PAAI in the sky

Towards a particulate explanation of Dark Energy

BY U A YAJNIK

Hiroshima University-IIT Bombay meeting 25 October 2021

1 Outline

Based on "Cosmic Ferromagnetism of Magninos" ArXiv:1901:00995

with Richard MacKenzie and Manu Paranjape, U. de Montréal

- Overview of the dilemmas
- Phenomenology of Domain wall Dark Energy
- Itinerant ferromagnetism as a model
 - Concordant Dark Matter
 - Origin of cosmic magnetic fields

2 Dark Energy

- Determination of Hubble rate crucially dependent upon standard candles
- Hubble Space Telescope helped to locate Type Ia supernovae whose time of flare up (a few weeks) is directly related to their absolute luminosity.
 - Type Ia -> White dwarfs which begin accreting material from another star
 - Upper limit on White dwarf mass is 1.4 solar
 mass (Chandrasekhar, Nobel 1983)
 - Universal spectral features, absence of H lines,
 prsence of Si lines

- The Type Ia supernovae caught in real time (7b. years after they actually flared up!) are the new far reaching standard candles
 - The shape of the light curve over the full event gives away the Type, (see the sudden change in slope in the movie)
 - The total time baseline gives the absolute magnitude
- Upto now almost 550 such ancient Type Ia supernovae recorded

SCALING THE UNIVERSE

Astronomers use several techniques to measure the distances to stars and galaxies. These techniques overlap, providing greater confidence that each one is accurate.

PARALLAX

The most accurate method of measuring distance. Astronomers look at a star when Earth is on opposite sides of its orbit. The star shifts position with respect to more-distant stars. The size of the shift reveals the star's distance.

CEPHEIDS

These big, bright stars pulse in and out like a beating heart. The length of the pulse reveals the star's brightness. Comparing *true* brightness to the star's *apparent* brightess reveals its distance. Used to measure nearby galaxies.

SUPERNOVAE

Certain types of exploding stars brighten and fade in a way that reveals their true brightness, which astronomers then use to calculate their distances. Effective out to several billion light-years.

REDSHIFT

Distant galaxies move away from us because the universe is expanding. Astronomers can measure this motion, which varies with distance: faster galaxies are farther away. Least-accurate method because it depends on models of how the universe is expanding.

TIM JONES/DAMOND BENNINGFIELD

3 The dilemmas in a nutshell

$$\left(\frac{a}{a}\right)^{2} + \frac{k}{a^{2}} - \Lambda = \frac{8\pi}{M_{PL}^{2}}\rho$$

→ But at epoch to we also see a Λ_{DE} ≈ √ρ₀/M_{PL}
→ Dark Energy parameterised by p = ω(z)p
- Cosmological constant : ω = -1
- More generally

$$w(z) = w_0 + w_a \frac{z}{(1+z)}$$

3.1 Pantheon update

Multi-source data on SN Ia combined Cosmological models:

- A flat ACDM model ($\omega = -1$, k = 0),
- A flat wCDM model (wo varies, $w_a = 0$)
- A flat wow CDM model (wo, we both vary, k = 0).

Confidence contours at 68% and

95% for the sim and w cosmological parameters for the wCDM model. Constraints from CMB (blue), SN – with systematic uncertainties (red), SN – with only statistical uncertainties (grayline), and SN+CMB (black) are shown.

Confidence contours at 68%

and 95% for the w and wa cosmological parameters for the wowaCDM model. Constraints from BAO+CMB (blue), SN+CMB (red), SN+CMB+BAO (yellow) and SN+CMB+BAO+HST (yellow) are shown.

3.2 Cosmic concordance?

> Matter became dominant only at the large scales to

- Most of the matter is non-baryonic -- Dark

 $\rightarrow \Lambda_{DE}$ was also meant to become dominant on the scale t_0

 \rightarrow Is there an interconnection between DE, and DM and the scale t_0 ?

4 Phenomenology of Domain Wall Dark Energy

- 4.1 Cons and pros of DW DE:
- Wrong equation of state; Generically $p_{DW} = -\frac{2}{3}p_{DW}$ Observations support $\omega = -1$
- Inhomogeneous imprints on CMB Responses :
- → -2/3 applies to scaling DW. Fixed DW evolve to fill space

Very light extended structure made after recombination

4.2 Others who have made such proposals : Battye, Bucher, Spergel 2001 Friedland, Murayama, Perelstein 2001 - 2013 Conversi, Melchiorri, Mersini, Silk 2001 Kapusta 2005 Utpal Sarkar 2018

4.3 Some useful carboons

 \rightarrow Expansion of comoving sphere from t_1 to t_2

→ Additional energy engulfed ∝a for vortices, ∝a² for DW

$$\rightarrow \rho_{vortex} \sim a^{-2}; \rho_{w} \sim a^{-2}$$

... carboons contd.

→ For space filling homogeneous "substance" additional energy engulfed ∝a³

> In this case, $\rho = constant$

It is not necessary to have any exceptional substance to achieve Dark Energy.

