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  Global 21-cm signal in standard cosmology

Pritchard and Loeb 2012



Results from EDGES Global 21-cm Signal



Excess cooling of Hydrogen due to its interaction with CDM: 

Barkana 2018,  
Munoz and Loeb 2018,   
Berlin, Hooper, Krnjaic, McDermott 2018,  
Barkana, Outmezguine, Redigolo, Volansky, 2018 
Kovetz et al 2018….

Subsequent works…

Other experiments: 

- Low redshift-  PRIZM, REACH, SARAS, SCI-HI, BIGHORNS (z ~15) 
- Intermediate red-shift: LEDA (z~46), DAPPER (z~80) 
- High red-shift: FARSIDE, PRATUSH, DARE, NCLE (z~1000)



PE

Are there alternative predictions of the 

cosmological global 21-cm signal in Beyond 

Standard Model (BSM) physics that could 

be tested by future experiments? 



 Outline of the Talk

Key parameters effecting the Cosmological 21-
cm global signal. 

21-cm signal in excess cooling models. 

Template of the cosmological global 21-cm 
signal in DM-spin flip interaction model. 

Constraints on the spin-flip coupling strengths. 

Summary of our results and future directions.



21-cm neutral hydrogen

- n1 - number of fermions 
in the singlet state 

- n0: Number of fermions 
in the triplet state

Ts - parameter 
describing the 

relative population 
of singlet and 
triplet states  



Measuring 21-cm hydrogen



  Differential Brightness Temperature

:	net	emission	if	Ts	>	TCMB,	i.e.	more	excited	than	needed	to	be	in	equilibrium	
with	CMB	

:	net	absorp+on	if	Ts	<	TCMB,

ICMB
ν = 2KBT

ν2

c2Black Body expectation
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•CMB	excita,ons	and	de-excita,ons:	A10	(spontaneous	de-excita3on),	
B01(simulated	excita3on),	B10	(simulated	de-excita3on)	

•Collisional	coupling	H0	+	(H,e,p):	C01,	C10	

•Lyman-α	photons	from	the	first	stars	(Wouthuysen-Field	effect):	P01,	P10	

Processes altering the spin temperature



rature

Processes altering the spin temperature



Evolution of the Spin temperature, gas temperature  and 
brightness temperature

Tgas(z) ∝
1

(1 + z)2

TCMB(z) ∝
1

(1 + z)

Ts

Pritchard and Loeb 2012



Standard Cosmology/Excess Cooling Models
R. Barkana 2018 

σχ−H ∼ 8 × 10−20 cm2, mχ ∼ 0 . 3 GeV
σχ−H ∼ 3 × 10−19 cm2, mχ ∼ 2 GeV
σχ−H ∼ 3 × 10−18 cm2, mχ ∼ 0 . 01 GeV



Standard Cosmology/Excess Cooling Models
R. Barkana 2018 

σχ−H ∼ 8 × 10−20 cm2, mχ ∼ 0 . 3 GeV
σχ−H ∼ 3 × 10−19 cm2, mχ ∼ 2 GeV
σχ−H ∼ 3 × 10−18 cm2, mχ ∼ 0 . 01 GeV

Same Band limited features as the 
standard cosmological model but 

with a strong absorption dip 



A r e t h e r e a l t e r n a t i v e p r e d i c t i o n s o f t h e 

cosmological global 21-cm signal in Beyond 

Standard Model (BSM) physics that could be tested 

by future experiments?

Can we have other processes which could control the 

spin temperature?



Dark matter spin flip 
Interaction Model



Spin-flip Interactions

The mechanisms altering the 
spin temperature are: 

• Direct spin flip interactions: 
D01, D10. 

• Energy exchange between 
Dark Matter and gas.

Five parameters:

χ χ

V

t-channel scattering

e−( ↑ )e−( ↓ )



Snapshot of our key results in comparison to Standard 
Cosmology/Excess cooling Models

• Dominance of spin flip 
interactions over the 
energy transfer rate 
between gas and dark 
matter. 

• L o w e r t h e s p i n -
temperature over a 
large red-shift range 
leading to a single 
s t rong , b roadband 
a b s o r p t i o n s i g n a l 
ranging from 1.4 Mhz 
(z~1000) to 90 MHz 
(z~15). 

• Spin-temperature does 
not necessarily track 
the gas temperature. 

