Study of Weak Basis Invariants, Hierarchy Limit, and Effective Theory in the Universal Seesaw Model

Albertus Hariwangsa Panuluh (Hiroshima U., Sanata Dharma U.)

in collaboration with

A. S. Adam (BRIN), Y. Kawamura, T. Morozumi (HU, CORE-U), Y. Shimizu (HU, CORE-U), H. Takei (HU), K. Yamamoto (HIT)

3rd IITB-Hiroshima Workshop in HEP (Feb 22nd, 2023)

(on going work)

- Introduction
- The model
- Weak-basis invariants
- WL-WR mixing, mass eigenvalue, and mixing angle
- Hierarchy limit
- Summary

• Introduction

- The model
- Weak-basis invariants
- WL-WR mixing, mass eigenvalue, and mixing angle
- Hierarchy limit
- Summary

4

Introduction

- Standard Model (SM) is most successful theory incorporate the dynamics of sub-atomic particle $v \approx 246 \text{ GeV}$
- However, SM cannot explain e.g. quark mass hierarchy

$$m_i = \frac{y_i v}{\sqrt{2}}; \quad i = u, d, c, s, t, b$$

• Universal seesaw model \rightarrow smallness of up quark mass explained by the tiny ratio of $SU(2)_R$ breaking and SU(2) singlet vector-like quark (VLQ) mass M_U

$$m_u = \frac{y_{uR}v_Ry_{uL}v}{2M_U} = \frac{y_uv}{\sqrt{2}} \to y_u = \frac{y_{uR}v_Ry_{uL}}{\sqrt{2}M_U}$$

Quark mass (PDG)	Yukawa coupling
$m_u = 2.16 \text{ MeV}$	$y_u \simeq 1.24 \times 10^{-5}$
$m_d = 4.67 \text{ MeV}$	$y_d \simeq 2.68 \times 10^{-5}$
$m_s = 93.4 \text{ MeV}$	$y_s \simeq 5.37 \times 10^{-4}$
$m_c = 1.27 \text{ GeV}$	$y_c \simeq 7.30 \times 10^{-3}$
$m_b = 4.18 \text{ GeV}$	$y_b \simeq 0.024$
$m_t = 172.69 \text{ GeV}$	$y_t \simeq 0.99$

$$m_u, m_d, m_s$$
 from $\overline{\mathrm{MS}}$ at $\mu = 2~\mathrm{GeV}$

 m_c, m_b from $\overline{\mathrm{MS}}$ at $\mu = \overline{m}$

 m_t from direct measurement

A. Davidson, K.C. Wali (1987); S. Rajpoot (1987); T. Morozumi, T. Satou, M. N. Rebelo, M. Tanimoto (1997) Y. Kiyo, T. Morozumi, P Parada, M. N. Rebelo, M Tanimoto (1999)

Introduction

- Physical observables are basis-independent
- In quark sector, one have freedom to rephase the quark fields \rightarrow Redefinition of CKM matrix

 $V_{\alpha j}' = e^{-i\phi_{\alpha}} V_{\alpha j} e^{i\phi_j}$

- Example of CKM rephasing invariants \rightarrow CP-odd Jarlskog invariant $J = \text{Im}(V_{11}V_{22}V_{12}^*V_{21}^*)$
- Flavor matrices (Yukawa matrices) are basis-dependent \rightarrow weak-basis transformation
- Our purpose:
 - obtain the weak-basis invariants quantities
 - mass eigenvalue, mixing matrix at some hierarchy limit

One generation case of Quark sector of universal seesaw model

Introduction

- The model
- Weak-basis invariants
- WL-WR mixing, mass eigenvalue, and mixing angle
- Hierarchy limit
- Summary

The model[T. Morozumi, A.S. Adam, Y. Kawamura, A.H.P, Y. Shimizu, K. Yamamoto arXiv:2211.02360]

