Effect of light-heavy neutrino mixing on LNV and LFV decays in LRSM

Prativa Pritimita (Post Doctoral Fellow)

> Department of Physics, IIT Bombay.

2nd IITB-HU workshop (October, 2021)

• • • • • • • • • • • • •

Outline

- Generic Left-Right Symmetric Model
- LRSM with natural type-II seesaw
- Effect of light-heavy neutrino mixing on $0\nu\beta\beta$ decay
- Effect of light-heavy neutrino mixing on LFV decays
- Constraining lightest neutrino mass scale from results
- Summary and Conclusion

< 回 > < 三 > < 三 >

Left-Right Model as New Physics

• Gauge Symmetry:

 $\mathcal{G}_{LR} \equiv SU(2)_L imes SU(2)_R imes U(1)_{B-L} imes SU(3)_C$

- The existence of right-handed (RH) neutrinos, as required for the type-I seesaw mechanism, or the triplet scalars, as required for the type-II seesaw mechanism can both be naturally motivated in a LRSM.
- neutrino mass generation: In conventional LRSM, where symmetry breaking is implemented with scalar bidoublet and triplets, light neutrino mass is governed by both type-I and type-II seesaw contributions:

$$M_{\nu} = -M_D M_R^{-1} M_D^T + M_L \equiv M_{\nu}^{\mathrm{I}} + M_{\nu}^{\mathrm{II}}$$

 M_D is the Dirac neutrino mass, M_R and M_L are the Majorana masses of right and left-handed neutrinos respectively.

Generic LRSM

- The scale of *M_R* is decided by the vev of right-handed scalar triplet (Δ_R) which spontaneously breaks LRSM to SM.
- The smallness of light neutrino mass is connected to high scale of parity restoration which can't be verified by current and planned collider experiments.
- TeV scale LRSM:

$$\label{eq:Left} \begin{array}{l} \textit{Left}-\textit{right mixing} ~\propto ~ \frac{M_D^2}{M_R}; \\ M_R \sim \textit{TeV}, ~ M_D^2 \sim 10^4 \textit{GeV}, ~ M_\nu \sim \textit{GeV}(\textit{invalid}) \end{array}$$

• Thus *M_D* should be taken to be very small in order to get sub-eV scale light neutrino mass.

Type-I/Type-II dominance in LRSM

- For phenomenological purposes, it is usually assumed that only one of the contributions is dominant for the low-scale LRSM.
- New physics contributions to LNV ($0\nu\beta\beta$ decay) mainly involves left-right mixing which depends on Dirac neutrino mass M_D .
- Necessarily *M_D* should be large in order to expect LNV signatures.
- Type-I dominance: Assume $M_L \rightarrow 0$

$$M_{\nu} = -M_D M_R^{-1} M_D^T$$

light-heavy neutrino mixing effects are suppressed for TeV-scale parity restoration

• Type-II dominance: Assume $M_D \rightarrow$ very much suppressed

$$M_{\nu} = M_L$$

Studies that assume $M_D \rightarrow 0$ therefore miss to comment on LNV, LFV involving left-right mixing.

P. Pritimita (IITB)

Natural type-II seesaw dominance

- natural Type-II dominance: In this case, type-I seesaw contribution is exactly cancelled out ⇒ we get only type-II contribution without any assumption.
- **advantages:** allows large value for $M_D \rightarrow$ large left-right mixing \rightarrow new physics contributions to $0\nu\beta\beta$ decay
- Pritimita, Dash, Patra; JHEP: 10(2016) 147
 We analyze all new physics contributions to 0νββ decay to derive bound on the absolute scale of lightest neutrino masses and mass hierarchy.
- Dash, Pritimita, Patra, Yajnik; arxiv: 2105.11795 We ignore W_R , Δ_R contributions and focus only on those contributions which involve large active-sterile neutrino mixing.

