Moreover, even if the pure IK (11) has a
solution ¢, it may be outside the physical motion limits of
the joints, which can be described in the following form:

qmin E q E qmax (13)
where g™" € R” and ¢™* e R”. In addition, there may
be other various geometric constraints on the robot, includ-
ing contact with the external environment and self-collisions.

Such geometric constraints can generally be written in the
following form:

g(q) = 0. (14)

Here, g : R" — R is a function that returns the minimum of
the distances from all potential collisions, which is negative
if there is a collision or a penetration.

In order to track desired values, we also need to care about
the joint velocity and joint acceleration, which should satisfy
constraints of the following form:

q' c H(v]im)

(15a)
(15b)

where v'I™ € R? , and a'™ ¢ R, are the vectors of veloc-
ity and acceleration limits, respectively. Moreover, the state
g7, 471" should be kept viable, in the sense that it should
remain satisfying the constraint (13)A(14)A(15). The viabil-
ity condition can be written as follows:

la".q"1" € Ke (H@'™), x) (16)
where
X 2 (g7, ¢" 1" 1(13)A(1h)A(15)}. (17)

Because the condition (16) implies (13)A(14)A(15a), we can
see that (15b) A (16) is the constraint that should be imposed
on ¢ and its time derivatives.

Under these constraints, we consider determining ¢ and
its derivatives so that they satisfy the following:

tJ(q)q —e(q) =0 (18)

where J(q) £ —de(q)/dq < RI>7. As long as (18) is sat-
isfied, it becomes 7é(q) + e(q) ~ 0, which means that the
track error e(q) would converge to 0 with the lag of the time
constant t. We refer to this problem also as an IK problem,
in the same light as previous studies such as [15, 16].

In the discrete-time domain, we assume that ¢ and its
derivatives are connected with one another by (2). Then, we
need to obtain qk that satisfies (18) under the constraints
(15b) and (16), whose discrete-time counterparts are

G —§¢*H/T e H@™
[¢". @1 e K (H@™). x).

(19a)
(19b)

That is, the IK can be formulated as the following optimiza-
tion problem:

minimize

G T = By, + 160 1, (20a)

st.gke F (qk_l, G5, K(H(a ™), X)) (20b)
G —§¢* /T € H@"™) (20¢)

where Wi € R'*! and W, € R™*" are symmetric positive
definite matrices and

Jk—l L J(qk—l) c Rlxn
bl 2eg* Y e R

(21a)
21b)

[I>

Here, the second term of (20a) is intended to reduce the
velocity ¥ if some redundancy remains even after the first
term becomes small enough, and (20b) ensures that (19b) is
met according to (4a).

The problem (20) is not convenient because it involves
the nonconvex constraint (14) in X. Therefore, this paper
approximates the constraint (13) A (14) by a compound joint
constraint as

Ag < g™, (22)

which ensures {g](22)} C {g|(13) A (14)}. Here, A € R™*"
and §"™ e R”™. Such an approximation can be derived by
approaches proposed in, e.g., [17] and [18]. Based on the
linear approximation (22) of the nonconvex constraint (13)
A (14), now we approximate the set X by X'* defined as
follows:

X* 2 (g7, ¢T1T122)A(152)} C X. (23)

@ Springer



16  Page6of 16

Journal of Intelligent & Robotic Systems (2026) 112:16

In order to deal with the set IC(H(a'™), X') appearing in
(20b), which is not easily obtained, we consider replacing it
by a conservative approximation using the auxiliary viability
set V introduced in Section 2.2. The combination of these
approximation results in the following:

VN X* CKH@™), x*) € K(H@™), x). (24)

Thus, the original IK problem (20) can be approximated in
the following form:

minimize ||J*~14" = "Iy, + 14" iy, (25a)
st. gk e F(g* 1 ¢~ v (25b)
§* e Fg* ' ¢ A (25¢)
@G —§¢""/T e H@™). (25d)

Here, (25c¢) is a linear constraint of ¢~ and (25b) A (25¢)
ensures that the obtained state [(¢%)7, (§*)T17 is within
K(H(a"™), X) due to (4b) and (24). The remaining prob-
lem, which will be discussed in the subsequent sections, is
to derive an appropriate ) that transforms the problem (25)
into a QP problem.

3 Derivation of Auxiliary Viability Set

3.1 Auxiliary Viability Set for One-dimensional
Position Constraint

This section discusses the simplest case that includes a single
joint subject to angle, velocity, and acceleration constraints,

,Ulim

K1 NN

Velocity [rad/s|
Nl

a2

_plim

lim

Position [rad]

@

which can be written as follows:

q<q™ (26a)
G € HE"™) (26b)
G € H(@™). (26¢)

Here, qlim € R, vi™ € R_g, and ¢™ € R_.

The viability kernel of this discrete system can be written
as KC (’H(ahm), {(26a)/\(26b)}), and, because of the simplic-
ity of the system, it can be analytically obtained as follows:

Kp 2 K (H@™), {262)A26b)}) = V,(g"™, a'™) N {(26a)A(26b)}
27

where

V(g™ alimy & {[q, ar ‘q < \/2alim max (0, glim — q)} ) (28)

This expression is derived based on the requirement that the
angle ¢ must stop with full deceleration (i.e., §j = —a'™) to
avoid exceeding the limit ¢"'"™. It should be emphasized that
the set V), (g™, a""™) serves as an auxiliary viability set due
to (27). The illustration of K, and V), (g"™, a""™) are shown
in Fig. 3(a).