We study the quark sector of the universal seesaw model with $SU(2)_L \times SU(2)_R \times U(1)_{Y'}$

$$\begin{array}{ll} \text{Particle content:} \quad \psi_{L}^{i} = \begin{pmatrix} u^{i} \\ d^{i} \end{pmatrix}_{L} : (\mathbf{2}, 1, 1/6) & \psi_{R}^{i} = \begin{pmatrix} u^{i} \\ d^{i} \end{pmatrix}_{R} : (1, \mathbf{2}, 1/6) & i = 1, 2, 3; I = 1, 2, 3 \\ \hline Q = I_{3_{L}} + I_{3_{R}} + Y' \\ \psi_{L} = \begin{pmatrix} \phi_{L}^{+} \\ \phi_{L}^{0} \end{pmatrix} : (\mathbf{2}, 1, 1/2) & \phi_{R} = \begin{pmatrix} \phi_{R}^{+} \\ \phi_{R}^{0} \end{pmatrix} : (1, \mathbf{2}, 1/2) & \langle \phi_{R} \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_{L} \end{pmatrix} \\ \langle \phi_{R} \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_{R} \end{pmatrix} \\ \langle \phi_{R} \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_{R} \end{pmatrix} \end{array}$$

The Lagrangian of the model,

$$\mathcal{L}_{\text{Doublets}} = \sum_{i=1}^{3} \overline{\psi_{Li}} \left(i \not\partial - g_L \notW_L - g_1 \frac{1}{6} \notB_1 \right) \psi_{Li} + \sum_{i=1}^{3} \overline{\psi_{Ri}} \left(i \not\partial - g_R \notW_R - g_1 \frac{1}{6} \notB_1 \right) \psi_{Ri}$$
$$\mathcal{L}_{\text{VLQ}} = \sum_{I=1}^{3} \overline{U_I} \left(i \not\partial - g_1 \notB_1 \frac{2}{3} - M_{U_I} \right) U_I + \sum_{I=1}^{3} \overline{D_I} \left(i \not\partial + g_1 \notB_1 \frac{1}{3} - M_{D_I} \right) D_I$$

 $\mathcal{L}_{\text{VLQ-Doublets}} = -y_{LiJ}^{u} \overline{\psi_{iL}} \tilde{\phi}_{L} U_{J} - y_{RiJ}^{u} \overline{\psi_{iR}} \tilde{\phi}_{R} U_{J} - y_{LiJ}^{d} \overline{\psi_{iL}} \phi_{L} D_{J} - y_{RiJ}^{d} \overline{\psi_{iR}} \phi_{R} D_{J} - h.c.$

The model

Mass hierarchy:

We will study the one generation case

Introduction

- The model
- Weak-basis invariants
- WL-WR mixing, mass eigenvalue, and mixing angle
- Hierarchy limit
- Summary

The lagrangian of the model:

$$\mathcal{L} = -\overline{\psi_L} m_{uL} U - \overline{\psi_R} m_{uR} U - \overline{\psi_L} m_{dL} D - \overline{\psi_R} m_{dR} D - (h.c.) - \overline{U_L} M_U U_R - \overline{D_L} M_D D_R - (h.c.)$$

$$m_{uL} = \frac{y_{uL}v_L}{\sqrt{2}} \qquad m_{dL} = \frac{y_{dL}v_L}{\sqrt{2}}$$
$$m_{uR} = \frac{y_{uR}v_R}{\sqrt{2}} \qquad m_{dR} = \frac{y_{dR}v_R}{\sqrt{2}}$$

Define following weak-basis transformation (WBT) on doublet quarks and VL quarks in this model as follow,

$$\psi'_L = e^{i\theta_{V_L}}\psi_L, \qquad \psi'_R = e^{i\theta_{V_R}}\psi_R, \qquad U' = e^{i\theta_U}U, \qquad D' = e^{i\theta_D}L$$

The Lagrangian will unchanged if the quark and VLQ mass have to transform as,

 $m'_{uL} = e^{i(\theta_{V_L} - \theta_U)} m_{uL}, \qquad m'_{uR} = e^{i(\theta_{V_R} - \theta_U)} m_{uR}, \qquad m'_{dL} = e^{i(\theta_{V_L} - \theta_D)} m_{dL}, \qquad m'_{dR} = e^{i(\theta_{V_R} - \theta_D)} m_{dR},$ $M'_U = M_U, \qquad M'_D = M_D$