Other works: Lambiase and Mohanty 2018, 
Auriol et al 2018, Widmark 2019 



Modified spin temperature



Forward Scattering and Spin flip cross-section

where ~vrel is the relative velocity between the initial state particles, µ = mHm�/(mH +m�)
is the reduced mass of dark matter and hydrogen and M = mH + m� is their mass sum.
Then we can replace,

Z
d
3
pid

3
p0f(pi)f(p0) !

Z
d
3
pd

3
pmf(p)f(pm) (A.27)

where the e↵ective distribution functions for p and pm are given respectively by,

f(p) =
1

(2⇡µTe↵)3/2
e
� p

2

2µTe↵ , and (A.28)
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2MTm , (A.29)

where we have defined Te↵ = µ

⇣
T�

m�
+ TK

mH

⌘
and Tm = TKT�

Te↵
. Making this substitution in

eq. A.24 and using the fact that the excitation cross-section only depends on the relative
momentum p and not on pm, we can trivially perform the integration over pm and write

D01 = n�h�01vreli = n�

Z
d
3
pf(p)�01vrel. (A.30)

We can evaluate the cross-section in the center-of-momentum frame (COM) and then identify
p as the magnitude of incoming momentum of either particle in this frame. In terms of the
COM frame scattering angle ✓, one can evaluate the cross-section as,
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16⇡
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where the final state momentum in the COM frame is p
0
'

q
p2 � p

2
th and pth =

p
2�µ is

the excitation threshold momentum, with � being the energy splitting between the singlet
and triplet states. The momentum transfer q2 can be written as q2 ' �p

2
� p

02 + 2pp0 cos ✓.
Substituting our expression for the amplitude-squared worked out in the previous sub-section
eq. A.22, we obtain
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The scattering process is dominated by forward scattering which has a low momentum trans-
fer and thus we can approximate q

2
⌧ 1/a20, and we can then take the hydrogen form factor

F (q2) ' 1. The angular integral then simplifies to,
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, (A.33)
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(p2th �m
2
V
)2 + 4m2

V
p2

, (A.34)

where we have also substituted for p
0 in terms of p and pth in the last line. Note that the

angular integration would be singular in the limit that mV ! 0 and pth ! 0. This is due to
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In the non-relativistic limit, 

the usual forward elastic-scattering singularity with a massless mediator. The divergence in
the angular integration is cut-o↵ by both the finite mediator mass, as well as by the threshold
momentum of the inelastic reaction.

We choose to work in the limit mV ! 0, where the divergence in the angular integral
is dominantly cut-o↵ by the threshold momentum for excitations rather than the mediator
mass. To be precise, we need to work in the limit m

2
V

⌧ p
4
th/p

2
c , where p

2
c = 2µTe↵ is

the characteristic relative momentum in the thermal distribution8. This condition can be
expressed as,
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⌘
. (A.35)

In this limit, we obtain the excitation cross-section as,
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. (A.36)

Upon performing thermal averaging, we find

h�01vreli '
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Here, hvreli =
q

8Te↵
⇡µ

is the thermal average relative velocity and the exponential suppression

factor is due to thermal suppression of the excitation reaction. Similarly, for the de-excitation
cross-section in the limit of negligible mediator mass we obtain,
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g
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Note the key di↵erences of absence of a factor of 3 (due to fewer final states) and absence of
an exponential suppression factor (due to lack of a threshold energy for de-excitation). The
excitation and de-excitation rates D01 and D10 are found by simply multiplying these thermal
cross-sections with the number density of dark matter particles at the relevant red-shift. The
ratio of rates is given by,

D01

D10
= 3e

� �
Te↵ . (A.40)

The characteristic low momentum DM spin-flip interaction cross-section is given by,

�01 ' 3�10 ' 12⇡
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(A.41)
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(A.42)

8
This condition is more stringent than the condition m

2
V ⌧ p

2
th which allows us to neglect the mediator

mass in the first term in brackets in the denominator of eq. A.34, but not in the second.
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where Te↵ = µ

⇣
TK

mH

+ T�

m�

⌘
, and µ = mHm�

mH+m�
is the reduced mass of the dark matter and the

hydrogen gas. Intuitively, the threshold energy needed for excitation reactions leads to the
exponential Boltzmann suppression factor of the excitation rate relative to the de-excitation
rate.