< 日 > < 同 > < 回 > < 回 > < 回 > <

LRSM with natural type-II seesaw dominance

Dash, Pritimita, Patra, Yainik: arXiv: 2105.11795

Fermions

Scalars

- $q_{I}(2,1,1/3,3) \quad q_{B}(1,2,1/3,3) \quad \Phi(2,2,0,1)$ $\ell_{I}(2,1,-1,1) \quad \ell_{B}(1,2,-1,1)$
- S(1, 1, 0, 1)

 $\Delta_{I}(3,1,2,1) \quad \Delta_{B}(1,3,2,1)$

 $H_{I}(2,1,-1,1)$ $H_{B}(1,2,-1,1)$

く 戸 と く ヨ と く ヨ と

- The neutral lepton sector of generic LRSM contains three active left-handed neutrinos ν and three right-handed neutrinos $N_{\rm R}$.
- We add three sterile neutrinos S, for generating light neutrino mass through natural type-II seesaw term.
- Int. lagrangian for leptons,

$$-\mathcal{L}_{Y_{U}k} = \overline{\ell_L} \left[Y_3 \Phi + Y_4 \widetilde{\Phi} \right] \ell_R + f \left[\overline{(\ell_L)^c} \ell_L \Delta_L + \overline{(\ell_R)^c} \ell_R \Delta_R \right] \\ + \overline{F(\ell_R)} H_R S^c + \overline{F'(\ell_L)} H_L S + \mu_S \overline{S^c} S + \text{h.c.} \\ \supset M_D \overline{\nu} N_R + M_L \overline{\nu^c} \nu + M_R \overline{N_R^c} N_R + M \overline{N_R} S + \mu_L \overline{\nu^c} S + \mu_S \overline{S^c} S$$

LRSM with natural type-II seesaw dominance

Dash, Pritimita, Patra, Yajnik; arXiv: 2105.11795

- We have taken the mass parameter $\mu_S \overline{S^c}S$ to be zero or very small so that the generic inverse seesaw contribution involving μ_S is very much suppressed.
- induced VEV for H_L is also taken to be zero ($\langle H_L \rangle \rightarrow 0$).
- complete neutral lepton mass matrix (with $\langle H_L
 angle
 ightarrow 0$, $\mu_S
 ightarrow 0$)

$$\mathbb{M} = \begin{pmatrix} \begin{matrix} \nu & S & N_R^c \\ \hline \nu & M_L & 0 & M_D \\ S & 0 & 0 & M \\ N_R^c & M_D^T & M^T & M_R \end{pmatrix}, M_R > M > M_D \gg M_L, \\ m_\nu = M_L \quad \text{(type-II seesaw)}, \\ m_S \simeq M M_R^{-1} M^T, \quad m_N = M_R \end{cases}$$

M is mixing matrix in N_R , *S* sector, $M_L(M_R)$ is Majorana mass matrix for left-handed (right-handed) neutrinos.

Diagonalization Procedure

 With seesaw approx.: M_R > M > M_D ≫ M_L, after integrating out heavy neutrinos, the resulting neutrino mass matrix :

$$\mathbb{M}' = \begin{pmatrix} M_L & 0\\ 0 & 0 \end{pmatrix} - \begin{pmatrix} M_D\\ M \end{pmatrix} M_R^{-1} \begin{pmatrix} M_D \\ M \end{pmatrix} M_R^{-1} \begin{pmatrix} M_D \\ M \end{pmatrix}$$
$$= \begin{pmatrix} M_L - M_D M_R^{-1} M_D^T & -M_D M_R^{-1} M^T\\ M M_R^{-1} M_D^T & -M M_R^{-1} M^T \end{pmatrix}$$