Denoting:

$$z_{1} = e^{i\theta_{V_{L}}}, z_{2} = e^{i\theta_{V_{R}}}, z_{3} = e^{i\theta_{U}}, z_{4} = e^{i\theta_{D}}$$

$$q_{1} = m_{uL}, q_{2} = m_{uL}^{*}, q_{3} = m_{uR}, q_{4} = m_{uR}^{*}, q_{5} = m_{dL}, q_{6} = m_{dL}^{*}, q_{7} = m_{dR}, q_{8} = m_{dR}^{*}, q_{9} = M_{U}, q_{10} = M_{D}$$

Weak-basis invariants

Using Molien-Weyl formula see e.g. [Y. Wang, B. Yu, S. Zhou (2021)]

$$\mathcal{H}(q_1,\ldots,q_N) = \int [d\mu]_G \prod_{i=1}^N \frac{1}{\det(1-q_i R_i(g))}$$

 $\mathcal{H}(q_1,\ldots,q_N)$: multigraded Hilbert-series q_i : arbitrary complex number with $|q_i| < 1$ $R_i(q)$: representation of group G where $q \in G$

Haar measure: $\int [d\mu]_G = \frac{1}{(2\pi i)^4} \oint_{|z_1|=1} \frac{dz_1}{z_1} \oint_{|z_2|=1} \frac{dz_2}{z_2} \oint_{|z_2|=1} \frac{dz_3}{z_3} \oint_{|z_4|=1} \frac{dz_4}{z_4}$ ex: $[\det(1-q_1z_1z_3^{-1})]^{-1}$

We obtain the multigraded Hilbert series:

$$\mathcal{H}(q_1,\ldots,q_{10}) = \frac{1 - q_1 q_2 q_3 q_4 q_5 q_6 q_7 q_8}{(1 - q_1 q_2)(1 - q_3 q_4)(1 - q_5 q_6)(1 - q_7 q_8)(1 - q_1 q_4 q_6 q_7)(1 - q_2 q_3 q_5 q_8)(1 - q_9)(1 - q_{10})}$$
asic WBIs:

В

$$I_{1} = m_{uL}^{2}, \quad I_{2} = m_{uR}^{2}, \quad I_{3} = m_{dL}^{2}, \quad I_{4} = m_{dR}^{2}, \quad I_{5} = m_{uL}m_{uR}^{*}m_{dL}^{*}m_{dR}, \quad I_{6} = m_{uL}^{*}m_{uR}m_{dL}m_{dR}^{*}$$
$$I_{7} = M_{U}, \quad I_{8} = M_{D}$$

 $I_5 I_6 = I_1 I_2 I_3 I_4$ There is one relation among the basic WBIs

Weak-basis invariants

By changing $q_1, \ldots, q_{10} \rightarrow q$, we obtain the ungraded Hilbert series:

$$H(q) = \frac{1+q^4}{(1-q)^2(1-q^2)^4(1-q^4)}$$

7 independent WBIs

- CP even $\rightarrow I_1, I_2, I_3, I_4, I_7, I_8$
- CP odd $\rightarrow J_9 \equiv I_5 I_6$

CP violating WBI:

$$W = \text{Im}(m_{uL}m_{uR}^*m_{dL}^*m_{dR}) = \frac{J_9}{2i}$$

Next: Finding the source of this CP violating WBI

- Introduction
- The model
- Weak-basis invariants
- WL-WR mixing, mass eigenvalue, and mixing angle
- Hierarchy limit
- Summary

WB freedom:

