Polarization observables as a probe of anomalous gauge-Higgs couplings

Priyanka Sarmah

IITB-Hiroshima University workshop

IIT Bombay

October 27, 2021

PLAN OF THE TALK

- Motivation of the work
- Spin Density Matrix
- Helicity Amplitudes for the process
- Asymmetries and Sensitivities
- Summary

MOTIVATIONS OF THE WORK

- The discovery of the Higgs boson (H) with mass around 125 GeV at the LHC completes the particle spectrum of the Standard Model (SM).
- A precise measurement of the couplings of the Higgs to electroweak gauge bosons is needed to uncover the exact mechanism of EWSB.
- Obsevables like total cross section, angular distribution are required to study the couplings in experiments.
- ▶ *W*, *Z* being a spin-1 particle provides additional observables.

- Various studies(Saavedra etal.PhysRevD.93.011301, Rahaman etal. Eur.Phys.J. C76 (2016) no.10, 539) show that angular asymmetries corresponding to different polarizations are useful to probe new physics.
- J.Nakamura (JHEP08(2017)008)studies ZZH at LHC using polarisations of the Z, S.Banerjee et al., PhysRevD.100.115004 (2019)has studied ZH coupling in the Higgstrahlung process in the dimension 6 SMEFT.

GOAL OF THE WORK

Study anomalous ZZH vertex in the associated ZH production at the e⁺e⁻ and LHC using the Z polarization observables.

FIGURE: Feynman diagrams for ZH production.

where the vertex $Z_{\mu}(k_1) o Z_{
u}(k_2) H$ takes the following Lorentz invariant structure

$$\Gamma^{V}_{\mu\nu} = \frac{g_w}{\cos\theta_w} m_z \left[a_z g_{\mu\nu} + \frac{b_z}{m_z^2} \left(k_{1\nu} k_{2\mu} - g_{\mu\nu} k_{1.} k_2 \right) + \frac{\tilde{b}_z}{m_z^2} \epsilon_{\mu\nu\alpha\beta} k_1^{\alpha} k_2^{\beta} \right] \quad (1)$$

The form factors a_z , b_z and \tilde{b}_z are in general complex.

PRIYANKA SARMAH

FORMALISM

Polarization Parameters of Z boson

The 2 \times 2 density matrix for spin-1/2 system-

$$\rho = \frac{1}{2}I + \frac{1}{2}\boldsymbol{P}.\boldsymbol{\sigma} \tag{2}$$

where the Pauli matrices σ serve the basis for this expansion and **P** is called the **spin- polarization vector** for the ensemble

$$\mathcal{P} = \langle \sigma \rangle = Tr(\rho \sigma)$$

For spin-1, the elements of 3×3 spin density matrix written as

$$\rho = \frac{1}{3}I + \frac{1}{2}\sum_{M=-1}^{M=1} \langle S_M \rangle^* S_M + \sum_{M=-2}^{M=2} \langle T_M \rangle^* T_M$$
(3)

where $S_0 = S_3, S_{\pm 1} = \mp \frac{1}{\sqrt{2}}(S_1 + iS_2)$ are the spin operators in spherical basis and T_M s are five rank 2 irreducible tensors built from S_M .

The production and decay density matrices

For a generic process $AB \to VX$, $V \to f\bar{f'}$. Total rate with V being on-shell is given as

$$\frac{1}{\sigma}\frac{d\sigma}{d\Omega_f} = \frac{2s+1}{4\pi}\sum_{\lambda,\lambda'} P(\lambda,\lambda')\Gamma(\lambda,\lambda')$$
(4)

Here $\sigma = \sigma_V BR(V \to f\bar{f'})$ is the total crossection for production of V. $P(\lambda, \lambda')(\lambda, \lambda' = \pm 1, 0)$ is the polarization density matrix for V and in terms of a hermitian 3×3 production density matrix given as

$$P(\lambda, \lambda') = \frac{1}{\sigma_{\nu}} \int \rho(\lambda, \lambda') d\Omega_{\nu} = \frac{1}{\sigma_{\nu}} \rho_{T}(\lambda, \lambda')$$
(5)

with σ_v the production cross section of V without decay. Matrix P can be parametrized in terms of a vector $P = (P_x, P_y, P_z)$ and a rank 2 traceless,symmetric tensor T_{ij} (E.Leader," Spin in particle physics")

The production and decay density matrices

$$P(\lambda,\lambda') = \begin{bmatrix} \frac{1}{3} + \frac{P_z}{2} + \frac{T_{zz}}{\sqrt{6}} & \frac{P_x - iP_y}{2\sqrt{2}} + \frac{T_{xz} - iT_{yz}}{\sqrt{3}} & \frac{T_{xx} - T_{yy} - 2iT_{yz}}{\sqrt{6}} \\ \frac{P_x + iP_y}{2\sqrt{2}} + \frac{T_{xz} + iT_{yz}}{\sqrt{3}} & \frac{1}{3} - \frac{2T_{zz}}{\sqrt{6}} & \frac{P_x - iP_y}{2\sqrt{2}} - \frac{T_{xz} - iT_{yz}}{\sqrt{3}} \\ \frac{T_{xx} - T_{yy} - 2iT_{xy}}{\sqrt{6}} & \frac{P_x + iP_y}{2\sqrt{2}} - \frac{T_{xz} + iT_{yz}}{\sqrt{3}} & \frac{1}{3} - \frac{P_z}{2} + \frac{T_{zz}}{\sqrt{6}} \end{bmatrix}$$
(6)

