2nd IITB-Hiroshima workshop

Broadband Cosmological 21cm signal from Dark Matter spin-flip Interactions

Mansi Dhuria

IITRAM Ahmedabad

Based on JCAP 08 (2021) 041 (arXiv: astro-ph/2103.06303) with Viraj Karambelkar, Vikram Rentala and Priyanka Sarmah

Timeline of the universe...

Timeline of the universe...

Global 21-cm signal in standard cosmology

Pritchard and Loeb 2012

Results from EDGES Global 21-cm Signal LETTER

An absorption profile centred at 78 megahertz in the sky-averaged spectrum

Judd D. Bowman¹, Alan E. E. Rogers², Raul A. Monsalve^{1,3,4}, Thomas J. Mozdzen¹ & Nivedita Mahesh¹

Subsequent works...

Concerns about Modelling of the EDGES Data

Richard Hills, Girish Kulkarni, P. Daniel Meerburg, & Ewald Puchwein

ARISING FROM J. D. Bowman, A. E. E. Rogers, R. A. Monsalve, T. J. Mozdzen, & N. Mahesh *Nature* 555, 67–70, (2018); https://doi.org/10.1038/nature25792.

Excess cooling of Hydrogen due to its interaction with CDM:

Barkana 2018, Munoz and Loeb 2018, Berlin, Hooper, Krnjaic, McDermott 2018, Barkana, Outmezguine, Redigolo, Volansky, 2018 Kovetz et al 2018....

Other experiments:

- Low redshift- PRIZM, REACH, SARAS, SCI-HI, BIGHORNS (z~15)
- Intermediate red-shift: LEDA (z~46), DAPPER (z~80)
- High red-shift: FARSIDE, PRATUSH, DARE, NCLE (z~1000)

Are there alternative predictions of the cosmological global 21-cm signal in Beyond Standard Model (BSM) physics that could be tested by future experiments?

Outline of the Talk

- Key parameters effecting the Cosmological 21cm global signal.
- 21-cm signal in excess cooling models.
- Template of the cosmological global 21-cm signal in DM-spin flip interaction model.
- Constraints on the spin-flip coupling strengths.
- Summary of our results and future directions.

21-cm neutral hydrogen

$$\frac{n_1}{n_0} = 3e^{-\frac{\Delta}{T_s}}$$

 $-n_1$ - number of fermions in the singlet state

- n₀: Number of fermions in the triplet state

T_s - parameter describing the relative population of singlet and triplet states

Measuring 21-cm hydrogen

 $\nu = 1420/(1+z)$ MHz

Differential Brightness Temperature

 $\delta T_b > 0$: net **emission** if T_s > T_{\rm CMB}, i.e. more excited than needed to be in equilibrium with CMB

 $\delta T_b < 0$: net absorption if Ts < TCMB,

Differential Brightness Temperature

Processes altering the spin temperature

 CMB excitations and de-excitations: A₁₀ (spontaneous de-excitation), B₀₁(simulated excitation), B₁₀ (simulated de-excitation)

• Collisional coupling H0 + (H,e,p): C₀₁, C₁₀

• Lyman-α photons from the first stars (Wouthuysen-Field effect): P₀₁, P₁₀

Processes altering the spin temperature

$$\begin{split} n_0(B_{01} + C_{01} + P_{01}) &= n_1(A_{10} + B_{10} + C_{10} + P_{10}) \\ B_{10} &= n_\gamma \langle \sigma(H_1 + \gamma \to H_0 + \gamma \gamma) v \rangle \simeq A_{10} \frac{T_{\text{CMB}}}{\Delta} \\ &\frac{n_1}{n_0} = 3e^{-\frac{\Delta}{T_s}} \simeq 3 \left(1 - \frac{\Delta}{T_s}\right) \\ &\frac{C_{01}}{C_{10}} = 3e^{-\frac{\Delta}{T_K}} \simeq 3 \left(1 - \frac{\Delta}{T_K}\right)^{A_{10} = (10 \text{ million year})^{-1}} \\ &\frac{P_{01}}{P_{10}} = 3e^{-\frac{\Delta}{T_c}} \simeq 3 \left(1 - \frac{\Delta}{T_c}\right) \\ &x_\alpha = \frac{P_{10}}{B_{10}} \\ \hline T_s^{-1} &= \frac{T_{\text{CMB}}^{-1} + x_C T_K^{-1} + x_\alpha T_c^{-1}}{1 + x_C + x_\alpha} \\ &x_{c} = \frac{C_{10}}{B_{10}} \end{split}$$