• Applying seesaw approx., $|-MM_R^{-1}M^T| > |-M_DM_R^{-1}M^T|$

$$\begin{split} m_{\nu} &= \left[M_{L} - M_{D} M_{R}^{-1} M_{D}^{T} \right] \\ &- \left(-M_{D} M_{R}^{-1} M^{T} \right) \left(-M M_{R}^{-1} M^{T} \right)^{-1} \left(-M M_{R}^{-1} M_{D}^{T} \right) \\ &= M_{L} - M_{D} M_{R}^{-1} M_{D}^{T} + M_{D} M_{R}^{-1} M_{D}^{T} = M_{L} = m_{\nu}^{\mathrm{II}} \end{split}$$

LFV in LRSM

- In our model, LFV decays can be mediated by heavy right-handed neutrino N_R, extra sterile neutrino S, charged scalar triplets Δ^{±±}_{L,R} and gauge bosons W_{L,R}.
- We focus only on those contributions which involve large active-sterile neutrino mixing, i.e. due to the neutrinos *N_R* and *S* in order to constrain light neutrino masses from LFV decays.

• We ignore other possible contributions by imposing the limiting conditions; $M_{W_R} \gg M_{W_L}$, $M_{\Delta_{L,R}} \gg M_{N,S}$

Model features

- One of the elegant features of this framework is that we have expressed model parameters like light neutrino mass, heavy and sterile neutrino masses in terms of oscillation parameters.
- For NH (*m*₁ ~ *m*₂ << *m*₃),

 $egin{aligned} m_1 &= ext{lightest neutrino mass}\ m_2 &= \sqrt{m_1^2 + \Delta m_{ ext{sol}}^2}\ m_3 &= \sqrt{m_1^2 + \Delta m_{ ext{atm}}^2 + \Delta m_{ ext{sol}}^2} \end{aligned}$

For IH (m₃ << m₁ ∼ m₂),

 $m_3 = ext{lightest neutrino mass}$ $m_1 = \sqrt{m_3^2 + \Delta m_{ ext{atm}}^2}$ $m_2 = \sqrt{m_1^2 + \Delta m_{ ext{sol}}^2 + \Delta M_{ ext{atm}}^2}$.

3

D N A B N A B N A B N

Model features

- LFV decays mediated via heavy neutrino *N_R* and sterile neutrino *S* are proportional to masses and mixing of *N_R*, *S*.
- In the model, masses and mixing of heavy neutrinos are expressed in terms of oscillation parameters.
- Thus, LFV contributions can also be expressed in terms of oscillation parameters.
- For ex.,

$$\mathsf{Br}_{\mu\to e\gamma} = \frac{\alpha_W^3 s_W^2}{256\pi^2} \frac{m_\mu^4}{M_{W_L}^4} \frac{m_\mu}{\Gamma_\mu} |\mathcal{G}_\gamma^{\mu e}|^2 \,,$$

where, $\Gamma_{\mu}=2.996\times 10^{-19}$ GeV (total decay width of muon),

$$G_{\gamma}^{\mu e} = \left| \sum_{i=1}^{3} \left\{ \mathsf{V}_{\mu i}^{\nu N^{*}} \mathsf{V}_{e i}^{\nu N} \mathcal{G}_{\gamma}\left(x_{N_{i}}\right) + \mathsf{V}_{\mu i}^{\nu S^{*}} \mathsf{V}_{e i}^{\nu S} \mathcal{G}_{\gamma}\left(x_{S_{i}}\right) \right\} \right|^{2}$$

< 日 > < 同 > < 回 > < 回 > < □ > <

Experimental bounds on LFV decays

New physics models that discuss LFV are constrained by muon decay experiments since the current limits on τ observables are less stringent.

LFV Decays (with Branching Ratios)	Present Bound	Future Sensi
$Br\left(\mu o oldsymbol{e}\gamma ight)$	\leq 4.2 $ imes$ 10 $^{-13}$ (MEG)	$\leq 1.0 imes 10^{-16}$ (P
$Br\left(\mu ightarrow3e ight)$	\leq 1.0 \times 10 ⁻¹² (SINDRUM)	10 ⁻¹⁶ (Mu3

Table: Branching ratios for different LFV processes and their present experimental bound and future sensitivity values taken from various refs.