The decay density matrix with the interaction vertex $Vf\bar{f} : \gamma^{\mu}(c_{L}^{f}P_{L} + c_{R}^{f}P_{R})$ in its rest frame is given by(Boudjema,JHEP 0907 (2009) 028)

$$\Gamma(\lambda, \lambda') = \begin{bmatrix} \frac{(1+\cos^2\theta + 2\alpha\cos\theta)}{4} & \frac{\sin\theta(\alpha + \cos\theta)e^{i\phi}}{2\sqrt{2}} & \frac{(1-\cos\theta^2)e^{2i\phi}}{4} \\ \frac{\sin\theta(\alpha + \cos\theta)e^{-i\phi}}{2\sqrt{2}} & \frac{\sin^2\theta}{2} & \frac{\sin\theta(\alpha - \cos\theta)e^{i\phi}}{2\sqrt{2}} \\ \frac{(1-\cos\theta^2)e^{-2i\phi}}{4} & \frac{\sin\theta(\alpha - \cos\theta)e^{-i\phi}}{2\sqrt{2}} & \frac{(1+\cos^2\theta - 2\alpha\cos\theta)e^{i\phi}}{4} \end{bmatrix}$$
(7)

 $\alpha \rightarrow \frac{c_k^2 - c_L^2}{c_k^2 + c_L^2}$ for masless final state fermions, is the polarization analyser. The angles θ and ϕ are polar and azimuthal angles of the fermions defined in the rest frame of the V.

PRIYANKA SARMAH

Therefore the angular distribution of the fermion in the rest frame of V

$$\frac{1}{\sigma} \frac{d\sigma}{d\Omega_f} = \frac{3}{8\pi} [(\frac{2}{3} - \frac{T_{zz}}{\sqrt{6}}) - P_z \cos\theta]$$
$$+ \sqrt{\frac{3}{2}} T_{zz} \cos^2\theta + (-P_x + 2\sqrt{\frac{2}{3}} T_{xz} \cos\theta) \sin\theta \cos\phi$$
$$+ (-P_y + 2\sqrt{\frac{2}{3}} T_{yz} \cos\theta) \sin\theta \sin\phi$$
$$+ (\frac{T_{xx} - T_{yy}}{\sqrt{6}}) \sin^2\theta \cos 2\phi + \sqrt{\frac{2}{3}} T_{xy} \sin^2\theta \sin 2\phi$$

(8)

Two ways to estimate the various polarization parameters of Z.

1. At production level, by using the polarization matrix elements (Rahaman *etal.* Eur.Phys.J. C76 (2016) no.10, 539)

$$P_{x} = \frac{\{\sigma(+,0) + \sigma(0,+)\} + \{\sigma(0,-) + \sigma(-,0)\}}{\sqrt{2}\sigma}$$

$$P_{y} = \frac{-i\{[\sigma(0,+) - \sigma(+,0)] + [\sigma(-,0) - \sigma(0,-)]\}}{\sqrt{2}\sigma}$$

$$P_{z} = \frac{[\sigma(+,+)] - [\sigma(-,-)]}{\sigma}$$

$$T_{xy} = \frac{-i\sqrt{6}[\sigma(-,+) - \sigma(+,-)]}{4\sigma}$$

$$T_{xz} = \frac{\sqrt{3}\{[\sigma(+,0) + \sigma(0,+)] - [\sigma(0,-) + \sigma(-,0)]\}}{4\sigma}$$

$$T_{yz} = \frac{-i\sqrt{3}\{[\sigma(0,+) - \sigma(+,0)] - [\sigma(-,0) - \sigma(0,-)]\}}{4\sigma}$$

$$T_{xx} - T_{yy} = \frac{\sqrt{6}[\sigma(-,+) + \sigma(+,-)]}{2\sigma}$$

$$T_{zz} = \frac{\sqrt{6}}{2} \left\{ \frac{[\sigma(+,+)] + [\sigma(-,-)]}{\sigma} - \frac{2}{3} \right\}$$

$$= \frac{\sqrt{6}}{2} \left[\frac{1}{3} - \frac{\sigma(0,0)}{\sigma} \right]$$

Here T_{xx} and T_{yy} can be separately calculated by using the tracelessness property of T_{ij} . $\sigma(i,j)$ is the integral of $\rho(i,j)$ and σ is the total production cross section given by the sum of the helicity fractions over the phase space

$$\sigma = \sigma(0,0) + \sigma(+,+) + \sigma(-,-) \tag{9}$$

2. At decay level, by using partial integration of the differential distribution (equation(4)) and then constructing various asymmetries.

