the 2nd IITB-Hiroshima workshop on Neutrino Physics 2021. Oct. 26rd

Directional detection of cosmic-ray accelerated dark matter

Keiko Nagao (Okayama Univ. of Sci.)

in collaboration with S. Higashino, T. Naka and K. Miuchi (in progress)

NEW AGE || NEWSdm

1. Introduction

How can we detect the dark matter?

Dark Matter

Dark Matter Candidates

- Weakly Interacting Massive Particles (WIMPs)
- Axions

.....

П

- Axion Like Particles (ALPs)
- Primordial black holes
- Modified Gravity

Direct Detection

1000

Detecting recoil energy of DM-target scattering

Constraint of Direct Detection

 Direct detection put the severe constraint to O(10-100) GeV DM.

□ Lighter or heavier DM than ordinary WIMP ($m_{\chi} \sim$ 0(100)GeV) are becoming popular.

Why direct detection is not sensitive to light and heavy mass region?

Light mass region
 <v_{DM}>~220km/s

 Kinetic energy ~m_{DM}v_{DM}²/2
 For light DM, getting
 enough kinetic energy to
 overcome energy threshold
 of detector is hard.

→ small ionization signals by DM-electron scattering, Migdal effect, Cosmic-ray DM scattering, ...

Heavy mass region $\Omega_{DM}h^2=0.12$ $W/\Omega_{DM}=\rho_{DM}/\rho_c$ $=m_{DM}n_{DM}/\rho_c$ $n_{DM}\propto 1/m_{DM}$ Less #DM is expected for large m_{DM}

W. Yin arXiv:1809.08610 T.Bringmann and M.Pospelov arXiv:1810.10543

2. Cosmic-ray boosted DM (CRDM)

Can the light dark matter of sub-GeV mass be detected via DM-nucleus scattering?

T.Bringmann and M.Pospelov arXiv:1810.10543

Concept of CR Acceleration

Ordinary DM (WIMPs)

He

D

- <v_{DM}>~230 km/s
- bounded by the Galactic escape velocity 500-600 km/s

р

 χ

Cosmic-ray (CR) can scatter the light DM and DM obtains additional kinetic energy (CR-DM) to overcome the energy threshold.

CR-DM

NOT bounded by the Galactic escape velocity
 <v_{DM}> depends on kinetic energy of CR

CR-DM

T.Bringmann, M.Pospelov

f(v)

Even if DM is as light as < O(1) GeV, direct detection can reach (give constraint to) the parameter region due to CR boost.

Attenuation of CR-DM

If σ is too large, due to scattering with atoms in underground DM loses its kinetic energy < Ethr of detector. Such region cannot be constrained.

 $d\Phi_{\chi}$ dT_{χ} attenuation at depth z $\frac{d\Phi_{\chi}}{dT_{\chi}^{z}} = \left(\frac{dT_{\chi}}{dT_{\chi}^{z}}\right) \frac{d\Phi_{\chi}}{dT_{\chi}} = \frac{4m_{\chi}^{2}e^{z/\ell}}{(2m_{\chi} + T_{\chi}^{z} - T_{\chi}^{z}e^{z/\ell})^{2}} \frac{d\Phi_{\chi}}{dT_{\chi}}$ dT_{γ}^{z} detector z=1400m (XENON, LNGS)

T.Bringmann, M.Pospelov

Constraints on σ_{SI} and σ_{SD}

T.Bringmann, M.Pospelov

If σ is too large, due to scattering with atoms in underground, DM loses its kinetic energy < Ethr of detector. Such region cannot be constrained.

Directional Direct Detection

Why directional detection of DM?

Our motion in the Galaxy

□ The Solar system is moving toward the Cygnus.

Annual modulation of the event rate is expected.