Since V, (g"™, a""™) serves as an auxiliary viability set
under the constraints (26), it can be applied in the IK problem
(25) for a system constrained solely by physical joint limits
(13) A (15), which can be decoupled into the combination of
(26). In this case, each component of the IK solution must
satisfy

i* e F(@"" ¢ V"™, d™) (292)
-k k=1 -k—1
q" €F(q " .q , {(26a)A(26b)}), (29b)
,Hlim \~ < 7
' ("1, ¢") 3
] O
> s \ /
—_— / N 7/
% // A'\\ v
L R K \Ed
= 0 / P /
8 e
&} / v
> 7 1/
7 /
7/ v
7
7/ 7
7Ulim -// //
¢ T2 Jim
Position [rad]
(®)

Fig.3 (a) The illustration of K, and /C;. The yellow area represents K1, and the cyan area combining yellow area indicates /C),. The dashed lines
of different colors express the different boundaries of sets, with black indicating {(26a) A(26b)}, blue indicating V), (q"m, a'"™), and red indicating
Vi (g™, alimy, respectively. (b) A state satisfying g*~! + T¢*~1/2 < q“m (indicated in blue) can come to a stop at the next timestep (i.e., ¢* = 0)
when required, while a state with qk*1 + qu*‘ /2 > q“m (indicated in red) cannot. The yellow area expresses k). The green line in (a) and (b)

corresponds to the boundary of B defined in (33)

@ Springer



Journal of Intelligent & Robotic Systems (2026) 112:16

Page70of16 16

which are derived according to (25b) and (25¢), respectively.
According to the definition (3) of F, the two conditions can
be obtained as

i = 20 max(0, g™ — (g1 + T (gt +)2)

(30a)
§* < /T (g™ — g —T¢* 1 )2) (30b)
Gt € H@'™). (30¢)

Here, (30a) and (30b) A (30c) are derived from (29a) and
(29b), respectively, and (30a) can be solved analytically
according to Appendix A:

qk S gp(qkil» q’k711 q

lim’alim)’ (31)
where g, : R x R x R x R.9 — Ry is defined as

lim alim) 2

gp(q,q.9",

(—a“mT + \/(alimT)Z + 8alim max (0, glim — ¢ — Tq/Z)) /2. (32)

Here, the output of g, is always nonnegative due to the term
of max(0, *). Please notice that (30b), (30c) and (31) are
linear inequalities of ¢, thereby transforming the problem
(25) into a QP problem.

Unfortunately, applying (30b), (30c) and (31) in (25) may
lead to a numerical issue. A state [¢¥~!, §*~117 belonging
to the following set always causes (30b) into ¥ < 0:

B2 {[q,q]T|q+Tq/2 SPLLIS (33)

where the boundary of 3 is a line with the slope of —2/T pass-
ing through (¢""™, 0), as shown in Fig. 3(a) and (b). Therefore,
a state [¢¥~1, g*~117 within B cannot come to a stop at the
next timestep (i.e., ¢ = 0) when required, which can be
graphically shown in Fig. 3(b) based on the discussion in
Section 2.2. This may cause the obtained solution to oscillate
around qlim, which is also reported in [10], and is illustrated
in Section 5.1.

To address this issue, one approach is to ensure that the
states will never belong to B. For this purpose, we define a
new set by shifting V,(¢'™, a''™) to the left by T2a'™/8,
which is given by

Vl (qlim’ alim) é Vp(qlim _ Tvzalim/g7 a]i]‘l’l)' (34)

As shown in Fig. 3(a), the new set is still an auxiliary viability
set due to Ky C IC),, where

K1 2 Vi(@"™, a"™) 0 {262)A26b)}. )

The boundary of 3 is tangent to the boundary of V; (g™, a!™),
ensuring that C; N B = @. Consequently, V) (q“m, alimy g
the closest shifted set derived from V), ("™, a"™) that can
resolve the aforementioned issue. Since the shift magnitude
T?a'™ /8 is very small in practice, K1 typically serves as
a close approximation to K,,. The corresponding condition
instead of (31) is given by

k—l’ q'k—l’ qlim’ alim) (36)

i* <gi1(q
where g1 : R X R x R x R.g — R is defined as

a1 (@ g ™y 2 g (g1 AL gim g g glimy
(37

In conclusion, (25b) A (25¢) corresponding to K; can be
obtained as

q* € F@* 1, ¢ vig™, a™)) A (29b) (38a)
<= (36) A ((30b) A (30c)) (38b)
< (36) A (30c). (38¢)

Here, (38b) can be simplified to (38¢) as proved in Appendix
B, under the condition ¢"™ — ¢g¥=1 — T¢*=1/2 > 0. This
condition always holds when [¢¥~!, ¥~ 11T € K| because

of KiNB=40.
3.2 Auxiliary Viability Set for Single Row of
Compound Joint Constraint

In this section, we consider (15) combining one row of the
compound joint constraint (22) as the hard joint constraints:

c'q <g"™ (39a)
g € H'"™) (39b)
g € H(a"™). (39¢)

Here,c € R" and élim € R. Note that (39a) can be interpreted
as the one-dimensional constraint (26a) because it actually
limits the scalar ¢’ ¢. Based on this fact, a new set in R can
be constructed by extending V;(¢"™, @"™) in Section 3.1 as
follows:

V@™, @™ 2lg". 4" e g " 41T e Vi@ at™)).

(40)
Here, @™ e R.( is a constant to be determined and
Vo (¢""™, @'"™) is the set of states ensuring that ¢’ ¢ can
reduce to 0 before ¢’q reaching §"™ — G'"™72/8 under
¢’§ = —a"™. In other words, (39a) and V> can be derived
from (26a) and V; by substituting ¢, ¢, ¢""™ and "™ with

@ Springer



16  Page8of 16

Journal of Intelligent & Robotic Systems (2026) 112:16

~lim ~lim

c’q, c’q, g"™ and a"™, respectively. Thus, applying F for
V,» and (39a) can be derived as follows by referencing the
derivation of (36) and (30b), respectively:
o7 q <g1(c’q k—1 chk—l, qlim alimy

"t < /TG —eTq" ! -

(41a)

cl§=1)2). (41b)
Please notice that (41a) A (41b) can be simplified to (41a)
for the same reasons as (38). Finally, the constraints corre-
sponding to F(g*~1, ¢¥=1, W, (g™, a"™) N {(39a) A (39b)})
can be given by