$$A_x = \frac{3\alpha P_x}{4} \equiv \frac{\sigma(\cos\phi > 0) - \sigma(\cos\phi < 0)}{\sigma(\cos\phi > 0) + \sigma(\cos\phi < 0)}$$
$$A_y = \frac{3\alpha P_y}{4} \equiv \frac{\sigma(\sin\phi > 0) - \sigma(\sin\phi < 0)}{\sigma(\sin\phi > 0) + \sigma(\sin\phi < 0)}$$
$$A_z = \frac{3\alpha P_z}{4} \equiv \frac{\sigma(\cos\theta > 0) - \sigma(\cos\theta < 0)}{\sigma(\cos\theta > 0) + \sigma(\cos\theta < 0)}$$
$$A_{xz} = \frac{-2}{\pi}\sqrt{\frac{2}{3}}T_{xz} \equiv \frac{\sigma(\cos\theta\cos\phi < 0) - \sigma(\cos\theta\cos\phi > 0)}{\sigma(\cos\theta\cos\phi > 0) + \sigma(\cos\theta\cos\phi < 0)}$$

$$A_{yz} = \frac{2}{\pi} \sqrt{\frac{2}{3}} T_{yz} \equiv \frac{\sigma(\cos\theta\sin\phi > 0) - \sigma(\cos\theta\sin\phi < 0)}{\sigma(\cos\theta\sin\phi > 0) + \sigma(\cos\theta\sin\phi < 0)}$$

$$A_{x^2-y^2} = \frac{1}{\pi} \sqrt{\frac{2}{3}} (T_{xx} - T_{yy}) \equiv \frac{\sigma(\cos 2\phi > 0) - \sigma(\cos 2\phi < 0)}{\sigma(\cos 2\phi > 0) + \sigma(\cos 2\phi < 0)}$$

$$A_{xy} = \frac{2}{\pi} \sqrt{\frac{2}{3}} T_{xy} \equiv \frac{\sigma(\sin 2\phi > 0) - \sigma(\sin 2\phi < 0)}{\sigma(\sin 2\phi > 0) + \sigma(\sin 2\phi < 0)}$$

$$A_{zz} = \frac{3}{8} \sqrt{\frac{3}{2}} T_{zz} \equiv \frac{\sigma(\sin 3\theta > 0) - \sigma(\sin 3\theta < 0)}{\sigma(\sin 3\theta > 0) + \sigma(\sin 3\theta < 0)}$$
(10)

HELICITY AMPLITUDES FOR $e^-(p_1) + e^+(p_2) o Z^{lpha}(k_2) + H(k)$

In the limit of massless initial states

$$\begin{split} M(-,+,+) &= \frac{g_W^2 m_Z \sqrt{s}}{\cos^2 \theta_W ((s-m_Z^2) + i\Gamma_Z m_Z)} \frac{(c_V + c_a)}{2} \left[1 - \frac{\sqrt{s}}{m_Z^2} (E_Z b_Z + i\vec{b_Z} P_Z) \right] \frac{(1 - \cos \theta)}{\sqrt{2}} \\ M(-,+,-) &= \frac{g_W^2 m_Z \sqrt{s}}{\cos^2 \theta_W ((s-m_Z^2) + i\Gamma_Z m_Z)} \frac{(c_V + c_a)}{2} \left[1 - \frac{\sqrt{s}}{m_Z^2} (E_Z b_Z - i\vec{b_Z} P_Z) \right] \frac{(1 + \cos \theta)}{\sqrt{2}} \\ M(-,+,0) &= \frac{g_W^2 \sqrt{s}}{\cos^2 \theta_W ((s-m_Z^2) + i\Gamma_Z m_Z)} \frac{(c_V + c_a)}{2} \left[E_Z - \sqrt{s} b_Z \right] \sin \theta \\ M(+,-,+) &= \frac{g_W^2 m_Z \sqrt{s}}{\cos^2 \theta_W ((s-m_Z^2) + i\Gamma_Z m_Z)} \frac{(c_V - c_a)}{2} \left[-1 + \frac{\sqrt{s}}{m_Z^2} (E_Z b_Z + i\vec{b_Z} P_Z) \right] \frac{(1 + \cos \theta)}{\sqrt{2}} \\ M(+,-,-) &= \frac{g_W^2 m_Z \sqrt{s}}{\cos^2 \theta_W ((s-m_Z^2) + i\Gamma_Z m_Z)} \frac{(c_V - c_a)}{2} \left[-1 + \frac{\sqrt{s}}{m_Z^2} (E_Z b_Z - i\vec{b_Z} P_Z) \right] \frac{(1 - \cos \theta)}{\sqrt{2}} \\ M(+,-,0) &= \frac{g_W^2 \sqrt{s}}{\cos^2 \theta_W ((s-m_Z^2) + i\Gamma_Z m_Z)} \frac{(c_V - c_a)}{2} \left[E_Z - \sqrt{s} b_Z \right] \sin \theta \\ \end{split}$$

where the first two entries in M denote the helicities +1/2 and -1/2 of the electron and positron respectively