Using all of the above ratios of rate coe�cients, we find an expression for the spin-
temperature,

T
�1
s =

TCMB
�1 + xCT

�1
K

+ x↵T
�1
c + xDT

�1
e↵

1 + xC + x↵ + xD
, (3.6)

where xC = P10
B10

, x↵ = C10
B10

, and xD = D10
B10

are e↵ective couplings of the spin-temperature to
the gas, Ly-↵ photons and dark matter respectively. The coupling xD to the temperature
scale Te↵ is a direct consequence of the spin-dependent interaction between electrons and
dark matter. Thus, we see that there is another temperature scale that the spin temperature
can couple to when DM spin-flip interactions dominate the hyperfine transitions.

If we know how the gas and DM temperatures evolve with time (or redshift) and if
we also know how the e↵ective couplings xC , x↵ and xD change with redshift, then we can
determine the spin temperature at any epoch.

We have evaluated the cross-section for the excitation and de-excitation processes �+
H0 � � + H1 in appendix A.2. This scattering process has a large cross-section which
arises because of the usual forward scattering divergence of a light mediator exchanged in
the t-channel. For su�ciently light mediator masses, the divergence is cut-o↵, not by the
mediator mass, but rather by the tiny inelastic mass-splitting � between the singlet and
triplet states. Our detailed calculation of the cross-section in the regime of light mediator

mass shows that the thermally averaged bound state cross-section is of the form �01 ⇠
3
4⇡

g
2
�g

2
e

�2 ,
which leads to a large interaction rate even for relatively weak couplings. In the appendix,
we show that the de-excitation rate
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g
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4⇡ . Taking the ratio of the expression for D10 above, with the rate
B10 in eq. 3.2, we find an expression for the coupling of the spin temperature to the e↵ective
temperature as,
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4 Temperature evolution equations

The evolution of the dark matter and neutral hydrogen gas temperatures are given by the
following coupled Boltzmann equations (appendix A.3):
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Note the key di↵erences of absence of a factor of 3 (due to fewer final states) and absence of
an exponential suppression factor (due to lack of a threshold energy for de-excitation). The
excitation and de-excitation rates D01 and D10 are found by simply multiplying these thermal
cross-sections with the number density of dark matter particles at the relevant red-shift. The
ratio of rates is given by,
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8
This condition is more stringent than the condition m

2
V ⌧ p

2
th which allows us to neglect the mediator

mass in the first term in brackets in the denominator of eq. A.34, but not in the second.
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~~

For elastic scattering with 
massless mediator, the 
crossection scales as 
Rutherford scattering 



Spin flip Interactions vs Energy transfer rate
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• a nearly divergent scattering 
crosssection driven by the large 
probability for forward scattering. 
This divergence is cut-off by the tiny 
hyperfine mass-splitting between the 
singlet and triplet states  

•Small mass splitting Leads to a 
large cross-section for the spin-flip 
interaction.  
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Note the key di↵erences of absence of a factor of 3 (due to fewer final states) and absence of
an exponential suppression factor (due to lack of a threshold energy for de-excitation). The
excitation and de-excitation rates D01 and D10 are found by simply multiplying these thermal
cross-sections with the number density of dark matter particles at the relevant red-shift. The
ratio of rates is given by,

D01

D10
= 3e

� �
Te↵ . (A.40)

The characteristic low momentum DM spin-flip interaction cross-section is given by,

�01 ' 3�10 ' 12⇡
↵�↵e

�2
(A.41)

' 4.2⇥ 10�14
⇣

↵�

10�2

⌘⇣
↵e

10�14

⌘
cm2

' 4.2⇥ 1010
⇣

↵�

10�2

⌘⇣
↵e

10�14

⌘
barns,

(A.42)

8
This condition is more stringent than the condition m

2
V ⌧ p

2
th which allows us to neglect the mediator

mass in the first term in brackets in the denominator of eq. A.34, but not in the second.
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where Te↵ = µ

⇣
TK

mH

+ T�

m�

⌘
, and µ = mHm�

mH+m�
is the reduced mass of the dark matter and the
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the gas, Ly-↵ photons and dark matter respectively. The coupling xD to the temperature
scale Te↵ is a direct consequence of the spin-dependent interaction between electrons and
dark matter. Thus, we see that there is another temperature scale that the spin temperature
can couple to when DM spin-flip interactions dominate the hyperfine transitions.