-> There must be stuff that is

- a confined by internal stresses
- b space filling
- c homogeneous over cosmic scales.

5 Ferromagnetism of fermion gas

- Band ferromagnetism or "Itinerant electron" ferromganetism
 - first considered by Bloch 1929
 - an ansatz given by Stoner 1936; unproven till date but applicable
 - Further developments for Density Functional
 Theory mid 1970's to mid 1980's by Baym, Chin,
 Rajagopal, MacDonald ...

5.1 The Stoner ansatz

A shift in single particle energies, proportional to the difference between the spin up (N_{1}) and the spin

down (N1) populations.

$$E_{\uparrow,\downarrow}(k) = E(k) - I \frac{N_{\uparrow,\downarrow}}{N}$$

Why do same spins align? Aligned state pushes them apart due to Pauli exclusion, thus reducing repulsion energy. 6 Magnino hypothesis - version I

- Dirac fermions
 - whose magntic property must dominate their
 Coulomb interaction
 - ... even at cosmic dilution of number density

$$\vec{B} \cdot \vec{\mu} \sim \frac{\mu_{M}^{2}}{r^{3}} > \frac{e_{M}^{2}}{r} \quad using \mu = \frac{e}{2m}; \quad n \sim \frac{1}{r^{3}}$$
$$\frac{a_{M}}{m_{M}^{2}} n_{M}^{2/3} \gg a_{M} \quad NB: a is e^{2}/4\pi$$
$$m_{M}^{3} \ll \sim 10^{-12} (eV)^{3}$$

Determined by the mass m_M; cosmological density n_M

6.1 Proposal for Stoner parameter Dipolar replusion energy [UAY PASCOS 2005 proceedings; ArXiv:1102.2562; EPJ Web Conf. 70 (2014) 00046]

 $I = \mu_M^2 \Delta n_M K$

 Δn_M is local number density deficit due to Pauli principle, and κ is a geometric factor

 K_{JM} computed by Jha and Mohanti [Pramana; JPhys 2006; PRE 2009] who showed that the domains need to be obtate

- verified for large parameter space by Fregoso and Fradkin [PRL 2009]
- … however, Stoner phenomenon seems to be impossible to derive for a pure ionic plasma (Rajagopal 1984). Lattice effects perhaps needed.
- Functional dependence of I on n needs to be assumed ad hoc

7 Magnino hypothesis - PAAI version

Seek a microscopic derivation of spontaneous
 magnetisation

valid for the relativistic case
 The key many body effect is the "Exchange energy"
 introduced as a part of the "Landau liquid" programme as an additional correction from forward scattering at finite density

systematised by Baym and Chin as a two-loop contribution to the effective potential

 Needed : a calculation at finite number density and finite spin imbalance

7.1 Eex according to XRR

Xu, Rajagopal and Ramana 1984

based on a series papers on *relativistic* DFT by A K Rajagopal over the previous decade

The density and spin dependent Feynman propagator

$$S_{F} = \sum_{\pm \mathbf{s}} \frac{(\not{p}_{+} + m)(1 + \gamma^{5} \mathscr{S}_{+})}{4E_{p}} \left(\frac{n_{F\mathbf{s}}(\mathbf{p})}{p^{0} - E_{p} - i\eta} + \frac{1 - n_{F\mathbf{s}}(\mathbf{p})}{p^{0} - E_{p} + i\eta} \right) - \sum_{\pm \mathbf{s}} \frac{(\not{p}_{-} + m)(1 + \gamma^{5} \mathscr{S}_{-})}{4E_{p}} \left(\frac{1 - \bar{n}_{F\mathbf{s}}(\mathbf{p})}{p^{0} + E_{p} - i\eta} + \frac{\bar{n}_{F\mathbf{s}}(\mathbf{p})}{p^{0} + E_{p} + i\eta} \right) T$$

where we need spin 4-vector expressed in particle momentum basis

$$S^0 = \frac{\mathbf{p} \cdot \mathbf{s}}{m}, \qquad \vec{S} = \mathbf{s} + \frac{\mathbf{p}(\mathbf{p} \cdot \mathbf{s})}{m(E_p + m)}$$

Introduce the spin imbalance parameter 3

$$n_{\uparrow} = n(1+\zeta)$$
 and $n_{\downarrow} = n(1-\zeta)$

7.2 Phase diagram and Eos

... after a lengthy calculation,

 $E = E_{kin} + E_{ex} \sim m^4 (B^5 \dots - aB^4); \quad B = \frac{p_F}{m}; \quad p_F^3 = 3\pi^2 n$

The phase diagram

We refer to this medium as PAAI plasma which is asymmtric abelian and idealised It is neutral due to heavy ionic background. Screened Coulomb < the magnetic dipole repulsion.