 \sqrt{s} = total center of mass energy , $C_v = -0.5 + \sin^2 \theta_w$, $C_a = -0.5$ where θ_w is the weak mixing angle.

we adopt the following representations for the polarization vectors of Z

$$\varepsilon_{\mu}(s=\pm 1) = \mp \frac{1}{\sqrt{2}}(0, -\cos\theta, \mp i, \sin\theta)$$
(11)

$$\varepsilon_{\mu}(s=0) = \frac{1}{m_z} (\mid p_z \mid, -E_z \sin \theta, 0, -E_z \cos \theta)$$
(12)

where E_z , $|p_z|$ are the energy and momentum of the Z respectively, with θ being the polar angle made by Z with respect to the e^- coming along the positive z axis.

PRODUCTION DENSITY MATRIX ELEMENTS

The density matrix elements derived from the helicity amplitudes, to linear order in couplings b_z, \tilde{b}_z are

$$\begin{split} \sigma(\pm,\pm) &= \frac{2(1-P_L\bar{P}_L)g^4m_Z^2s}{3\cos^4\theta_W(s-m_Z^2)^2}(c_V^2+c_A^2-2P_L^{\rm eff}c_Vc_A) \\ &\times \left[1-2(\operatorname{Re}b_Z\mp\beta_Z\operatorname{Im}\bar{b}_Z)\frac{E_Z\sqrt{s}}{m_Z^2}\right] \\ \sigma(0,0) &= \frac{2(1-P_L\bar{P}_L)g^4E_Z^2s}{3\cos^4\theta_W(s-m_Z^2)^2}(c_V^2+c_A^2-2P_L^{\rm eff}c_Vc_A) \\ &\times \left[1-2\operatorname{Re}b_Z\frac{\sqrt{s}}{E_Z}\right] \\ \sigma(\pm,\mp) &= \frac{(1-P_L\bar{P}_L)g^4m_Z^2s}{3\cos^4\theta_W(s-m_Z^2)^2}(c_V^2+c_A^2-2P_L^{\rm eff}c_Vc_A) \\ &\times \left[1-2(\operatorname{Re}b_Z\pm i\beta_Z\operatorname{Re}\bar{b}_Z)\frac{E_Z\sqrt{s}}{m_Z^2}\right] \\ \sigma(\pm,0) &= \frac{(1-P_L\bar{P}_L)\pi g^4m_Z E_Zs}{4\sqrt{2}\cos^4\theta_W(s-m_Z^2)^2}\left[(2c_Vc_A-P_L^{\rm eff}(c_V^2+c_A^2))\right] \\ &\times \left[1-\operatorname{Re}b_Z\sqrt{s}\frac{(E_Z^2+m_Z^2)}{E_Zm_Z^2}-i\sqrt{s}\frac{E_Z}{m_Z^2}\left(\operatorname{Im}b_Z\beta_Z^2\pm \bar{b}_Z\beta_Z\right)\right] \\ \end{split}$$

In the above equations, $P_{eff}^{eff} = (P_I - \bar{P}_I)/(1 - P_I \bar{P}_I)$. $\beta_z = \frac{|P_z|}{E}$. PRIYANKA SARMAH

October 27, 2021 16 / 38

SM Asymmetries at $\sqrt{s} = 500$ GeV

We consider longitudinal polarizations of $P_L = \pm 0.8$ and $\bar{P}_L = \pm 0.3$ which would be available in the collider.

Observable	$P_L = 0$ $\bar{P}_L = 0$	$\begin{aligned} P_L &= -0.8\\ \bar{P_L} &= 0.3 \end{aligned}$
σ (in fb)	58.04	81.56
A_{x}	-0.012	-0.071
$A_{x^2-y^2}$	0.035	0.035
A _{zz}	-0.251	-0.251

TABLE: The total production cross section (in fb) of Z and the non-zero angular asymmetries in the SM for unpolarized and polarized beams at $\sqrt{s} = 500$ GeV.

SM Asymmetries at $\sqrt{s} = 250$ GeV

Observable	$P_L = 0$ $\bar{P}_L = 0$	$\begin{array}{l} P_L = -0.8\\ \bar{P}_L = 0.3 \end{array}$
σ (in fb)	243.67	342.24
A _x	-0.014	-0.085
$A_{x^2-y^2}$	0.092	0.092
A _{zz}	-0.05	-0.05

TABLE: The total production cross section (in fb) of Z and the non-zero angular asymmetries in the SM for unpolarized and polarized beams at $\sqrt{s} = 250$ GeV.