(41a) A ¢5 € HE™). (42)
To apply (42) in IK (25), "™ must be determined to ensure
that V("™ @"™) serves as an auxiliary viability set under

(39). This requires the following condition to be satisfied, as
stated in Lemma 1:

Vig",¢"1" e @™, a'™) N ((39a) A (39D))), 3§ € H(a"™)

(43a)
st.el§ < (g1eq. T, g"™, a"™) — T g)/T (43b)
A (=M — gy T <G < "™ - ¢)/T. (43c)

Here, (43b) A (43c) is obtained by substituting (2b) into
(42). Satisfaction of the above condition requires verifying
the existence of § by traversing every [q”, 717 specified in
(43a). This traversal can be represented as a two-level nested
loop: the outer loop iterates over ¢ € H(v'"™), while the
inner loop traverses each ¢ that satisfies

c"qg <g"™ nlc"q,cTq1" e Vi@, am). (44)

Here, the second condition in (44) is rewritten from [¢ 7, 77
V5 (g™, a"™) according to the definition of V5.

Due to the complexity of this nested loop, it needs to
be equally simplified. Since ¢ is within H(v'"™) in the
outer loop, the left-hand side and right-hand side of (43c)
are always nonpositive and nonnegative, respectively. When
c’q < 0, the right-hand side of (43b) will always be posi-
tive because the output of g; is nonnegative. This implies that
(43) is always satisfied in the case of § = 0 when ¢/ ¢ < 0.
Thus, the outer loop only need to iterate over ¢ € D to verify
the existence of ¢, where

2 (g e HW'™)| "¢ > 0). (45)

@ Springer

Furthermore, as shown in Appendix C, the following condi-
tion holds for all ¢ satisfying (44) when ¢ ¢ > 0:

gi(c'q, ¢"4,3", ") = max(0,¢"g —a"" 7). (46)
During the inner loop that traverses each ¢ that satisfies (44),
if the following condition is met:

¢'§ < (max(0, ¢’ ¢ —a"™ 1) — ")/ T, (47)
then (43b) is always satisfied due to (46). As a result, the
entire inner loop can be omitted because both (47) and (43c)
are independent of ¢. In conclusion, the necessary and suffi-
cient condition of (43) can be given by

Vg € D, 3§ € H(a"™) (48a)
st.elg<—cTq/T if0 <c’q <a™r (48b)
Aclg<—a"™ ifeTqg>a™r (48c)
A (=" — )T < G < ("™ —¢)/T. (48d)

Here, (48b) A (48c¢) is rewritten from (47).

Even though (48) is a simplified version of (43), deter-
mining @"™ remains challenging. Thus, we further simplify
(48) to the following sufficient condition of it, based on the
fact that ¢7§ < —a'"™ < —¢T§/T holds in (48b) due to

clq < alimr.

Vg € D, 3§ € H(a"™) (49a)
st. —elg > a"m (49b)

A (= =)/ T < § < '™ —§)/T. (49¢)
Here, (49b) is a more conservative condition of (48b) A (48c¢).
Please notice that as T gradually decreases to 0, the condi-
tions (48b) A (48c) and (49b) converge until they serve as the
same condition. This convergence indicates that when T is
sufficiently small, (49) can be regarded as both a necessary
and sufficient condition for (48).

Since (49) is a sufficient condition for (43) and (48), the
value of '™ ensuring them can be determined based on (49).
For each g in (49), @"™ must be smaller than the maximum
of —¢T'§ with the condition § € H(a"™) A (49¢) to ensure
the existence of a feasible §. Since a larger @™ provides
better deceleration performance a"™ should be chosen as
the maximum of —c”§ for each ¢. Such process will be
considered while traversing all ¢ € D to determine the final
value @"™, which can be described by the following linear



Journal of Intelligent & Robotic Systems (2026) 112:16

Page9of16 16

bilevel optimization problem:
. max —cT§

&llm — min jeH(am) 4 . (50)

—§)/T <§ < @"™—¢)/T

4geD s.t. (_vlim

This problem possesses a unique structure that simplifies

its resolution compared to general problems. Since the opti-

mal value of the inner maximization problem in (50) can be
explicitly obtained, (50) can be derived as

@"™ = min i —¢i max ((_Ull'im —-q)/T, —a}im) ifc; >0
4D \ = | —ci min (@™ — 4:)/T. af™) ifc; <0

(51a)
= min (Z i min (ol +c,»c;,-/|ci|>/T,a}im)> (51b)
= min (me (deilof™ + cig/7, c,|a‘"“)) (51c)

Comparing the three equations in (51), the form of (51a)
is overly complex, while (51b) may encounter zero division
errors when ¢; &~ 0. Thus, (51c) is chosen as the basis for
further derivation.

The above problem (51c) can be further reformulated into
a MILP problem:

am™m= " min 17z (52a)
2,§€D,§€{0,1)"

s.t.z <le|©al™ (52b)

72> leloa™ — M1 - ) (52¢)

z<(lc]ov™+co¢)/T (52d)

2> (| ©v'"™ + ¢ 0 §)/T — MS.
(52¢)

Here, z € R" and § € {0, 1}" are auxiliary variables and
M € Ris alarge constant satisfying the following condition
forall ¢ € D:

le] © @™ — M1 < (le] @ v'"™ + ¢ 0 ¢)/T
A (el @™ +¢0§)/T — M1 < || ©a™

(53a)
(53b)

In this paper, we simply determine M as the maximum
element of the vector (|c| ©® max(a'™, 20'™/T — g!™)) to
satisfy (53) forall ¢ € D. With this appropriately determined
M, the constraints (52b)~(52¢) ensure that the obtained
z; equals to the inner minimum term min(x) in (S1c) for
every i form 1 to n. More precisely, (52b)~(52e) lead to
zi = (leiloj™ +¢i¢:)/T Az < |cilaj"™ when §; = 0, and
become z; = |cj|ai™Az; < (|ci|vi™+c;g;)/T whend; = 1.