The equation of state : $P = \rho \frac{\partial \rho}{\partial \mu} - \rho$; w = p/p as a function of $p_F \sim n^{(1/3)}$

Equation of state paramter, throughout the two phases

Jumps inserted at B_{c1}

a = 0.007,0.026 and 0.052

Representative numbers

Fine structure constant	p_F/m	Energy density $E(\zeta = 1)$	$\Delta E = \mathbf{E}(0) - \mathbf{E}(1)$	Rest mass energy density
α_X		in m^4 units	in m^4 units	in m^4 units
0.01	0.01	-1.618×10^{-9}	5.4×10^{-11}	2.162×10^{-6}
0.05	0.02	-9.70×10^{-10}	1.90×10^{-10}	2.702×10^{-7}
0.10	0.10	-1.12×10^{-6}	$2.1 imes 10^{-7}$	$3.38 imes 10^{-5}$
0.10	0.30	-5.84×10^{-5}	5.3×10^{-6}	9.12×10^{-4}

8 PAAI in the sky

We now demand the existence of a hidden sector much like ours...

Magnino M mass m_M

Oppositely charged partner Y with my mm

 A hidden B – L number keeps them from annihilating

• $U(1)_x$ photons at a temperature $T > a_x^2 m_x$ over $10^3 \gtrsim z \gtrsim 0.5$

8.1 Dark energy

Domains of *M* as bags containing Y

From neutrality $\langle n^{M} \rangle = \langle n^{\gamma} \rangle$

And we demand that the $\rho^{M} + \rho^{\gamma} \approx \rho^{\gamma}$ determines ρ_{DE}

 $m'n' \approx 2.81 \times 10^{-11} (eV)^4$

Let $n^{\gamma} = \eta^{\gamma} n_{\gamma} = \eta^{\gamma} \times 3.12 \times 10^{-12} (eV)^3$ Next, *M* and γ share the same p_{ρ} . And the phase diagram dictates upper limit on *B* for the ferromagnetism to occur. Thus we get

$$m_M \gtrsim (n^{\gamma})^{1/3} \left(\frac{0.1}{B}\right) 4.52 \times 10^{-3}$$

8.2 Concordance puzzle - a flavoured model

DM requires energy scaling like matter. This cannot be accounted for the M and γ which must simulate DE.

Assume several M type and Y type species M_1 , M_2 ... and Y_1 , Y_2 ...

The heavier flavour(s) can account for Dark Matter, presumably also forming Dark Atoms as the ambient X-temperature is much smaller.

Reuire :

 $(m_{M_2} + m_{\gamma_2})n_{\gamma_2} = \rho_{DM} = 1.04 \times 10^{-11} (eV)^4$

But also, m_{M_2} , m_{γ_2} must be at least keV to serve as DM. This gives an upper bound on the abundance of higher flavours.

$$\eta^{\gamma_2} \lesssim 10^{-3} \left(\frac{\text{keV}}{m_{M_2} + m_{\gamma_2}} \right)$$

8.3 The origin of cosmic magnetic fields Let the sizes of the domains be set by a scale L. From the many body thoery we can also deduce

Bdomain
$$\approx \left(\frac{m_M}{eV}\right)^2 \left(\frac{e}{e}\right) \left(\frac{B}{0.1}\right)^3 \times 2.2 \times 10^{-8} T$$

Net magnetic field on global scale vanishes

• the rms field left over N domains would go as $1/\sqrt{N}$.

Thus over galactic scales,

$$\overline{\Delta B} \equiv B_{domain} (L/L_{gal})^{3/2}$$

• Assume kinetic mixing $\xi F^{\mu\nu} F^{\chi}_{\mu\nu}$ with standard electromagnetism

• Example : a seed of 10^{-30} T needed with a coherence length of 0.1 kpc~3 × 10^{18} metre obtained with $\xi = 10^{-8}$.

$$\overline{\Delta B_{\text{seed}}} = 10^{-30} T$$

$$\sim \left(\frac{\xi}{10^{-8}}\right) \left(\frac{m_{\text{M}}}{eV}\right)^2 \left(\frac{e'}{e}\right) B^3 \left(\frac{L}{\text{metre}}\right)^{3/2} \times 10^{-48} T$$

We have set e'/e = 1 for simplicity.

It can be seen that the representative values for L for B = 0.1 are in the range $10^{11}-10^{13}$ metre which is solar system size.

9 Future work

9.1 Needs completion

- The nature of the phase transition
- FLustuations and stability
- The nature of degradation
- Connetion to SM in a reasonable intermediate scale model
- 9.2 In search of observables ...
- Small kinetic mixing with standard Maxwell light shining through the wall "ALP"

Minicharged particles in DM - upto 1% possible as per analysis of EDGES (Munoz and Loeb)
A late phase transition should dump entropy during the reionisation era

10 Conclusion

- A common origin for Dark Energy and Dark Matter would be desirable
- Above is a particular model with hidden unbroken U(1) with oppositely charged but asymmetrically massive fermions.
- Effective potential of a PAAI admits ferromagnetism for a substantial range of values.
- Dark Matter abundance constrained in flavoured model
- Seed for intergalactic magnetic fields available
- In search of observables ...

Thank you!!

Typeset using TEXMACS