If we know how the gas and DM temperatures evolve with time (or redshift) and if
we also know how the e↵ective couplings xC , x↵ and xD change with redshift, then we can
determine the spin temperature at any epoch.

We have evaluated the cross-section for the excitation and de-excitation processes �+
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arises because of the usual forward scattering divergence of a light mediator exchanged in
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B10 in eq. 3.2, we find an expression for the coupling of the spin temperature to the e↵ective
temperature as,
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4 Temperature evolution equations

The evolution of the dark matter and neutral hydrogen gas temperatures are given by the
following coupled Boltzmann equations (appendix A.3):

dT�
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H
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H
(T� � TK). (4.2)

– 8 –

, assuming  

the usual forward elastic-scattering singularity with a massless mediator. The divergence in
the angular integration is cut-o↵ by both the finite mediator mass, as well as by the threshold
momentum of the inelastic reaction.

We choose to work in the limit mV ! 0, where the divergence in the angular integral
is dominantly cut-o↵ by the threshold momentum for excitations rather than the mediator
mass. To be precise, we need to work in the limit m

2
V

⌧ p
4
th/p

2
c , where p

2
c = 2µTe↵ is

the characteristic relative momentum in the thermal distribution8. This condition can be
expressed as,
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⌘
. (A.35)

In this limit, we obtain the excitation cross-section as,
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µ
. (A.36)

Upon performing thermal averaging, we find
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d
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pf(p)�01vrel, (A.37)
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8Te↵

⇡µ
e
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Te↵ . (A.38)

Here, hvreli =
q

8Te↵
⇡µ

is the thermal average relative velocity and the exponential suppression

factor is due to thermal suppression of the excitation reaction. Similarly, for the de-excitation
cross-section in the limit of negligible mediator mass we obtain,

h�10vreli '
1
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g
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�g

2
e
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s
8Te↵

⇡µ
. (A.39)

Note the key di↵erences of absence of a factor of 3 (due to fewer final states) and absence of
an exponential suppression factor (due to lack of a threshold energy for de-excitation). The
excitation and de-excitation rates D01 and D10 are found by simply multiplying these thermal
cross-sections with the number density of dark matter particles at the relevant red-shift. The
ratio of rates is given by,

D01

D10
= 3e

� �
Te↵ . (A.40)

The characteristic low momentum DM spin-flip interaction cross-section is given by,

�01 ' 3�10 ' 12⇡
↵�↵e
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(A.41)
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(A.42)

8
This condition is more stringent than the condition m

2
V ⌧ p

2
th which allows us to neglect the mediator

mass in the first term in brackets in the denominator of eq. A.34, but not in the second.
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Spin flip Interactions vs Energy transfer rate

The energy transfer cross-section for the massless mediator in case of elastic 
scattering

In our case of DM induced inelastic spin flip scattering,

Suppressed by hyperfine splitting parameter



Energy transfer rate

where Te↵ = µ

⇣
TK

mH

+ T�

m�

⌘
, and µ = mHm�

mH+m�
is the reduced mass of the dark matter and the

hydrogen gas. Intuitively, the threshold energy needed for excitation reactions leads to the
exponential Boltzmann suppression factor of the excitation rate relative to the de-excitation
rate.

Using all of the above ratios of rate coe�cients, we find an expression for the spin-
temperature,

T
�1
s =

TCMB
�1 + xCT

�1
K

+ x↵T
�1
c + xDT

�1
e↵

1 + xC + x↵ + xD
, (3.6)

where xC = P10
B10

, x↵ = C10
B10

, and xD = D10
B10

are e↵ective couplings of the spin-temperature to
the gas, Ly-↵ photons and dark matter respectively. The coupling xD to the temperature
scale Te↵ is a direct consequence of the spin-dependent interaction between electrons and
dark matter. Thus, we see that there is another temperature scale that the spin temperature
can couple to when DM spin-flip interactions dominate the hyperfine transitions.

If we know how the gas and DM temperatures evolve with time (or redshift) and if
we also know how the e↵ective couplings xC , x↵ and xD change with redshift, then we can
determine the spin temperature at any epoch.