The MILP problem (52) can be efficiently solved by various
optimization solvers, such as SCIP [19] and GLPK [20].

3.3 Auxiliary Viability Set for Entire Compound Joint
Constraint

Finally, we consider the general case, which is the constraints
discussed in Section 2.3:

Ag < g™ (54a)
g € H"™) (54b)
G € H(a"™). (54c)

One can see that the only difference between the above con-
straints and the case of Section 3.2 is that (54a) is composed
of multiple (39a). Thus, V> defined by (40) can be extended
as follows corresponding to (54):

W (qlim ~1im) A {[qT’qT]T| [Aiq, Aid]T €
V1(th, llm), i=1,--- ,m}‘ (55)

Here, A; € R" is the i-th row of A, and c}}im and &}im
are the i-th component of '™ and @"™, respectively, where

a'™ € R™ is a constant vector to be determined. By refer-
encing the derivation of (42), the constraints corresponding
to F(g"=", ¢, V3(g'™, @™ N {(54a)) A (54b)}) can be
given by

Aig* < g1 (Aig" Tt At g E™y, =1, m
(56a)
A gF e HE™). (56b)

To ensure V3(¢"™, @'™) serves as an auxiliary viability

set, @™ must be determined to satisfy the following condition
according to Lemma 1:

Vig",¢T1" e (V3@"™, @™) N ((540) A (54b))), 3§ € H(a™)

(57a)
st A < (91(Aiq, Aig. /™ @™ — Aig)/T, i=1,---.m (57b)
A (= —g)/T < § = O — g)/T. (57¢)

Here, (57b) A(57c¢) is obtained by substituting (2b) into (56).
This condition is challenging to ensure fully for all cases.
To address this, we propose a method for determining @'™
that satisfies (57) in most practical scenarios, even for high-
dimensional cases suchasm = 1000An = 10. The proposed
method is based on the discussions in Section 3.2. We define
another constant vector ahm R™, where each component

hm is computed by substituting the corresponding AT into

@ Springer



16  Page 100f 16

Journal of Intelligent & Robotic Systems (2026) 112:16

¢ of (52). It is evident that (43) is a necessary condition for
(57). Thus, [1,1}“‘ is an upper bound for @™, as only values of
@"™ smaller than d,l}m can potentially satisfy (57).

Unlike (43), the condition (57) requires accounting for
multiple constraints in (57b). Nevertheless, for any given
g7, 471", verifying the existence of a feasible § does not
necessitate checking all constraints in (57b). Actually, only a
limited number of specific combinations of constraints need
to be considered. When A;q is far from §™, the function g
returns a large positive number, rendering the corresponding
constraint negligible. As A;q approaches c}l.lim, the right-hand
side of the corresponding constraint in (57b) decreases until
it reaches the minimum —Zz}im. In practice, each constraint in
(57b) only affect the solution when the corresponding A;q
is very close to c}}im. Therefore, the combination of multiple
constraints that need to be considered can often be identified
by the vertices of the polytope associated with (54a).

Furthermore, if each constraint in (57b) is ensured to be
individually compatible with (57c), then their combination is
typically also compatible with (57c¢). This fact indicates that
(57¢) can be neglected when @™ < &,llim is satisfied. This is
because &Lim ensures that any single constraint in (57b) holds
under (57c¢), as a result of satisfying (43). In conclusion, for
most practical scenarios, we can assume that the following

condition is the sufficient condition for (57):

Vs € S, 3G € H(a"™) (58a)
s.t.s O (AG +a'™) <0 (58b)

a'm < g'm (58¢)
where

S 2 (s €{0,1}"|§ € vert({Ag <g™™}), s=B(Ag, §"™)}.
(59)

Here, the set vert() includes all the vertices of the given
polytope, which can be efficiently computed using several
methods, such as the double-description method [21]. For
the most of practical cases with small 7 and relative large
a'™ (58) can ensure that (57) holds.

An appropriate @™ satisfying (58) can be obtained by
solving the following QP problem:

minimize
@™ e o gi,oo l@a™ —ay™ |y, + 1€ = coll3, (60a)
s.t.0<&<c (60b)
calm < ghm < glm (60c)
Vs €S,
G € M(@@"™) (60d)
s O (Ag; +a"™) < 0. (60e)

@ Springer

Algorithm 1 Calculation for constant @™

Require: A € R™*" §''™ ¢ R™ olim ¢ Rgo,a“"‘ € RZ,
e:=107°
S:={}
alm := ZERO_VECTOR(m)
for i =1 to m do
aym := MILP(c = AT, v''™ a'im) > Eq. (52)
s := ZERO_VECTOR(m)
for all ¢ € VERT({Aq < ¢"™}) do
for i =1 to m do
if A;G > g™ — ¢ then
si=1
else
s;:=0
PUSH(S, s)
a'™ = QP(A,a"™ @y, S) > Eq. (60)

return @™

Here, each §; € R” corresponds to one element of S,
¢ € Rso represents a scaling factor for &;}m, co €
R.p is a positive constant that is less than 1, W, =
diag([- -, 1/ A%, ---17) € R™™ is a weight matrix
making the obtained @"™ optimal on the actual deceleration
effect, wz € R. ¢ should be a relatively large value, such as
1000. The left-hand side of (60c) can be consider as a soft
constraint to avoid obtaining extremely small elements of
alim'

In conclusion, the determination of the constant vector
a'"™ is summarized in Algorithm 1. With this appropriate
a'"™ V3(g"™, @"™) is ensured to serve as an auxiliary viabil-

ity set, which is expected for IK (25).