BSM Asymmetries at $\sqrt{s} = 500 \text{ GeV}$

		$P_L = 0$	$P_{L} = -0.8$
Observable	Coupling	$P_{L} = 0$	$P_{L} = 0.3$
σ (in fb)	Re <i>b_z</i>	-559.5	-785.88
A_{x}	Re <i>b_z</i>	+0.081	+0.497
A_y	Re \tilde{b}_z	-0.157	-0.958
Az	Im \tilde{b}_z	-0.668	-0.668
A _{xy}	Re \tilde{b}_z	+0.948	+0.948
A _{yz}	lm <i>b_z</i>	+0.412	+2.521
A _{xz}	Im \tilde{b}_z	-0.444	-2.720
$A_{x^2-y^2}$	Re <i>b_z</i>	-0.685	-0.685
A _{zz}	Re <i>b_z</i>	-2.421	-2.421

TABLE: Anomalous contribution to cross section (in fb) and angular asymmetries for unpolarized and polarized beams at $\sqrt{s} = 500$ GeV for unit values of the relevant couplings.

BSM Asymmetries at $\sqrt{s} = 250 \text{ GeV}$

		$P_{L} = 0$	$P_L = -0.8$
Observable	Coupling	$\bar{P}_L = 0$	$\bar{P}_{L} = 0.3$
σ (in fb)	Re <i>b_z</i>	-1400.17	-1966.55
A_{x}	Re <i>b_z</i>	-0.0022	-0.014
A_y	Re $ ilde{b}_z$	-0.026	-0.158
A_z	Im \tilde{b}_z	-0.242	-0.242
A _{xy}	Re \tilde{b}_z	+0.344	+0.344
A _{yz}	lm <i>b_z</i>	+0.041	+0.253
A _{xz}	Im \tilde{b}_z	-0.073	-0.448
$A_{x^2-y^2}$	Re b_z	-0.082	-0.082
Azz	Re <i>b_z</i>	-0.289	-0.289

TABLE: Anomalous contribution to cross section (in fb) and angular asymmetries for unpolarized and polarized beams at $\sqrt{s} = 250$ GeV for unit values of the relevant couplings.

Sensitivities at $\sqrt{s} = 500 \text{ GeV}$

		Limit ($\times 10^{-3}$) for		
Observable	Coupling	$P_L = 0$	$P_L = -0.8$	
		$\bar{P}_L = 0$	$\bar{P}_L = 0.3$	
σ	Re <i>b_z</i>	3.32	2.8	
A_{x}	Re <i>b_z</i>	394	54.2	
A_y	Re \tilde{b}_z	204	28.2	
Az	Im \tilde{b}_z	47.9	40.4	
A_{xy}	Re \tilde{b}_z	33.7	28.5	
A_{yz}	lm <i>b_z</i>	77.7	10.7	
A_{xz}	Im \tilde{b}_z	72.0	9.93	
$A_{x^2-y^2}$	Re b_z	46.7	39.4	
A _{zz}	Re <i>b_z</i>	12.8	10.8	

TABLE: 1 σ limit obtained from various leptonic asymmetries for unpolarized and polarized beams at $\sqrt{s} = 500$ GeV.

Sensitivities at $\sqrt{s} = 250 \text{ GeV}$

		Limit ($ imes 10^{-3}$) for		
Observable	Coupling	$P_L = 0$	$P_L = -0.8$	
		$\bar{P}_L = 0$	$\bar{P}_L = 0.3$	
σ	Re <i>b_z</i>	1.36	1.15	
A_{x}	Re <i>b_z</i>	3480	478	
A_y	Re \tilde{b}_z	303	41.7	
A_z	Im \tilde{b}_z	32.3	27.2	
A_{xy}	Re \tilde{b}_z	22.7	19.2	
A_{yz}	lm <i>b_z</i>	189	26.1	
A_{xz}	Im \tilde{b}_z	107	14.7	
$A_{x^2-y^2}$	Re <i>b_z</i>	94.5	80.2	
A _{zz}	Re <i>b_z</i>	26.8	22.8	

TABLE: 1 σ limit obtained from various leptonic asymmetries for unpolarized and polarized beams at $\sqrt{s} = 250$ GeV.

Asymmteries with Kinematical cuts

- 1. $E_f \geq 10 GeV$ for each outgoing charged lepton.
- 2. $5^{\circ} \le \theta_0 \le 175^{\circ}$ for each outgoing charged lepton to remain away from the beam pipe.

It is observed that these cuts lead to a less than 1% change in all the observables including the total cross section.