We have evaluated the cross-section for the excitation and de-excitation processes �+
H0 � � + H1 in appendix A.2. This scattering process has a large cross-section which
arises because of the usual forward scattering divergence of a light mediator exchanged in
the t-channel. For su�ciently light mediator masses, the divergence is cut-o↵, not by the
mediator mass, but rather by the tiny inelastic mass-splitting � between the singlet and
triplet states. Our detailed calculation of the cross-section in the regime of light mediator

mass shows that the thermally averaged bound state cross-section is of the form �01 ⇠
3
4⇡

g
2
�g

2
e

�2 ,
which leads to a large interaction rate even for relatively weak couplings. In the appendix,
we show that the de-excitation rate
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where ↵� =
g
2
�

4⇡ and ↵e =
g
2
e

4⇡ . Taking the ratio of the expression for D10 above, with the rate
B10 in eq. 3.2, we find an expression for the coupling of the spin temperature to the e↵ective
temperature as,

xD = 2.4
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4 Temperature evolution equations

The evolution of the dark matter and neutral hydrogen gas temperatures are given by the
following coupled Boltzmann equations (appendix A.3):

dT�

d log(1 + z)
= +2T� �

2

3

��

H
(TK � T�) , (4.1)

dTK

d log(1 + z)
= +2TK �
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H
(TCMB � TK)�
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H
(T� � TK). (4.2)
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The energy transfer weighted rate before thermal averaging is given by,

ET�01vrel '
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�2 (A.53)
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µ
. (A.55)

In the second line above, we see that the forward scattering divergence of the integral is
cut-o↵ by the inelastic hyperfine splitting parameter �. The divergence has two parts, the
leading divergence scales as 1/� and a sub-leading piece which scales as Log�. In the last
line above we have dropped the sub-leading contribution.

Note that in the second line in the equation above we have neglected the mediator
mass which could also cut-o↵ the forward divergence. This can be justified if we assume
the same upper bound on the mediator mass that we had assumed as in eq. A.35, when
calculating the spin-flip rate. However, for the elastic scattering process � +H1 ! � +H1,
the forward scattering divergence is cut-o↵ only by the mediator mass. In that case, the
corresponding integrand only has a logarithmic divergence, scaling as LogmV , i.e. there
is no 1/mV type divergence (see a derivation in Appendix B). Thus, the elastic scattering
energy transfer cross-section is suppressed relative to the inelastic cross-section that we have
considered here, and hence we will ignore this contribution to the energy transfer.

Now performing the thermal averaging of the rate in eq. A.55 we get,
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We can similarly evaluate the rate for de-excitation reactions as,

R10 '
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. (A.57)

Combining the energy transfer rates from both excitations and de-excitations we get,

Q̇� = �� (TK � T�) , (A.58)

where we have defined �� as the characteristic energy transfer rate. This would correspond
to the inverse time-scale to transfer an O(1) fraction of the baryon kinetic energy to the dark
matter.

If we further make the approximation that n1 ' 3n0 (for spin temperature Ts � �)
and using nH = n0 + n1, we can write the energy transfer rate �� as,

�� ' nH

✓
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2MTe↵
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�2

s
8Te↵

⇡µ
. (A.59)

Upon comparing this with the expression for the rate D01 for excitations (eq. A.45) we

see that the energy transfer rate is suppressed by a factor of S ⌘

⇣
�µ

2MTe↵

⌘
= 3.42 ⇥
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10�4
⇣
10K
Te↵

⌘ �
µ

0.1 GeV

� �
1 GeV
M

�
. This is because the energy transfer per collision is not of

O(TK � T�), but rather since the scattering process is dominantly forwards, the energy
transfer is of the order of the mass splitting between the singlet and triplet states, i.e. it is
O(�). Thus, the timescale to transfer an O(1) fraction of the kinetic energy of the gas to
the DM is longer than the interaction time scale by a factor of O(Te↵/�).

Now we can use,

nH =
⌦b⇢c

mH

(1 + z)3, (A.60)
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. (A.61)

Here, we have used the present-day baryon density fraction ⌦b = 0.05 and we have assumed
for simplicity that all the baryons are in the form of neutral hydrogen at the relevant red-
shifts. Thus, we can write an expression for the rate �� as,
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(A.62)

We can also similarly work out the temperature evolution of the hydrogen kinetic tem-
perature,

dTK

dt
= �2HT� + �c(TCMB � TK) +

2

3
Q̇H , (A.63)

where the second term is the heating due to CMB and �c is the compton rate, which depends
on the free electron fraction. In the last term Q̇H is the energy transfer rate from the dark
matter fluid to the gas, which can be related to the heating rate of the DM Q̇� as,