4 Procedure of Proposed IK Method

The block diagram of the proposed IK is shown in Fig. 4.
According to the discussion of Section 3, applying V3(§"™,

a''™) to IK (25) results in the following QP problem:

minimize

GE T g = BNy, + 1160 1,

stAgt < gt (Ol
gk_l < q" < qk—l’ (61b)

where
qu;l a _Talim/z + \/2&1im ® max (T2[11im/8, q) (62a)
§2g"™_ Agk —TAG 2 (62b)
Zk_l 2 max(—v"™, ¢! — Ta"™) (62¢)
75" 2 min@'™, g5 4 Tam), (62d)

Here, (61a) A (61b) is reformulated from (25d) A (56), in
which (61a) is the specific matrix form of (56a).

The whole method consists of two stages: the offline
construction stage and the online computation stage. In the



Journal of Intelligent & Robotic Systems (2026) 112:16

Page110f16 16

{,pai, Ry, }

Offline Construction Stage

147 qlun’ ,Ulnn alnn

)

Algorithm 1

dlim

v

Constraint Parameter (62) j¢«—

3

Jacobian and Desired
Velocity (21)

7y '.4"'g
IK (61)
Jh1 g
i
Integration
(22) | Online Computation Stage
k
q

Fig.4 Block diagram of the proposed IK

offline construction stage, the constant vector @M is obtained
through Algorithm 1. In the online computation stage, the
parameters of the constraints and J*~!, b1 in the objective
function of (61) are updated based on [(g*~ 1T, (g~ HT1”
in every loop. One can see that the parameters of (61a) and
(61b) can be calculated by simple equations (62), enabling the
rapid formulation of the QP in realtime applications. Since
the proposed IK method is formulated as a QP with simple
linear constraints, it can be easily extended or integrated with
additional constraints and objective function terms to address
more complex tasks.

5 Numerical Simulation
5.1 Numerical Result 1

We conducted six numerical simulations to compare the pro-
posed method with two related works [9] and [10] on a
1-DOF robot under the sampling interval 7 = 0.01s and
0.1s, respectively. The hard joint constraints of the robot are
setasq < 1,q € H(3), and g € H(12). The target position
is given as 1.1m, which lies outside the robot’s motion range.
The initial state of the robot is [0.02, 0]7.

The results of simulation are shown in Fig. 5. In the phase
portraits of Fig. 5(a) and (b), the yellow area indicates the cor-
responding viability kernel of the robot. It can be seen that
all three methods have high approximation accuracy to the

viability kernel under small 7', e.g., 0.01s, but the accuracy
loss of the method of [9] is much greater than that of other
two methods at large T, e.g., 0.1s. In Fig. 5(c) and (d), tra-
jectories of position, velocity, and acceleration are given. It
can be seen that the method of [10] will cause severe oscilla-
tions of acceleration, and the acceleration strategy of method
of [9] is more conservative. The above results suggest that
the proposed method ensures high approximation accuracy
regardless of the sampling interval, while also having better
numerical stability.

5.2 Numerical Result 2

We simulated the proposed method with a 2-DOF robot,
whose both lengths of arms are Im. The simulation results
are shown in Fig. 6, in which the robot is indicated by purple
lines and green circles, the end-effector is denoted by cyan
circle, the target position is shown by red point, and the tra-
jectory of the end-effector is expressed by blue solid line.
In Fig. 6, the black solid line corresponds to the obstacles,
which are 1m and 0.5m tall in Y direction, and its distance
between the base point of the robot are Im and 1.5m in X
direction, respectively. The physical joint limits of this robot
are given by [00]7 < ¢ < [7 7n/2]7, ¢ € H([1 2]") and
G € H([1512]7). Asillustrated by the black dashed polygon
of Fig. 7(a), the compound joint constraints ensuring colli-
sion avoidance and compliance with the joint range limit are

@ Springer



16  Page120f16

Journal of Intelligent & Robotic Systems (2026) 112:16

Acceleration

=== Rubrecht et al. [9] === Prete [10] === Proposed method

N

Velocity [rad/s]
-

o

Position
[rad]

Velocity
[rad/s]

o

[rad/s?]

—12+

0.2 0.4 0.6 0.8 1.0

Position [rad]
(a)

1

0

3

0

2,

0

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time [s]

©

Velocity [rad/s]

0.0 0.2 0.4 0.6 0.8 1.0
Position [rad]
(b)
1 =
< —
LT
= ©
[T =
o
a
0
3
i /\¥
TT
o ®
g0
c 12
oS-
R
g3 O
o x
o
£ -12
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time [s]
@

Fig. 5 Numerical result 1. (a), (b) Phase portraits of one joint obtained by different IK methods with 7" = 0.01s, and T = 0.1s, respectively.
The yellow area indicates the corresponding viability kernel of the robot. (¢), (d) Trajectories of one joint obtained by different IK methods with
T =0.0ls,and T = 0.1s, respectively

given. The resulting motion range of the robot’s end-effector,
dictated by these compound joint constraints, is depicted by
the black dashed line in Fig. 6.

The simulation is conducted over a duration of 4 sec-
onds. To clearly illustrate the trajectories, the entire process

Y [m]

2.5

is divided into 4 segments at the time points 0.5, 1.5, and
2.5 seconds, corresponding to the 4 sub-figures in Fig. 6.
The joint angle trajectories are depicted in joint space in
Fig. 7(a). At each time segment, a new target position is
assigned, with the initial position of the end-effector marked

2.0

1.5

1.0

0.5

0.0

-0.5

-1.0

1 -1 0 1

X [m] X [m]
(a) (b)

Fig.6 Trajectory of a 2-DOF robot of numerical result 2

@ Springer

X [m] X[m]

(c) (d)



Journal of Intelligent & Robotic Systems (2026) 112:16

Page130f16 16

N
L

— Joint 1
— Joint 2

H
—_ 1
e} 1
©
= 1
c 1
S i
= 1
2.0 3 i
o 1
1
-
1.5 )
a
e}
— 1.0 ©
5 =
(0] >
= Z
~ 'g
S 0.51 <
0.0 &
Y
O
©
-0.5 T T - . g
00 05 1.0 15 2.0 8
g1 [rad] g
§ —12 4
g -151
(@

Timé [s]

(b)

Fig.7 (a) Trajectories of state obtained by the proposed IK method in numerical result 2. (b) Trajectories obtained by the proposed IK method of

numerical result 2

by solid cyan points. The simulation results are presented in
Fig. 7(b), where the red dashed lines represent the aforemen-
tioned time points, and the dot-dashed lines correspond to
the physical joint limits of the robot. According to Fig. 7, all
the given constraints are satisfied, demonstrating the validity
of the proposed IK method.