Asymmetries and Sensitivities at LHC

$$q(p_1)+ar{q}(p_2)
ightarrow Z^lpha(p)+H(k)$$

FIGURE: Feynman diagrams for ZH production.

where the vertex $Z_{\mu}(k_1) \rightarrow Z_{\nu}(k_2)H$ takes the following Lorentz invariant structure

$$\Gamma^{V}_{\mu\nu} = \frac{g_w}{\cos\theta_w} m_z \left[a_z g_{\mu\nu} + \frac{b_z}{m_z^2} \left(k_{1\nu} k_{2\mu} - g_{\mu\nu} k_1 . k_2 \right) + \frac{\tilde{b}_z}{m_z^2} \epsilon_{\mu\nu\alpha\beta} k_1^{\alpha} k_2^{\beta} \right]$$

The form factors a_z , b_z and \tilde{b}_z are in general complex.

PRIYANKA SARMAH

PRODUCTION DENSITY MATRIX ELEMENTS

The density matrix elements derived from the helicity amplitudes, to quadratic order in couplings b_z, \tilde{b}_z are

$$\begin{split} \rho(\pm,\pm) &= \frac{g^4 m_Z^2 s}{8 \cos^4 \theta_W (\hat{s} - m_Z^2)^2} \left[(c_V + c_A)^2 (1 \mp \cos \theta)^2 \right. \\ &+ (c_V - c_A)^2 (1 \pm \cos \theta)^2 \right] \left[1 - 2 (\operatorname{Re} b_Z \mp \beta_Z \operatorname{Im} \tilde{b}_Z) \frac{E_Z \sqrt{\hat{s}}}{m_Z^2} \right. \\ &+ \frac{E_Z^2 \hat{s}}{m_Z^4} |b_Z|^2 \mp \frac{2E_Z P_Z \hat{s}}{m_Z^4} (\operatorname{Im} \tilde{b}_Z \operatorname{Re} b_Z - \operatorname{Im} b_Z \operatorname{Re} \tilde{b}_Z) \\ &+ \frac{P_Z^2 \hat{s}}{m_Z^4} |\tilde{b}_Z|^2 \right] \\ \rho(0,0) &= \frac{g^4 E_Z^2 s}{2 \cos^4 \theta_W (s - m_Z^2)^2} \sin^2 \theta \left(c_V^2 + c_A^2 \right) \left[1 - 2\operatorname{Re} b_Z \frac{\sqrt{s}}{E_Z} \right. \\ &+ \frac{\hat{s}}{E_Z^2} |b_Z|^2 \right] \end{split}$$

$$\rho(\pm, \mp) = \frac{g^4 m_Z^2 s}{4 \cos^4 \theta_W (\hat{s} - m_Z^2)^2} \sin^2 \theta (c_V^2 + c_A^2) \\
\times \left[1 - 2(\operatorname{Re} b_Z \pm i\beta_Z \operatorname{Re} \tilde{b}_Z) \frac{E_Z \sqrt{s}}{m_Z^2} + \frac{E_Z^2 \hat{s}}{m_Z^4} |b_Z|^2 \pm i \frac{2E_Z P_Z \hat{s}}{m_Z^4} \right] \\
(\operatorname{Im} \tilde{b}_Z \operatorname{Im} b_Z + \operatorname{Re} b_Z \operatorname{Re} \tilde{b}_Z) - \frac{2P_Z^2 \hat{s}}{m_Z^4} |\tilde{b}_Z|^2 \right] (13)$$

$$\rho(\pm, 0) = \frac{g^4 m_Z E_Z s}{4\sqrt{2} \cos^4 \theta_W (\hat{s} - m_Z^2)^2} \sin \theta \\
\times \left[(c_V + c_A)^2 (1 \mp \cos \theta) - (c_V - c_A)^2 (1 \pm \cos \theta) \right] \\
\times \left[1 - \operatorname{Re} b_Z \sqrt{\hat{s}} \frac{(E_Z^2 + m_Z^2)}{E_Z m_Z^2} - i \sqrt{\hat{s}} \frac{E_Z}{m_Z^2} \left(\operatorname{Im} b_Z \beta_Z^2 \pm \tilde{b}_Z \beta_Z \right) \right] \\
\qquad \mp \frac{\hat{s}}{m_Z^2} |b_Z|^2 \pm \frac{\hat{s} P_Z}{m_Z^2 E_Z} (\operatorname{Im} b_Z + i \operatorname{Re} b_Z) (\operatorname{Re} \tilde{b}_Z + i \operatorname{Im} \tilde{b}_Z) \right] (14)$$

where $\beta_z = \frac{|\vec{p_z}|}{E_z}$.

 $\sqrt{\hat{s}}$ is the partonic c.m. energy, and $c_V = \frac{1}{2} - \frac{4}{3}\sin^2\theta_W$ denoting the vector coupling and $c_A = \frac{1}{2}$ corresponds to axial vector couplings of the *Z* to up-type quarks. Similarly for down-type quarks the vector and axial couplings are given by $c_V = -\frac{1}{2} + \frac{2}{3}\sin^2\theta_W$ and $c_A = -\frac{1}{2}$ respectively.

we adopt the following representations for the polarization vectors of Z

$$\varepsilon_{\mu}(s=\pm 1) = \mp \frac{1}{\sqrt{2}}(0, -\cos\theta, \mp i, \sin\theta)$$
(15)

$$\varepsilon_{\mu}(s=0) = \frac{1}{m_z} (\mid p_z \mid, -E_z \sin \theta, 0, -E_z \cos \theta)$$
(16)

where E_z , $|p_z|$ are the energy and momentum of the Z respectively, with θ being the polar angle made by Z with respect to the quark coming along the positive z axis.

