Entering Link 1 = C:\G09W\l1.exe PID= 46468. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2015, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision E.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: EM64W-G09RevE.01 30-Nov-2015 02-Jun-2020 ****************************************** %chk=C:\Users\abemi\Desktop\h2.chk ---------------------------------------- # cisd/sto-3g geom=connectivity units=au ---------------------------------------- 1/20=1,38=1,57=2/1; 2/12=2,17=6,18=5,40=1/2; 3/6=3,11=9,16=1,25=1,30=1/1,2,3; 4//1; 5/5=2,38=5/2; 8/6=3,9=120000,10=1/1,4; 9//13; 6/7=2,8=2,9=2,10=2/1; 99/5=1,9=1/99; ------------------- Title Card Required ------------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 H 0. 0. 0. H 0. 0. 1. Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 1 0 0.000000 0.000000 0.000000 2 1 0 0.000000 0.000000 0.529177 --------------------------------------------------------------------- Stoichiometry H2 Framework group D*H[C*(H.H)] Deg. of freedom 1 Full point group D*H NOp 8 Largest Abelian subgroup D2H NOp 8 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 1 0 0.000000 0.000000 0.264589 2 1 0 0.000000 0.000000 -0.264589 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 3581.4573723 3581.4573723 Standard basis: STO-3G (5D, 7F) There are 1 symmetry adapted cartesian basis functions of AG symmetry. There are 0 symmetry adapted cartesian basis functions of B1G symmetry. There are 0 symmetry adapted cartesian basis functions of B2G symmetry. There are 0 symmetry adapted cartesian basis functions of B3G symmetry. There are 0 symmetry adapted cartesian basis functions of AU symmetry. There are 1 symmetry adapted cartesian basis functions of B1U symmetry. There are 0 symmetry adapted cartesian basis functions of B2U symmetry. There are 0 symmetry adapted cartesian basis functions of B3U symmetry. There are 1 symmetry adapted basis functions of AG symmetry. There are 0 symmetry adapted basis functions of B1G symmetry. There are 0 symmetry adapted basis functions of B2G symmetry. There are 0 symmetry adapted basis functions of B3G symmetry. There are 0 symmetry adapted basis functions of AU symmetry. There are 1 symmetry adapted basis functions of B1U symmetry. There are 0 symmetry adapted basis functions of B2U symmetry. There are 0 symmetry adapted basis functions of B3U symmetry. 2 basis functions, 6 primitive gaussians, 2 cartesian basis functions 1 alpha electrons 1 beta electrons nuclear repulsion energy 1.0000000000 Hartrees. NAtoms= 2 NActive= 2 NUniq= 1 SFac= 4.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 2 RedAO= T EigKep= 2.88D-01 NBF= 1 0 0 0 0 1 0 0 NBsUse= 2 1.00D-06 EigRej= -1.00D+00 NBFU= 1 0 0 0 0 1 0 0 ExpMin= 1.69D-01 ExpMax= 3.43D+00 ExpMxC= 3.43D+00 IAcc=1 IRadAn= 1 AccDes= 0.00D+00 Harris functional with IExCor= 205 and IRadAn= 1 diagonalized for initial guess. HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 1 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (SGG) Virtual (SGU) The electronic state of the initial guess is 1-SGG. Keep R1 ints in memory in symmetry-blocked form, NReq=821157. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Skip diagonalization as Alpha Fock matrix is already diagonal. SCF Done: E(RHF) = -1.06599946155 A.U. after 1 cycles NFock= 1 Conv=0.00D+00 -V/T= 1.8376 Range of M.O.s used for correlation: 1 2 NBasis= 2 NAE= 1 NBE= 1 NFC= 0 NFV= 0 NROrb= 2 NOA= 1 NOB= 1 NVA= 1 NVB= 1 Semi-Direct transformation. ModeAB= 4 MOrb= 1 LenV= 33500034 LASXX= 1 LTotXX= 1 LenRXX= 4 LTotAB= 3 MaxLAS= 4 LenRXY= 0 NonZer= 5 LenScr= 785920 LnRSAI= 4 LnScr1= 785920 LExtra= 0 Total= 1571848 MaxDsk= -1 SrtSym= T ITran= 3 JobTyp=0 Pass 1: I= 1 to 1. (rs|ai) integrals will be sorted in core. Spin components of T(2) and E(2): alpha-alpha T2 = 0.0000000000D+00 E2= 0.0000000000D+00 alpha-beta T2 = 0.2769062462D-02 E2= -0.8958425131D-02 beta-beta T2 = 0.0000000000D+00 E2= 0.0000000000D+00 ANorm= 0.1001383574D+01 E2 = -0.8958425131D-02 EUMP2 = -0.10749578866850D+01 Keep R2 and R3 ints in memory in symmetry-blocked form, NReq=801322. Iterations= 50 Convergence= 0.100D-06 Iteration Nr. 1 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. E3= -0.28068711D-02 EUMP3= -0.10777647578D+01 DE(CI)= -0.11732807E-01 E(CI)= -1.0777322689 NORM(A)= 0.10029035D+01 Iteration Nr. 2 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(CI)= -0.12979055E-01 E(CI)= -1.0789785165 NORM(A)= 0.10029013D+01 Iteration Nr. 3 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(CI)= -0.12972519E-01 E(CI)= -1.0789719805 NORM(A)= 0.10028981D+01 Iteration Nr. 4 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(CI)= -0.12970289E-01 E(CI)= -1.0789697502 NORM(A)= 0.10028981D+01 Iteration Nr. 5 ********************** DD1Dir will call FoFMem 1 times, MxPair= 2 NAB= 1 NAA= 0 NBB= 0. DE(CI)= -0.12970303E-01 E(CI)= -1.0789697647 NORM(A)= 0.10028981D+01 *************************************************************** Largest amplitude= 7.62D-02 Discarding MO integrals. ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (SGG) Virtual (SGU) The electronic state is 1-SGG. Alpha occ. eigenvalues -- -0.67578 Alpha virt. eigenvalues -- 0.94181 Condensed to atoms (all electrons): 1 2 1 H 0.556611 0.443389 2 H 0.443389 0.556611 Mulliken charges: 1 1 H 0.000000 2 H 0.000000 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 Electronic spatial extent (au): = 4.3614 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000 Quadrupole moment (field-independent basis, Debye-Ang): XX= -1.8111 YY= -1.8111 ZZ= -1.5716 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= -0.0798 YY= -0.0798 ZZ= 0.1597 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 0.0000 XYY= 0.0000 XXY= 0.0000 XXZ= 0.0000 XZZ= 0.0000 YZZ= 0.0000 YYZ= 0.0000 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -1.4824 YYYY= -1.4824 ZZZZ= -1.9167 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -0.4941 XXZZ= -0.5697 YYZZ= -0.5697 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 1.000000000000D+00 E-N=-4.053168140789D+00 KE= 1.272729599044D+00 Symmetry AG KE= 1.272729599044D+00 Symmetry B1G KE= 0.000000000000D+00 Symmetry B2G KE= 0.000000000000D+00 Symmetry B3G KE= 0.000000000000D+00 Symmetry AU KE= 0.000000000000D+00 Symmetry B1U KE= 0.000000000000D+00 Symmetry B2U KE= 0.000000000000D+00 Symmetry B3U KE= 0.000000000000D+00 1|1|UNPC-DESKTOP-9HABK9J|SP|RCISD-FC|STO-3G|H2|ABEMI|02-Jun-2020|0||# cisd/sto-3g geom=connectivity units=au||Title Card Required||0,1|H,0,0 .,0.,0.|H,0,0.,0.,0.5291772086||Version=EM64W-G09RevE.01|State=1-SGG|H F=-1.0659995|MP2=-1.0749579|MP3=-1.0777648|CISD=-1.0789698|RMSD=0.000e +000|PG=D*H [C*(H1.H1)]||@ WE SHOULD BE CAREFUL TO GET OUT OF AN EXPERIENCE ONLY THE WISDOM THAT IS IN IT -- AND STOP THERE; LEST WE BE LIKE THE CAT THAT SITS DOWN ON A HOT STOVE-LID. SHE WILL NEVER SIT DOWN ON A HOT STOVE LID AGAIN; BUT ALSO SHE WILL NEVER SIT DOWN ON A COLD ONE ANY MORE. -- MARK TWAIN Job cpu time: 0 days 0 hours 0 minutes 4.0 seconds. File lengths (MBytes): RWF= 18 Int= 0 D2E= 0 Chk= 1 Scr= 1 Normal termination of Gaussian 09 at Tue Jun 02 11:29:20 2020.