5.3 Numerical Result 3

We measured the computation time required for the offline
construction stage of the proposed IK method on robots with
DOFs ranging from 2 to 10. All necessary hard constraints
(54) were randomly generated within a predefined range. The
vertices of the polytopes associated with the position con-
straints (54a) were randomly distributed on the faces of a
hypercube with an edge length of 7, ensuring the generated
constraints were practically realistic. The number of faces of
the polytope, which is also the number of the position con-
straints’ rows m was set to 2". This order of magnitude for
m can provide a good balance between constraint complex-
ity and approximation accuracy for the nonlinear geometric
constraints (14) in practical applications. The velocity con-
straint parameter v}im and acceleration constraint parameter
a}im in (54b) and (54c) are randomly generated within the
ranges [0.5, 2] and [1, 5], respectively.

As described in Algorithm 1, the offline construction stage
can be divided into three parts: performing m iterations of

MILP solving, obtaining the set of vertices VERT of the
polytopes associated with (54a) while constructing S defined
in (59), and solving a QP to determine a"'™. For each specific
n, Algorithm 1 was executed 15 times, and the average com-
putation times for the three parts were recorded and presented
in Table 1. The results indicate that the proposed algorithm
can efficiently handle high dimensional cases with up to
n = 10 and m = 1024. Moreover, the results do not imply
that higher-dimensional cases are entirely infeasible. When
the number of rows of the position constraints is reduced,
higher-dimensional cases (e.g., m = 100 and n = 20) can
also be processed within an acceptable computation time.

Table 1 Average computation time of the offline construction stage

Average time [s]

nm MILP VERT QP Total

2 4 0.004747  0.000020 0.001327  0.006094

3 0.007952  0.000041 0.001290  0.009283

4 16 0.039792  0.000120 0.002178  0.042090

5 32 0.115859  0.000380 0.004777  0.121015

6 64 0.289074  0.003725 0.015475  0.308273

7 128 0.927218  0.075500 0.077341  1.080060

8 256  2.798633 2.519383 0.337033  5.655049

9 512 9.151099 109.216535 1.869819  120.237453
10 1024  24.749289  1530.569926 7.775779  1563.094994

@ Springer



16  Page 140f 16

Journal of Intelligent & Robotic Systems (2026) 112:16

6 Conclusion

This paper has proposed a QP-based IK method to simultane-
ously handle physical joint limits and whole-body collision
avoidance, including self-collision and collisions with static
obstacles. In the proposed method, whole-body collision
avoidance and joint range limits are approximated as a linear
compound joint constraint. A simple linear constraint cor-
responding to the auxiliary viability set is derived to ensure
the solution of IK remains viable. For scenarios where only
physical joint limits are required, the proposed method guar-
antees high approximation accuracy to the corresponding
viability kernel while maintaining superior numerical sta-
bility compared to previous works. In scenarios requiring
collision avoidance, the proposed method efficiently deter-
mines appropriate parameters to guarantee the solution is
viable, even in high-dimensional cases such as n = 10 and
m ~ 1000. This marks a significant advancement compared
to previous studies.

Nevertheless, the proposed IK method still has several
areas for improvement. The set of solutions obtained by pro-
posed method tends to be more conservative than the viability
kernel of the original problem. This conservatism arises from
two main factors: 1. The original nonlinear geometric con-
straints are replaced by conservative linear compound joint
constraints, where the gap between the two can sometimes
be significant. 2. The constant vector @™ is determined
based on the most extreme cases, making the resulting @™
overly conservative for most other states. The first issue
can be addressed by using the union of multiple compound
joint constraints to better approximate the original nonlinear
constraints. This would also require an enhancement of the
algorithm to handle the union of multiple linear constraints
in realtime. The second issue could be mitigated by allowing
a"™ to vary dynamically based on target position rather than
being fixed. Moreover, the proposed method lacks sufficient
generality and is not applicable to many scenarios, including
cases with large sampling interval T and higher-dimensional
cases. Addressing these limitations would require compre-
hensive modifications to the algorithm.

Appendix A

Lemma2 Fora > 0, b € R and ¢ > 0, the following state-
ment holds true:

x < yamax(0,b —cx) < x <

—ac + v/a*c? + 4a max (0, b)
2
(AD)

@ Springer

Proof

x < amax(0,b — cx)

— <x>0Ax2§amax(0,b—cx)>\/x50
& x* <amax(0,b—cx) Vx <0

<= (b—cx<0/\xz§0)\/(b—cxZO/\x2
<ab—-cx))vx <0

<~ xzfa(b—cx)\/xfo

(—ac —a%c? + dab
— =

X
) =

—ac + va?c? + 4ab
<

< > /\ac2+4b20>\/x50

— 2c2 44 0,b
v < ac+\/ac;- a max (0, b)

Appendix B

Lemma3 Fora > 0, T > 0 and x > 0, the following
statement holds true:

q=<qaNqg=qp < q =<qa (B2)

where

Ga (—aT+\/(aT)2+8amax(O,x —aT2/8)> /2

(B3a)

qp = (2/T)x (B3b)
Proof The sufficient and necessary condition for the above
statement is that ¢, < gp holds fora > 0,7 > 0 and x > 0.
When 0 < x < aT2/8, qq 1s always 0, thus, g, < gp is
satisfied.
When x > aT?/8,