$$\begin{aligned} m'_{uL} &= e^{i(\theta_{V_L} - \theta_U)} m_{uL} \\ \theta_{V_L} - \theta_U &= -\arg(m_{uR}) \\ \theta_{V_R} - \theta_U &= -\arg(m_{dL}) \\ \theta_{V_R} - \theta_D &= -\arg(m_{uR}) + \arg(m_{uL}) - \arg(m_{dL}) \\ \theta_{V_R} - \theta_D &= -\arg(m_{uR}) + \arg(m_{uL}) - \arg(m_{dL}) \\ \theta_{V_R} - \theta_D &= -\arg(m_{uR}) + \arg(m_{uL}) - \arg(m_{dL}) \\ \theta_{V_R} - \theta_D &= -\arg(m_{uR}) + \arg(m_{uL}) - \arg(m_{dL}) \\ \theta_{V_R} - \theta_D &= -\arg(m_{uR}) + \arg(m_{uL}) - \arg(m_{dL}) \\ \theta_{V_R} - \theta_D &= -\arg(m_{uR}) + \arg(m_{uL}) - \arg(m_{dL}) \\ \theta_{V_R} - \theta_D &= -\arg(m_{uR}) + \arg(m_{uL}) - \arg(m_{dL}) \\ \theta_{V_R} - \theta_D &= -\arg(m_{uR}) + \arg(m_{uL}) - \arg(m_{dL}) \\ \theta_{V_R} - \theta_D &= -\arg(m_{uR}) + \arg(m_{uL}) - \arg(m_{dL}) \\ \theta_{V_R} - \theta_D &= -\arg(m_{uR}) + \arg(m_{uL}) - \arg(m_{dL}) \\ \theta_{V_R} - \theta_D &= -\arg(m_{uR}) + \arg(m_{uL}) - \arg(m_{dL}) \\ \theta_{V_R} - \theta_D &= -\arg(m_{uR}) + \arg(m_{uL}) - \arg(m_{dL}) \\ \theta_{V_R} - \theta_D &= -\arg(m_{uR}) + \arg(m_{uL}) - \arg(m_{dL}) \\ \theta_{V_R} - \theta_D &= -\arg(m_{uR}) + \arg(m_{uL}) - \arg(m_{dL}) \\ \theta_{V_R} - \theta_D &= -\arg(m_{uR}) + \arg(m_{uL}) - \arg(m_{dL}) \\ \theta_{V_R} - \theta_D &= -\arg(m_{uR}) + \arg(m_{uL}) - \arg(m_{dL}) \\ \theta_{V_R} - \theta_D &= -\arg(m_{uR}) + \arg(m_{uL}) - \arg(m_{dL}) \\ \theta_{V_R} - \theta_D &= -\arg(m_{uR}) + \arg(m_{uL}) - \arg(m_{dL}) \\ \theta_{V_R} - \theta_D &= -\arg(m_{uR}) + \arg(m_{uL}) - \arg(m_{dL}) \\ \theta_{V_R} - \theta_D &= -\arg(m_{uR}) + \arg(m_{uL}) - \arg(m_{dL}) \\ \theta_{V_R} - \theta_D &= -\arg(m_{uR}) + \arg(m_{uL}) - \arg(m_{dL}) \\ \theta_{V_R} - \theta_D &= -\arg(m_{uR}) + \arg(m_{uL}) - \arg(m_{uL}) \\ \theta_{V_R} - \theta_D &= -\arg(m_{uR}) + \arg(m_{uL}) - \arg(m_{uL}) \\ \theta_{V_R} - \theta_D &= -\arg(m_{uR}) + \arg(m_{uL}) - \arg(m_{uL}) \\ \theta_{V_R} - \theta_D &= -\arg(m_{uR}) + \arg(m_{uL}) - \arg(m_{uL}) \\ \theta_{V_R} - \theta_D &= -\arg(m_{uR}) + \arg(m_{uL}) - \arg(m_{uL}) \\ \theta_{V_R} - \theta_D &= -\arg(m_{uR}) + \arg(m_{uL}) - \arg(m_{uL}) \\ \theta_{V_R} - \theta_D &= -\arg(m_{uR}) + \arg(m_{uL}) - \arg(m_{uR}) \\ \theta_{V_R} - \theta_D &= -\arg(m_{uR}) + \arg(m_{uL}) - \arg(m_{uR}) \\ \theta_{V_R} - \theta_D &= -\arg(m_{uR}) + \arg(m_{uL}) - \arg(m_{uR}) \\ \theta_{V_R} - \theta_D &= -\arg(m_{uR}) + \arg(m_{uR}) + \arg(m_{uR}) \\ \theta_{V_R} - \theta_D &= -\arg(m_{uR}) + \arg(m_{uR}) + \arg(m_{uR}) \\ \theta_{V_R} - \theta_D &= -\arg(m_{uR}) + \arg(m_{uR}) + \arg(m_{uR}) \\ \theta_{V_R} - \theta_D &= -\arg(m_{uR}) + \arg(m_{uR}) + \arg(m_{uR}$$

. . .