POLARIZATION ASYMMETRIES

 $\sigma = 0.067294 \ (7506.45 \ |\tilde{b}_Z|^2 + 12420.4 \ |b_Z|^2 - 4486.85 \ \text{Re} \ b_Z + 665.87)$ (17)

$$A_{x} = \frac{0.012 \text{ Re } b_{Z} - 0.019 |b_{Z}|^{2} - 0.002}{0.604 |\tilde{b}_{Z}|^{2} + |b_{Z}|^{2} - 0.361 \text{ Re } b_{Z} + 0.054}$$
(18)

$$A_{y} = \frac{0.024 \text{ Im } \tilde{b}_{Z} \text{ Im } b_{Z} + \text{Re } \tilde{b}_{Z} (0.024 \text{ Re } b_{Z} - 0.011)}{|\tilde{b}_{Z}|^{2} + 1.655 |b_{Z}|^{2} + (\text{Re } \tilde{b}_{Z})^{2} - 0.598 \text{ Re } b_{Z} + 0.089}$$
(19)

$$A_{z} = \frac{\text{Im } \tilde{b}_{Z} (1976.66 \text{ Re } b_{Z} - 232.627) - 1976.66 \text{ Im } b_{Z} \text{ Re } \tilde{b}_{Z}}{7506.45 |\tilde{b}_{Z}|^{2} + 12420.4 |b_{Z}|^{2} - 4486.85 \text{ Re } b_{Z} + 665.87}$$
(20)

$$A_{xy} = \frac{\text{Re } \tilde{b}_{Z} (0.044 - 0.374 \text{ Re } b_{Z}) - 0.374 \text{ Im } \tilde{b}_{Z} \text{ Im } b_{Z}}{|\tilde{b}_{Z}|^{2} + 1.655 |b_{Z}|^{2} - 0.598 \text{ Re } b_{Z} + 0.089}$$
(21)

$$A_{yz} = \frac{190.164 \text{ Im } b_Z}{7506.45 |\tilde{b}_Z|^2 + 12420.4 |b_Z|^2 - 4486.85 \text{ Re } b_Z + 665.87}$$
(22)

$$A_{xz} = \frac{\text{Im } \tilde{b}_Z (0.0404 \text{ Re } b_Z - 0.019) - 0.0404 \text{ Im } b_Z \text{ Re } \tilde{b}_Z}{0.604 |\tilde{b}_Z|^2 + |b_Z|^2 - 0.361 \text{ Re } b_Z + 0.054}$$
(23)

$$A_{x^2 - y^2} = \frac{-0.297 |\tilde{b}_Z|^2 + 0.019 \text{ Re } b_Z - 0.005}{|\tilde{b}_Z|^2 + 1.655 |b_Z|^2 - 0.598 \text{ Re } b_Z + 0.089} + 0.138$$
(24)

$$A_{zz} = \frac{0.074 |\tilde{b}_Z|^2 + 0.068 \text{ Re } b_Z - 0.019}{|\tilde{b}_Z|^2 + 1.655 |b_Z|^2 - 0.598 \text{ Re } b_Z + 0.089} + 0.113$$
(25)

Sensitivities at $\sqrt{s} = 14$ TeV and $\int \mathcal{L}dt = 1000$ fb⁻¹

Observable	Coupling	Limit ($\times 10^{-3}$)
σ	Re <i>b_Z</i>	0.70
σ	Im <i>bz</i>	15.9
A _{xy}	$ Re\; \widetilde{b}_Z $	9.54
A_{xz}, A_z	$ \text{Im } \widetilde{b}_Z $	13.3

TABLE: The best 1σ limit on couplings and the corresponding observables at $\sqrt{s}=14~{\rm TeV}$

(K.Rao, S.D.Rindani, P.Sarmah, Nucl.Phys.B 964 115317 (2021))

▶ The CMS Collabotration(PhysRevD.100.112002) obtains bounds on CP conserving and CP violating ZZH couplings which in our notation translate to $|\text{Re}b_Z/a_Z| < 0.058$ and $|\text{Re}\tilde{b}_Z/a_Z| < 0.078$ at $\sqrt{s} = 13$ TeV, $\int \mathcal{L}dt = 35.9$ fb⁻¹

Use of Z polarization in $e^+e^- \rightarrow ZH$ to measure the triple-Higgs coupling

(K. Rao, S.D.Rindani, P. Sarmah, B. Singh, arxiv: 2109.11134)