Evolution of the Spin temperature, gas temperature and brightness temperature

Standard Cosmology/Excess Cooling Models

R. Barkana 2018

Standard Cosmology/Excess Cooling Models

Same Band limited features as the standard cosmological model but with a strong absorption dip

 $\sigma_{\chi-H} \sim 8 \times 10^{-20} \text{ cm}^2, \mathbf{m}_{\chi} \sim 0.3 \text{ GeV}$ $\sigma_{\chi-H} \sim 3 \times 10^{-19} \text{ cm}^2, \mathbf{m}_{\chi} \sim 2 \text{ GeV}$ $\sigma_{\chi-H} \sim 3 \times 10^{-18} \text{ cm}^2, \mathbf{m}_{\chi} \sim 0.01 \text{ GeV}$ Are there alternative predictions of the cosmological global 21-cm signal in Beyond Standard Model (BSM) physics that could be tested by future experiments?

Can we have other processes which could control the spin temperature?

Dark matter spin flip Interaction Model

Spin-flip Interactions $\mathcal{L} = ig_{\chi}\overline{\chi}\gamma^{\mu}\gamma^{5}\chi V_{\mu} + ig_{e}\overline{e}\gamma^{\mu}\gamma^{5}eV_{\mu}$

t-channel scattering

$\chi + H_0 \leftrightarrows \chi + H_1$

The mechanisms altering the spin temperature are:

- Direct spin flip interactions: D₀₁, D₁₀.
- Energy exchange between Dark Matter and gas.

Five parameters: $\alpha_{\chi}, \alpha_{e}, m_{\chi}, f, m_{V}$

Snapshot of our key results in comparison to Standard Cosmology/Excess cooling Models

- Dominance of spin flip interactions over the energy transfer rate between gas and dark matter.
- •Lower the spintemperature over a large red-shift range leading to <u>a single</u> <u>strong, broadband</u> <u>absorption signal</u> <u>ranging from 1.4 Mhz</u> <u>(z~1000) to 90 MHz</u> <u>(z~15).</u>
- Spin-temperature does not necessarily track the gas temperature.

Other works: Lambiase and Mohanty 2018, Auriol et al 2018, Widmark 2019

Modified spin temperature

 $n_0(B_{01} + C_{01} + P_{01} + D_{01}) = n_1(A_{10} + B_{10} + C_{10} + P_{10} + D_{10})$

$$\frac{D_{01}}{D_{10}} = 3e^{-\Delta/T_{\text{eff}}} \simeq 3\left(1 - \frac{\Delta}{T_{\text{eff}}}\right)$$

$$T_{\text{eff}} = \mu \left(\frac{T_K}{m_H} + \frac{T_\chi}{m_\chi}\right)$$

$$\mu = \frac{m_H m_\chi}{m_H + m_\chi} \qquad T_s^{-1} = \frac{T_{\text{CMB}}^{-1} + x_C T_K^{-1} + x_\Omega T_c^{-1} + x_D T_{\text{eff}}^{-1}}{1 + x_C + x_\alpha + x_D}$$

Forward Scattering and Spin flip cross-section

Spin flip Interactions vs Energy transfer rate

$$\sigma_{01}\sim rac{3}{4\pi}rac{g_\chi^2 g_e^2}{\Delta^2}$$
 , assuming $m_V^2 \ll p_{
m th}^4/p_c^2$ = $\sqrt{rac{2\mu}{T_{
m eff}}}\Delta$

$$T_{\text{eff}} = \mu \left(\frac{T_K}{m_H} + \frac{T_{\chi}}{m_{\chi}} \right)$$

$$\mu = \frac{m_H m_{\chi}}{m_H + m_{\chi}}$$

$$D_{10} \propto n_{\chi} \langle \sigma v \rangle$$

- a nearly divergent scattering crosssection driven by the large probability for forward scattering. This divergence is cut-off by the tiny hyperfine mass-splitting between the singlet and triplet states
- Small mass splitting Leads to a large cross-section for the spin-flip interaction.