Constraints on light neutrino mass scale from $\mu \rightarrow e\gamma$ [$N_R + S$ contributions]

イロト イポト イヨト イヨト

Constraints on light neutrino mass scale from $\mu \rightarrow 3e$ [$N_R + S$ contributions],

New contributions to $o\nu\beta\beta$ decay

We give emphasis on left-handed current effects due to the exchange of heavy neutrinos N_R and S_L .

where, $G^{0\nu}$ is phase-space factor, $\mathcal{M}_{\nu}^{0\nu}$ is NME, $m_{\beta\beta}^{\text{eff}}$ is effective Majorana mass parameter.

P. Pritimita (IITB)

Experimental constraints on $o\nu\beta\beta$ decay

Isotope	$G_{01}^{0 u}$ [yrs ⁻¹]	$\mathcal{M}^{0 u}_ u$	$\mathcal{M}_N^{0 u}$	
⁷⁶ Ge	$5.77 imes 10^{-15}$	2.58-6.64	233–412	
¹³⁶ Xe	$3.56 imes 10^{-14}$	1.57–3.85	164–172	

Table: phase space factor and NMEs taken from various refs.

Experiment	Limit	
GERDA	$2.1 \times 10^{25} \text{ yrs}$	
GERDA Phase II	$5.2 \times 10^{25} \text{ yrs}$	
EXO	$1.6 \times 10^{25} \text{ yrs}$	
KamLAND-Zen	$1.9 \times 10^{25} \text{ yrs}$	
Combined ¹³⁶ Xe	3.4×10^{25} yrs	

Table: Limits on the half-life of $0\nu\beta\beta$.

< 日 > < 同 > < 回 > < 回 > < 回 > <

Standard mechanism contribution to $0\nu\beta\beta$ decay

э

Constraints on lightest nu mass from $o\nu\beta\beta$ decay ($N_R + S$ contributions)

Constraints on lightest nu mass from $o\nu\beta\beta$ decay ($\nu + N_R + S$ contributions)

э

Figure: Allowed region of effective Majorana mass parameter ($|m_{ee}|$) as a function of sum of light neutrino masses (Σm_i) for std mechanism (left-panel) and N_R , *S* mediated diagrams (right-panel).

$$\Sigma_{m_{\nu}} < 84 \, \text{meV} \, (1\sigma \text{ C.L.}), < 146 \, \text{meV} (2\sigma \text{ C.L.}), < 208 \, \text{meV} (3\sigma \text{ C.L.})$$

Comments on muon (g-2) anomaly

(Majumdar, Patra, Pritimita, Senapati, Yajnik; JHEP 09 (2020) 010)

- In this framework new contributions to *a_μ* can arise with heavy and sterile neutrino *N_R*, *S* mediation.
- These contributions depend on heavy and sterile neutrino masses and their mixing with muons, which are related to light neutrino masses and oscillation parameters.
- Thus, this scenario opens the possibility of constraining light neutrino masses and mass hierarchy from FNAL results on a_µ.

Summary and Conclusion

- Seesaw Mechanism: a simple theoretical mechanism for origin of neutrino mass which predicts Majorana nature of neutrinos.
- Type-I and Type-II seesaw can be naturally motivated in a LRSM.
- Natural type-II seesaw dominance mechanism in an extended LRSM allows large light-heavy neutrino mixing and generates new physics contributions to LNV and LFV decays.
- One elegant feature of the model is that it connects heavy neutrinos with light neutrinos by expressing heavy neutrino masses in terms of oscillation parameters.
- Thus, LFV contributions can also be expressed in terms of oscillation parameters.
- Bound on Absolute scale of neutrino masses and information on mass hierarchy can be derived by studying new contributions to LFV decays and 0νββ decay in the model.

・ロト ・ 四ト ・ ヨト ・ ヨト …