Ga— b = (—aT+«/%)/2—2x/T

- (2 2axT? — aT? — 4x) /(2T). (B4)
According to the AM—GM inequality,
2V4axT? < aT? + 4x. (B5)



Journal of Intelligent & Robotic Systems (2026) 112:16

Page150f16 16

Thus, (B4) remains negative, i.e., g, < qp, due to 2+/2axT?
< 2+/4axT? and (B5). O
Appendix C

Lemma4 Giveny > 0,a >0, T > 0 and xim e R for all
x satisfying y < f(x), the following statement holds true:

g(x) > max(0, y —aT), (Co)
where
flx) 2 \/Zamax((), xhim _ 472/8 — x) (C7a)

g(x) & <7aT+\/(aT)2 + 8a max (0, xim — qT2/8 — x — Ty/2)) /2.
(C7b)

Proof According to (C7b), the function g(x) alternates
between two forms: 0 and

ga(x) & (—aT + \/Sa(x“m —x — Ty/2)> /2, (C8)
where the selection is determined by the condition
XM _ gT?/8 —x — Ty/2 > 0. (C9)

On the other hand, f(x) behaves as a concave function when
f(x) > 0. The two intersection points between y = f(x)
and x''™ — qT2/8 — x — Ty/2 = 0 are given by (x'I™ —
5aT?/8,aT) and (x'"™ — 4T?/8,0). This fact implies that
for all x and y satisfying y < f(x), (C9) always holds when
y > aT.Conversely, for0 < y < aT, there must exist some
values of x where (C9) does not hold.

As aresult, the minimum of g(x) is O when y < aT holds.
For the case of y > aT, g(x) turns into g,(x),and y < f(x)
can be rewritten as
x <x'™—a7?/8 — y?)2a. (C10)
Because (C9) is always satisfied in this case, g, (x) is amono-
tonic decreasing function, and its minimum value is attained
when x is maximized as specified by (C10). Thus, the mini-
mum value of g,(x) is given by y —aT.

In conclusion, given y > 0, for all x satisfying y < f(x):

—aT ify>aT
min gx) = {2 40 1Y =4 (CI1)

ify <aT,

which gives (C6). O

Acknowledgements Open Access funding provided by Hiroshima
University. Our source code of the proposed IK method utilizes the
open-source libraries SCIP [19], eigen-cddlib [22], CasADi [23],
gpOASES [24] and OSQP [25].

Author Contributions Yachen Zhang conceived the core idea, devel-
oped the algorithm, performed the simulations, and wrote the manuscript.
Ryo Kikuuwe reviewed and edited the manuscript and supervised the
project.

Funding Open Access funding provided by Hiroshima University. The
authors declare that no funds, grants, or other support were received
during the preparation of this manuscript.

Data Availability Statement The source code corresponding to the pro-
posed method in this paper is available at: https://github.com/zyc1155/
Viability_IK.

Declarations

Ethics approval Not applicable.
Consent to participate Not applicable.
Consent for publication Not applicable.

Competing Interests The authors have no conflicts of interest to declare
that are relevant to the content of this article.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Antonelli, G., Chiaverini, S., Fusco, G.: A new on-line algorithm
for inverse kinematics of robot manipulators ensuring path tracking
capability under joint limits. IEEE Trans. Robot. Autom. 19(1),
162-167 (2003)

2. Flacco, E.,, De Luca, A., Khatib, O.: Control of redundant robots
under hard joint constraints: saturation in the null space. IEEE
Trans. Rob. 31(3), 637-654 (2015)

3. Guo, D., Zhang, Y.: Acceleration-level inequality-based MAN
scheme for obstacle avoidance of redundant robot manipulators.
IEEE Trans. Industr. Electron. 61(12), 6903-6914 (2014)

4. Suleiman, W.: On inverse kinematics with inequality constraints:
new insights into minimum jerk trajectory generation. Adv. Robot.
30(17-18), 1164-1172 (2016)

5. Quiroz-Omaiia, J.J., Adorno, B.V.: Whole-body control with (self)
collision avoidance using vector field inequalities. IEEE Robot.
Autom. Lett. 4(4), 4048-4053 (2019)

@ Springer


https://github.com/zyc1155/Viability_IK
https://github.com/zyc1155/Viability_IK
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

16

Page 16 of 16

Journal of Intelligent & Robotic Systems (2026) 112:16

10.

11.

12.

13.

14.

15.

16.

17.

18.

Park, K.C., Chang, PH., Kim, S.H.: The enhanced compact QP
method for redundant manipulators using practical inequality con-
straints. In: Proceedings of 1998 IEEE International Conference
on Robotics and Automation, vol. 1, pp. 107-114 (1998)

Aubin, J.-P.: Viability Theory. Birkhduser Boston, Boston, MA
(2009)

Decré, W., Smits, R., Bruyninckx, H., De Schutter, J.: Extending
iTaSC to support inequality constraints and non-instantaneous task
specification. In: Proceedings of 2009 IEEE International Confer-
ence on Robotics and Automation, pp. 964-971 (2009)

Rubrecht, S., Padois, V., Bidaud, P., De Broissia, M.: Constraints
compliant control: constraints compatibility and the displaced
configuration approach. In: Proceedings of 2010 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, pp. 677-684
(2010)

Del Prete, A.: Joint position and velocity bounds in discrete-time
acceleration/torque control of robot manipulators. IEEE Robot.
Autom. Lett. 3(1), 281-288 (2017)

Saint-Pierre, P.: Approximation of the viability kernel. Appl. Math.
Optim. 29, 187-209 (1994)

Rubrecht, S., Padois, V., Bidaud, P., De Broissia, M., Da Silva
Simoes, M.: Motion safety and constraints compatibility for multi-
body robots. Auton. Robot. 32, 333-349 (2012)