$$D_{10} = 3.01 \times 10^{-12} \left(\frac{f}{0.1}\right) \left(\frac{0.1 \text{ GeV}}{m_{\chi}}\right) \left(\frac{\alpha_{\chi}}{10^{-2}}\right) \left(\frac{\alpha_{e}}{10^{-14}}\right) \left(\frac{0.1 \text{ GeV}}{\mu}\right)^{\frac{1}{2}} \left(\frac{T_{\text{eff}}}{10 \text{ K}}\right)^{\frac{1}{2}} \left(\frac{1+z}{1+10}\right)^{3} \text{ s}^{-1}$$

Spin flip Interactions vs Energy transfer rate

The energy transfer cross-section for the massless mediator in case of elastic scattering

$$\frac{d\overline{\sigma}}{d\Omega} \propto \frac{\alpha_e \alpha_\chi}{\mu^2 v^4 \sin^4 \frac{\theta}{2}} (1 - \cos \theta)$$

In our case of DM induced inelastic spin flip scattering,

$$\overline{\sigma} = 4\pi \frac{\alpha_e \alpha_\chi}{\Delta^2} \times \underbrace{\Delta}_{T_{\rm eff}} \longrightarrow \text{Suppressed by hyperfine splitting parameter}$$

Energy transfer rate

$$\begin{aligned} \frac{dT_{\chi}}{d\log(1+z)} &= +2T_{\chi} - \frac{2}{3}\frac{\Gamma_{\chi}}{H}\left(T_K - T_{\chi}\right),\\ \frac{dT_K}{d\log(1+z)} &= +2T_K - \frac{\Gamma_c}{H}(T_{\rm CMB} - T_K) - \frac{2}{3}\frac{\Gamma_H}{H}(T_{\chi} - T_K). \end{aligned}$$

$$\Gamma_{\chi} \simeq n_H \left(\frac{\Delta\mu}{2MT_{\text{eff}}}\right) 12\pi \frac{\alpha_{\chi}\alpha_e}{\Delta^2} \sqrt{\frac{8T_{\text{eff}}}{\pi\mu}}.$$
$$\Gamma_H = n_{\chi} \left(\frac{\Delta\mu}{2MT_{\text{eff}}}\right) \frac{3}{4\pi} \frac{g_{\chi}^2 g_e^2}{\Delta^2} \sqrt{\frac{8T_{\text{eff}}}{\pi\mu}}.$$

Parameter Space of Interest

Strong coupling Benchmark

Weak coupling Benchmark

Intermediate coupling regime

Constraints

$$0.1 \text{ eV}\sqrt{\frac{\alpha_{\chi}\alpha_e}{10^{-18}}} \left(\frac{\mu}{0.1 \text{ GeV}}\right) \lesssim m_V \lesssim 2.3 \text{ eV}\sqrt{\left(\frac{1000 \text{ K}}{T_{\text{eff}}}\right) \left(\frac{\mu}{0.1 \text{ GeV}}\right)}$$

Parameter Space ruled out by constraints

Conclusions and testable predictions

- Single, strong, broadband global 21 cm signal unlike anything predicted in standard cosmology or excess cooling models!
- Single broadband absorption feature From 1.4 Mhz (z~1000) -Â 90 Mhz (z~15)
- Spin temperature is a tracer of DM temperature, not the gas temperature.
- Safe from laboratory and other constraints.

Secondary tests

Astrophysical probes:

- Stochastic 21 cm signal (could be tested by future experiments such as SKA).
- Independent probe of the gas kinetic temperature.

Collider Probes:

- UV completions with broken SM gauge symmetries, in order to evade constraint from Z decays, stellar cooling and extra radiation constraints.
- short-range forces between electrons on mm-nm scale.

Thanks for your kind altention

Forward Scattering and Spin flip cross-section