Q̇H =�
n�

nH

Q̇�, (A.64)

=�H(T� � TK), (A.65)

where we have defined the rate constant �H as,
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(A.66)

B Elastic scattering energy-transfer cross-section

We discuss here the forward scattering divergence of elastic scattering for processes such as
�+H1 ! �+H1, �+ e

�
! �+ e

� and �+ � ! �+ �. The energy transfer cross-section
for each of these processes can be defined as follows,

� =

Z
d⌦

d�

d⌦
(1� cos ✓), (B.1)
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Parameter Space of Interest

•S t r o n g b r o a d b a n d 
absorption signal with                            
Teff << Tcmb, and xD >> 1 

• Benchmark paramete r 
space giving rise to value 
of δTb(z = 17) = - 500 mK 



Strong coupling Benchmark 



Weak coupling Benchmark 



Intermediate coupling regime



					Cosmological	constraints	
Kine+c	decoupling	
Self-interac@on	
Freeze-out	

Constraints
					Constraints	on	light	mediator	

Short	range	forces	(mm-nm	scale)	
Collider	searches	
Stellar	cooling	
Extra-radia@on	species	



Parameter Space ruled out by constraints



Conclusions and testable predictions		
Single, strong, broadband global 21 cm signal – unlike 
anything predicted in standard cosmology or excess cooling 
models! 

Single broadband absorption feature From 1.4 Mhz (z~1000) -Â  
90 Mhz (z ~ 15) 

Spin temperature is a tracer of DM temperature, not the gas 
temperature. 

Safe from laboratory and other constraints. 



PE

Secondary tests
Astrophysical probes: 

• Stochastic 21 cm signal (could be tested by future experiments such as 
SKA). 

• Independent probe of the gas kinetic temperature. 

Collider Probes:  

• UV completions with broken SM gauge symmetries, in order to evade 
constraint from Z decays, stellar cooling  and extra radiation constraints. 

• short-range forces between electrons on mm-nm scale. 



PEThanks for your kind attention 



Forward Scattering and Spin flip cross-section

where ~vrel is the relative velocity between the initial state particles, µ = mHm�/(mH +m�)
is the reduced mass of dark matter and hydrogen and M = mH + m� is their mass sum.
Then we can replace,

Z
d
3
pid

3
p0f(pi)f(p0) !

Z
d
3
pd

3
pmf(p)f(pm) (A.27)

where the e↵ective distribution functions for p and pm are given respectively by,

f(p) =
1

(2⇡µTe↵)3/2
e
� p

2

2µTe↵ , and (A.28)

f(pm) =
1

(2⇡MTm)3/2
e
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2MTm , (A.29)

where we have defined Te↵ = µ

⇣
T�

m�
+ TK

mH

⌘
and Tm = TKT�

Te↵
. Making this substitution in

eq. A.24 and using the fact that the excitation cross-section only depends on the relative
momentum p and not on pm, we can trivially perform the integration over pm and write

D01 = n�h�01vreli = n�

Z
d
3
pf(p)�01vrel. (A.30)

We can evaluate the cross-section in the center-of-momentum frame (COM) and then identify
p as the magnitude of incoming momentum of either particle in this frame. In terms of the
COM frame scattering angle ✓, one can evaluate the cross-section as,
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where the final state momentum in the COM frame is p
0
'

q
p2 � p

2
th and pth =

p
2�µ is

the excitation threshold momentum, with � being the energy splitting between the singlet
and triplet states. The momentum transfer q2 can be written as q2 ' �p

2
� p

02 + 2pp0 cos ✓.
Substituting our expression for the amplitude-squared worked out in the previous sub-section
eq. A.22, we obtain
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The scattering process is dominated by forward scattering which has a low momentum trans-
fer and thus we can approximate q

2
⌧ 1/a20, and we can then take the hydrogen form factor

F (q2) ' 1. The angular integral then simplifies to,
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where we have also substituted for p
0 in terms of p and pth in the last line. Note that the

angular integration would be singular in the limit that mV ! 0 and pth ! 0. This is due to
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In the non-relativistic limit, 

the usual forward elastic-scattering singularity with a massless mediator. The divergence in
the angular integration is cut-o↵ by both the finite mediator mass, as well as by the threshold
momentum of the inelastic reaction.