Faroni, M., Beschi, M., Pedrocchi, N.: Inverse kinematics of redun-
dant manipulators with dynamic bounds on joint movements. IEEE
Robot. Autom. Lett. 5(4), 6435-6442 (2020)

Kajita, S., Hirukawa, H., Harada, K., Yokoi, K.: Kinematics. In:
Introduction to Humanoid Robotics, pp. 19-67. Springer, Berlin,
Heidelberg (2014)

Nakamura, Y., Hanafusa, H.: Inverse kinematic solutions with sin-
gularity robustness for robot manipulator control. Trans. ASME:
J. Dyn. Syst. Meas. Control 108(3), 163—171 (1986)

Chiaverini, S.: Singularity-robust task-priority redundancy resolu-
tion for real-time kinematic control of robot manipulators. IEEE
Trans. Robot. Autom. 13(3), 398410 (1997)

Dai, H., Amice, A., Werner, P., Zhang, A., Tedrake, R.: Certified
polyhedral decompositions of collision-free configuration space.
Int. J. Robot. Res. 43(9), 1322-1341 (2024)

Werner, P., Amice, A., Marcucci, T., Rus, D., Tedrake, R.: Approxi-
mating robot configuration spaces with few convex sets using clique
covers of visibility graphs. In: Proceedings of 2024 IEEE Interna-
tional Conference on Robotics and Automation, pp. 10359-10365
(2024)

Bolusani, S., Besancon, M., Bestuzheva, K., Chmiela, A., Dioni-
sio, J., Donkiewicz, T., Doornmalen, J., Eifler, L., Ghannam, M.,
Gleixner, A., Graczyk, C., Halbig, K., Hedtke, I., Hoen, A., Hojny,
C., Hulst, R., Kamp, D., Koch, T., Kofler, K., Lentz, J., Manns,
J., Mexi, G., Miihmer, E., Pfetsch, M.E., Schlosser, F., Serrano,
E., Shinano, Y., Turner, M., Vigerske, S., Weninger, D., Xu, L.:
The SCIP Optimization Suite 9.0. Technical report, Optimization
Online (2024). https://optimization-online.org/2024/02/the-scip-
optimization-suite-9-0/

@ Springer

20. GLPK (GNU Linear Programming Kit). https://www.gnu.org/
software/glpk

21. Fukuda, K., Prodon, A.: Double description method revisited.
In: Combinatorics and Computer Science, pp. 91-111. Springer,
Berlin, Heidelberg (1996)

22. eigen-cddlib. https://github.com/vsamy/eigen-cddlib

23. Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.:
CasADi - A software framework for nonlinear optimization and
optimal control. Math. Program. Comput. 11(1), 1-36 (2019)

24. Ferreau, H.J., Kirches, C., Potschka, A., Bock, H.G., Diehl, M.:
gpOASES: A parametric active-set algorithm for quadratic pro-
gramming. Math. Program. Comput. 6(4), 327-363 (2014)

25. Stellato, B., Banjac, G., Goulart, P., Bemporad, A., Boyd, S.:
OSQP: an operator splitting solver for quadratic programs. Math.
Program. Comput. 12(4), 637-672 (2020)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Yachen Zhang received the B.E. degree in mechanical engineer-
ing from North China University of Science and Technology, Hebei,
China, in 2017, and the M.E. degree in mechanical engineering from
Okayama University, Okayama, Japan, in 2021. He is currently pur-
suing the Ph.D. degree with Hiroshima University, Hiroshima, Japan.
His research interests include teleoperation, whole-body planning and
control for humanoid robots, and optimal control for robotics.

Ryo Kikuuwe received the B.S., M.S., and Ph.D. (Eng.) degrees in
mechanical engineering from Kyoto University, Kyoto, Japan, in 1998,
2000, and 2003, respectively. From 2003 to 2007, he was an Endowed-
Chair Research Associate with the Nagoya Institute of Technology,
Nagoya, Japan. From 2007 to 2017, he was an Associate Professor
with the Department of Mechanical Engineering, Kyushu University,
Fukuoka, Japan. From 2014 to 2015, he was a Visiting Researcher
with Inria Grenoble Rhone-Alpes, Saint-Ismier, France. He is cur-
rently a Full Professor with the Graduate School of Advanced Sci-
ence and Engineering, Hiroshima University, Hiroshima, Japan. His
research interests include force control of robot manipulators, con-
trol and modeling of hydraulic systems, and engineering applications
of differential inclusions. Dr. Kikuuwe is a Member of the IEEE, the
Robotics Society of Japan, the Japan Society of Mechanical Engi-
neers, and the Society of Instrument and Control Engineers (Japan).
He was a recipient of the Best Paper Award of Advanced Robotics in
2013 and the Young Investigator Excellence Award from the Robotics
Society of Japan in 2005.


https://optimization-online.org/2024/02/the-scip-optimization-suite-9-0/
https://optimization-online.org/2024/02/the-scip-optimization-suite-9-0/
https://www.gnu.org/software/glpk
https://www.gnu.org/software/glpk
https://github.com/vsamy/eigen-cddlib

	Ensuring Viability: A QP-based Inverse Kinematics for Handling Joint Range, Velocity and Acceleration Limits, as Well as Whole-body Collision Avoidance
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Mathematical Preliminaries
	2.2 Viability Theory
	2.3 Problem Formulation

	3 Derivation of Auxiliary Viability Set
	3.1 Auxiliary Viability Set for One-dimensional Position Constraint
	3.2 Auxiliary Viability Set for Single Row of Compound Joint Constraint
	3.3 Auxiliary Viability Set for Entire Compound Joint Constraint

	4 Procedure of Proposed IK Method
	5 Numerical Simulation
	5.1 Numerical Result 1
	5.2 Numerical Result 2
	5.3 Numerical Result 3

	6 Conclusion
	Appendix A
	Appendix B
	Appendix C
	Acknowledgements
	References