 λ_3 deviates from its SM value,

$$\lambda_3 = \lambda_3^{SM} (1+\kappa). \tag{26}$$

Aim is to show that a particular CPT odd asymmetry, A_{yz} sensitive to the loop-level contribution of the triple-Higgs coupling.

$$A_{yz} = \frac{2}{\pi} \sqrt{\frac{2}{3}} T_{yz} \equiv \frac{\sigma(\cos\theta^* \sin\phi^* > 0) - \sigma(\cos\theta^* \sin\phi^* < 0)}{\sigma(\cos\theta^* \sin\phi^* > 0) + \sigma(\cos\theta^* \sin\phi^* < 0)}$$
(27)

$$A_{yz} = \left(\frac{2c_V c_A - P_L^{\text{eff}}(c_V^2 + c_A^2)}{4(c_V^2 + c_A^2 - 2P_L^{\text{eff}}c_V c_A)}\right) \left(\frac{|\vec{k}_Z|^2 \sqrt{s}}{(E_Z^2 + m_Z^2)m_Z}\right) \left(\frac{\text{Im }(a_Z^* b_Z)}{|a_Z|^2}\right).$$
(28)

where

Im
$$b_Z = m_Z^2 \text{Im } \mathcal{F}_2, \ \mathcal{F}_2(k_1^2, k_2^2) = \frac{\lambda_3^{\text{SM}}(1+\kappa)}{(4\pi)^2} 12(C_1 + C_{11} + C_{12}).$$
 (29)

The asymmetry proportional to $\text{Im } b_Z$ that gets contribution at one-loop from the triple-Higgs coupling.

RESULT

Collider	c.m.	$10^4 imes A_{yz}$		Lumi-	Limit	
	energy	unpolarized	polarized	nosity	unpolarized	polarized
	(Gev)	beams	beams	(ab^{-1})	beams	beams
CEPC	240	-0.159	-0.625	10	506	105
CEPC	240	-0.159	-0.625	20	358	74.4
CLIC	380	-2.88	-10.6	0.5	124	31.0
FCC	240	-0.159		10	506	
FCC	250	-0.314		5	362	
FCC	365	-2.64		1.5	78.2	
ILC	250	-0.314	-1.23	2	573	119
ILC	250	-0.314	-1.23	5	362	75.3
ILC	350	-2.39	-9.38	30	19.4	4.03
ILC	500	-4.00	-15.7	4	31.6	6.57
ILC	500	-4.00	-15.7	10	20.0	4.16
ILC	500	-4.00	-15.7	30	11.5	2.40

TABLE: Values of the asymmetry A_{yz} for $\kappa = 1$ and 1 σ limits on κ from A_{yz} at various colliders with different energies and luminosities.

SUMMARY

- We study the angular asymmetries from the eight polarization parameters of Z boson at the e⁺e⁻ and LHC.
- We see that most of the 1σ limits are of the order of a few times 10⁻³ for 500 GeV e⁺e⁻ colliders and find that beams with opposite polarization provides better limits on the couplings.
- ▶ For LHC at c.m energy $\sqrt{s} = 14$ TeV with integrated luminosity $\int \mathcal{L}dt = 1000 \text{ fb}^{-1}$ could provide a limit on the CP conserving couplings Re b_z in the interval $[-0.7, 0.7] \times 10^{-3}$ and Im b_z in the interval $[-15.9, 15.9] \times 10^{-3}$.
- ▶ CP violating couplings, $\operatorname{Re} \tilde{b}_z$ and $\operatorname{Im} \tilde{b}_z$ get a best bound of $|\operatorname{Re} \tilde{b}_z| \leq 9.54 \times 10^{-3}$ and $|\operatorname{Im} \tilde{b}_z| \leq 13.3 \times 10^{-3}$ respectively.
- In case of triple Higgs coupling, high luminosity of at least 30 fb⁻¹ is needed to constrain anomalous triple-Higgs coupling even at the level of 200% to 400%. The better limit of about 240% requires a c.m. energy of 500 GeV.

BACK UP

PRIVANKA SARMAH

FIGURE: 1σ sensitivity contours for cross-section and asymmetries obtained by varying two parameters simultaneously.

Sensitivities at $\sqrt{s} = 14$ TeV LHC

Observable	Coupling	Limit ($\times 10^{-3}$)
σ	Re <i>b_Z</i>	0.70
A_x	Re <i>b_Z</i>	136
A_y	Re \tilde{b}_Z	37.9
A _z	Im \tilde{b}_Z	13.5
A _{xy}	Re \tilde{b}_Z	9.53
A _{yz}	lm <i>b_Z</i>	16.5
A _{xz}	Im \tilde{b}_Z	13.3
$A_{x^2-y^2}$	Re <i>b_Z</i>	24.4
A _{zz}	Re <i>bz</i>	6.88

TABLE: 1 σ limit obtained from cross section and various leptonic asymmetries calculated upto linear order in couplings at $\sqrt{s} = 14$ TeV with integrated luminosity $\int \mathcal{L}dt = 1000$ fb⁻¹.