We choose to work in the limit mV ! 0, where the divergence in the angular integral
is dominantly cut-o↵ by the threshold momentum for excitations rather than the mediator
mass. To be precise, we need to work in the limit m

2
V

⌧ p
4
th/p

2
c , where p

2
c = 2µTe↵ is

the characteristic relative momentum in the thermal distribution8. This condition can be
expressed as,
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In this limit, we obtain the excitation cross-section as,
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Upon performing thermal averaging, we find

h�01vreli '

Z
d
3
pf(p)�01vrel, (A.37)

=
3

4⇡

g
2
�g

2
e

�2

s
8Te↵

⇡µ
e
� �

Te↵ . (A.38)

Here, hvreli =
q

8Te↵
⇡µ

is the thermal average relative velocity and the exponential suppression

factor is due to thermal suppression of the excitation reaction. Similarly, for the de-excitation
cross-section in the limit of negligible mediator mass we obtain,

h�10vreli '
1

4⇡

g
2
�g

2
e

�2

s
8Te↵

⇡µ
. (A.39)

Note the key di↵erences of absence of a factor of 3 (due to fewer final states) and absence of
an exponential suppression factor (due to lack of a threshold energy for de-excitation). The
excitation and de-excitation rates D01 and D10 are found by simply multiplying these thermal
cross-sections with the number density of dark matter particles at the relevant red-shift. The
ratio of rates is given by,

D01
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= 3e

� �
Te↵ . (A.40)

The characteristic low momentum DM spin-flip interaction cross-section is given by,
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(A.42)

8
This condition is more stringent than the condition m

2
V ⌧ p

2
th which allows us to neglect the mediator

mass in the first term in brackets in the denominator of eq. A.34, but not in the second.
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where Te↵ = µ

⇣
TK

mH

+ T�

m�

⌘
, and µ = mHm�

mH+m�
is the reduced mass of the dark matter and the

hydrogen gas. Intuitively, the threshold energy needed for excitation reactions leads to the
exponential Boltzmann suppression factor of the excitation rate relative to the de-excitation
rate.

Using all of the above ratios of rate coe�cients, we find an expression for the spin-
temperature,

T
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s =

TCMB
�1 + xCT

�1
K

+ x↵T
�1
c + xDT

�1
e↵

1 + xC + x↵ + xD
, (3.6)

where xC = P10
B10

, x↵ = C10
B10

, and xD = D10
B10

are e↵ective couplings of the spin-temperature to
the gas, Ly-↵ photons and dark matter respectively. The coupling xD to the temperature
scale Te↵ is a direct consequence of the spin-dependent interaction between electrons and
dark matter. Thus, we see that there is another temperature scale that the spin temperature
can couple to when DM spin-flip interactions dominate the hyperfine transitions.

If we know how the gas and DM temperatures evolve with time (or redshift) and if
we also know how the e↵ective couplings xC , x↵ and xD change with redshift, then we can
determine the spin temperature at any epoch.

We have evaluated the cross-section for the excitation and de-excitation processes �+
H0 � � + H1 in appendix A.2. This scattering process has a large cross-section which
arises because of the usual forward scattering divergence of a light mediator exchanged in
the t-channel. For su�ciently light mediator masses, the divergence is cut-o↵, not by the
mediator mass, but rather by the tiny inelastic mass-splitting � between the singlet and
triplet states. Our detailed calculation of the cross-section in the regime of light mediator

mass shows that the thermally averaged bound state cross-section is of the form �01 ⇠
3
4⇡

g
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e

�2 ,
which leads to a large interaction rate even for relatively weak couplings. In the appendix,
we show that the de-excitation rate
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where ↵� =
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4⇡ . Taking the ratio of the expression for D10 above, with the rate
B10 in eq. 3.2, we find an expression for the coupling of the spin temperature to the e↵ective
temperature as,
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4 Temperature evolution equations

The evolution of the dark matter and neutral hydrogen gas temperatures are given by the
following coupled Boltzmann equations (appendix A.3):
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, assuming  

where ~vrel is the relative velocity between the initial state particles, µ = mHm�/(mH +m�)
is the reduced mass of dark matter and hydrogen and M = mH + m� is their mass sum.
Then we can replace,
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where the e↵ective distribution functions for p and pm are given respectively by,
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where we have defined Te↵ = µ
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eq. A.24 and using the fact that the excitation cross-section only depends on the relative
momentum p and not on pm, we can trivially perform the integration over pm and write