Advantages of directionality (1)

Powerful background rejection
 Background : isotropic
 DM signal : come from direction
 of the Cygnus

Neutrino Floor

MUMD-Punctions 10-3 10-4 10-5 10-6 10-6 10-7 10

SNOWMASS report (2013)

Advantages of directionality (2)

Velocity distribution of DM

- Isotropic Maxwell distribution is usually assumed as f(v)
- Non-standard distribution, especially anisotropy is suggested by some N-body simulations

Achieving Directionality

Credit:Sven Vahsen's talk in Sendai Symposium

- Detectors that reconstruct the recoil trajectory
 - Gas-based TPCs
 - Nuclear Emulsions
 - Crystal defect spectroscopy
 - DNA strand detector
 - Planar targets (graphene)
- Detectors that indirectly determine the recoil direction
 - Anisotropic scintillators
 - Columnar recombination
 - Carbon nanotubes

 Event-by-event recoil tracking in condensed matter is hard, but not impossible

Figure 24: Left: Optical microscope image of 100 keV C ion tracks. Right: The corresponding distribution of major axis orientation determined from elliptical shape fitting for events whose ratio of lengths of major and minor axes exceeds 1.25.

Physics Reports 662 (2016)

Prototypes and Experiments (list is probably not comprehensive!)

Name	Technology	Directionality	Status
NEWAGE	Gas TPC, strip readout	3d	Running underground
DRIFT	Gas TPC, NID, wire readout	1.5d	Running underground
MIMAC	Gas TPC, strip readout	3d	Ran underground, scaling up
DMTPC	Gas TPC, optical readout	2d	Ran underground, scaled up, stopped
D ³ / Hawaii readout R&D	Gas TPC, pixel readout	3d	Prototypes evaluated, ran above- ground
New Mexico readout R&D	Gas TPC, NID, optical readout	2d	Prototypes evaluated
LEMON, ORANGE, INITIUM, CYGNO	Gas TPCs, CMOS + PMT optical readout	3d	Prototypes evaluated, funded to scale up
NEWSdm	Nuclear Emulsions	2d	Prototyping / going underground
PTOLEMY	Graphene	2d	Prototyping / going underground

All directional that have set limits use <=1m³ gas TPCs NEWAGE: best limit using directionality DRIFT: best limit with a directional detector

Credit:Sven Vahsen's talk in Sendai Symposium

Sendai Symposium

Gaseous Detector

Directionality
Mean free path ~ μ m

Low Pressure

large volume is required to enhance sensitivity.

Typical target CF₄, SF₆, CS₂, CHF₃

Solid detector

Slides by Naka.

What if we can detect the CR-DM with directionality? Can we see many CR-DM in the direction of the Galactic Center? It's interesting!

4. Numerical result

Can we see CR–DM signals from the Galactic center?

Strategy of Numerical Simulation

Detectability of CR-DM signals from the GC, DM profile dependence, ...

Cal. of CR-DM flux

$$\begin{split} G_i(Q^2) &= 1/(1+Q^2/\Lambda_i^2)^2 & \mbox{hadronic elastic scattering} \\ form factor \\ T_\chi^{\max} &= \frac{T_i^2+2m_iT_i}{T_i+(m_i+m_\chi)^2/(2m_\chi)} & \mbox{maximum kinetic energy of DM} \end{split}$$

hadronic elastic scattering

Cal. of CR-DM flux

DM profiles of the Milky Way Galaxy

T.Bringmann and M.Pospelov arXiv:1810.10543

Line-of-sight integral

CR-DM Flux in the sky

NFW

Einasto

Seudo

target: F

Target dependence of Nuclear Recoil NFW

m_x=1GeV

mχ=0.01GeV

mχ=0.0001GeV

F

Ag

Summary and Outlook

 Celestial sphere maps for nuclear recoils caused by CR-DM are obtained. Nuclear recoils focus on the GC region and depend on DM profiles.

I've discussed based on only CR-DM flux. How much events can we expect if we suppose the the CR-DM cross section, the energy threshold and the resolution of the detectors? Investigation of realistic detectability is future work...