Lagrangian with the new weak basis:

$$\mathcal{L} = -\overline{\psi_L} m_{uL} U - \overline{\psi_R} m_{uR} U - \overline{\psi_L} m_{dL} D - \overline{\psi_R} m_{dR} e^{i\theta_{WI}} D - \overline{U_L} M_U U_R - \overline{D_L} M_D D_R - h.c.$$

m' = |m|

Separate the up-type and down-type:

$$\mathcal{L}_{u} = -\left(\begin{array}{ccc}\overline{u_{L}} & \overline{U_{L}}\end{array}\right) \left(\begin{array}{ccc}0 & m_{uL}\\m_{uR} & M_{U}\end{array}\right) \left(\begin{array}{ccc}u_{R}\\U_{R}\end{array}\right) - \left(\begin{array}{ccc}\overline{u_{R}} & \overline{U_{R}}\end{array}\right) \left(\begin{array}{ccc}0 & m_{uR}\\m_{uL} & M_{U}\end{array}\right) \left(\begin{array}{ccc}u_{L}\\U_{L}\end{array}\right)$$
$$\underbrace{\mathcal{M}_{u}}^{T}$$
$$\mathcal{L}_{d} = -\left(\begin{array}{ccc}\overline{d_{L}} & \overline{D_{L}}\end{array}\right) \left(\begin{array}{ccc}0 & m_{dL}\\m_{dR}e^{-i\theta_{WI}} & M_{D}\end{array}\right) \left(\begin{array}{ccc}d_{R}\\D_{R}\end{array}\right) - \left(\begin{array}{ccc}\overline{d_{R}} & \overline{D_{R}}\end{array}\right) \left(\begin{array}{ccc}0 & m_{dR}e^{i\theta_{WI}}\\m_{dL} & M_{D}\end{array}\right) \left(\begin{array}{ccc}d_{L}\\D_{L}\end{array}\right)$$
Flavor basis \rightarrow mass basis

$$\mathcal{L}_{u} = -\left(\begin{array}{cc} \overline{u_{L}'} & \overline{U_{L}'} \end{array}\right) V_{U_{L}}^{\dagger} \left(\begin{array}{cc} 0 & m_{uL} \\ m_{uR} & M_{U} \end{array}\right) V_{U_{R}} \left(\begin{array}{c} u_{R}' \\ U_{R}' \end{array}\right) - h.c.$$

$$(\begin{array}{c} m_{u_{1}} & 0 \\ 0 & m_{u_{2}} \end{array})$$

$$\mathcal{L}_{d} = -\left(\begin{array}{c} \overline{d_{L}'} & \overline{D_{L}'} \end{array}\right) V_{D_{L}}^{\dagger} \left(\begin{array}{c} 0 & m_{dL} \\ m_{dR}e^{-i\theta_{WI}} & M_{D} \end{array}\right) V_{D_{R}} \left(\begin{array}{c} d_{R}' \\ D_{R}' \end{array}\right) - h.c.$$

$$(\begin{array}{c} m_{d_{1}} & 0 \\ 0 & m_{d_{2}} \end{array})$$
diagonalize

$$\begin{pmatrix} u_L \\ U_L \end{pmatrix} = V_{U_L} \begin{pmatrix} u'_L \\ U'_L \end{pmatrix}$$
$$\begin{pmatrix} u_R \\ U_R \end{pmatrix} = V_{U_R} \begin{pmatrix} u'_R \\ U'_R \end{pmatrix}$$
$$\begin{pmatrix} d_L \\ D_L \end{pmatrix} = V_{D_L} \begin{pmatrix} d'_L \\ D'_L \end{pmatrix}$$
$$\begin{pmatrix} d_R \\ D_R \end{pmatrix} = V_{D_R} \begin{pmatrix} d'_R \\ D'_R \end{pmatrix}$$