D01 = n�h�01vreli = n�

Z
d
3
pf(p)�01vrel. (A.30)

We can evaluate the cross-section in the center-of-momentum frame (COM) and then identify
p as the magnitude of incoming momentum of either particle in this frame. In terms of the
COM frame scattering angle ✓, one can evaluate the cross-section as,

�01vrel =
1

2Ei

1

2E0

1

16⇡

Z
d(cos ✓)

2p0

Ei + E0

1

2

X

{spins}

|M|
2
, (A.31)

where the final state momentum in the COM frame is p
0
'

q
p2 � p

2
th and pth =

p
2�µ is

the excitation threshold momentum, with � being the energy splitting between the singlet
and triplet states. The momentum transfer q2 can be written as q2 ' �p

2
� p

02 + 2pp0 cos ✓.
Substituting our expression for the amplitude-squared worked out in the previous sub-section
eq. A.22, we obtain

�01vrel '
3

2⇡
g
2
�g

2
eµp

0
Z 1

�1
d(cos ✓)

✓
1

q2 �m
2
V

◆2

F
2(q2). (A.32)

The scattering process is dominated by forward scattering which has a low momentum trans-
fer and thus we can approximate q

2
⌧ 1/a20, and we can then take the hydrogen form factor

F (q2) ' 1. The angular integral then simplifies to,

I =

Z 1

�1
d(cos ✓)

✓
1

�p2 � p02 �m
2
V
+ 2pp0 cos ✓

◆2

, (A.33)

=
2

(p2th �m
2
V
)2 + 4m2

V
p2

, (A.34)

where we have also substituted for p
0 in terms of p and pth in the last line. Note that the

angular integration would be singular in the limit that mV ! 0 and pth ! 0. This is due to
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the usual forward elastic-scattering singularity with a massless mediator. The divergence in
the angular integration is cut-o↵ by both the finite mediator mass, as well as by the threshold
momentum of the inelastic reaction.

We choose to work in the limit mV ! 0, where the divergence in the angular integral
is dominantly cut-o↵ by the threshold momentum for excitations rather than the mediator
mass. To be precise, we need to work in the limit m

2
V

⌧ p
4
th/p

2
c , where p

2
c = 2µTe↵ is

the characteristic relative momentum in the thermal distribution8. This condition can be
expressed as,

mV ⌧

r
2µ

Te↵
� ' 2.3 eV

s✓
1000 K

Te↵

◆⇣
µ

0.1 GeV

⌘
. (A.35)

In this limit, we obtain the excitation cross-section as,

�01vrel '
3

4⇡

g
2
�g

2
e

�2

p
0

µ
. (A.36)

Upon performing thermal averaging, we find

h�01vreli '

Z
d
3
pf(p)�01vrel, (A.37)

=
3

4⇡

g
2
�g

2
e

�2

s
8Te↵

⇡µ
e
� �

Te↵ . (A.38)

Here, hvreli =
q

8Te↵
⇡µ

is the thermal average relative velocity and the exponential suppression

factor is due to thermal suppression of the excitation reaction. Similarly, for the de-excitation
cross-section in the limit of negligible mediator mass we obtain,

h�10vreli '
1

4⇡

g
2
�g

2
e

�2

s
8Te↵

⇡µ
. (A.39)

Note the key di↵erences of absence of a factor of 3 (due to fewer final states) and absence of
an exponential suppression factor (due to lack of a threshold energy for de-excitation). The
excitation and de-excitation rates D01 and D10 are found by simply multiplying these thermal
cross-sections with the number density of dark matter particles at the relevant red-shift. The
ratio of rates is given by,

D01

D10
= 3e

� �
Te↵ . (A.40)

The characteristic low momentum DM spin-flip interaction cross-section is given by,

�01 ' 3�10 ' 12⇡
↵�↵e

�2
(A.41)

' 4.2⇥ 10�14
⇣

↵�

10�2

⌘⇣
↵e

10�14

⌘
cm2

' 4.2⇥ 1010
⇣

↵�

10�2

⌘⇣
↵e

10�14

⌘
barns,

(A.42)

8
This condition is more stringent than the condition m

2
V ⌧ p

2
th which allows us to neglect the mediator

mass in the first term in brackets in the denominator of eq. A.34, but not in the second.
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~~

For elastic scattering with 
massless mediator, the 
crossection scales as 
Rutherford scattering 