 $V_{U_L}, V_{U_R}, V_{D_L}, V_{D_R}$ are 2 x 2 unitary matrices

ົ

 $2\sqrt{2}$

$$\begin{aligned} \mathcal{L}_{CC} &= -\frac{g_L}{\sqrt{2}} (\bar{u}_L \gamma^{\mu} d_L W^+_{\mu L} + \bar{d}_L \gamma^{\mu} u_L W^-_{\mu L}) - \frac{g_R}{\sqrt{2}} (\bar{u}_R \gamma^{\mu} d_R W^+_{\mu R} + \bar{d}_R \gamma^{\mu} u_R W^-_{\mu R}) \\ &= -\frac{g_L}{2\sqrt{2}} \left(\bar{u}'_i V^*_{U_{L1i}} V_{D_{L1j}} \gamma^{\mu} (1 - \gamma^5) d'_j W^+_{\mu L} + \bar{d}'_i V^*_{D_{L1i}} V_{U_{L1j}} \gamma^{\mu} (1 - \gamma^5) u'_j W^-_{\mu L} \right) \\ &- \frac{g_R}{2\sqrt{2}} \left(\bar{u}'_i V^*_{U_{R1i}} V_{D_{R1j}} \gamma^{\mu} (1 + \gamma^5) d'_j W^+_{\mu R} + \bar{d}'_i V^*_{D_{R1i}} V_{U_{R1j}} \gamma^{\mu} (1 + \gamma^5) u'_j W^-_{\mu R} \right) \end{aligned}$$

$$d_{L} = \sum_{j=1}^{2} V_{D_{L1j}} d'_{Lj}$$
$$\bar{u}_{L} = \sum_{i=1}^{2} V^{*}_{U_{L1i}} u'_{Li}$$
$$V^{\text{CKM}}_{L_{ij}} = V^{*}_{U_{L1i}} V_{D_{L1j}}$$

 $\Pi_{W_L W_R}^{\mu\nu}(0) = \frac{g_L g_R}{16\pi^2} (V_{U_{L11}}^* m_{u_1} V_{U_{R11}}) (V_{D_{L11}} m_{d_1} V_{D_{R11}}^*) g_{\mu\nu} [f(m_{u_1}, m_{d_1}) + f(m_{u_2}, m_{d_2}) - f(m_{u_1}, m_{d_2}) - f(m_{u_2}, m_{d_1})]$

Diagonalization of up-type quark and VLQ mass matrix

 $\begin{pmatrix} u_L \\ U_L \end{pmatrix} = \begin{pmatrix} \cos\theta_{U_l} & -\sin\theta_{U_l} \\ \sin\theta_{U_l} & \cos\theta_{U_l} \end{pmatrix} \begin{pmatrix} \cos\theta_{U_R} & \sin\theta_{U_R} \\ -\sin\theta_{U_R} & \cos\theta_{U_R} \end{pmatrix} \begin{pmatrix} u'_L \\ U'_L \end{pmatrix} \begin{pmatrix} u_R \\ U_R \end{pmatrix} = \begin{pmatrix} \cos\theta_{U_R} & \sin\theta_{U_R} \\ -\sin\theta_{U_R} & \cos\theta_{U_R} \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} u'_R \\ U'_R \end{pmatrix}$ Lagrangian of up-type mixing become: $\mathcal{L}_u = -\left(\begin{array}{c} \overline{u'_L} & \overline{U'_L} \end{array}\right) \begin{pmatrix} \cos\theta_{U_R} & -\sin\theta_{U_R} \\ \sin\theta_{U_R} & \cos\theta_{U_R} \end{array}\right) \begin{pmatrix} \cos\theta_{U_l} & \sin\theta_{U_l} \\ -\sin\theta_{U_l} & \cos\theta_{U_l} \end{array}\right) \begin{pmatrix} 0 & m_{u_L} \\ m_{u_R} & M_U \end{array}\right) \begin{pmatrix} \cos\theta_{U_R} & \sin\theta_{U_R} \\ -\sin\theta_{U_R} & \cos\theta_{U_R} \end{array}\right) \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} u'_R \\ U'_R \end{pmatrix}$ $= -\left(\begin{array}{c} \overline{u'_L} & \overline{U'_L} \end{array}\right) \begin{pmatrix} \cos\theta_{U_L} & -\sin\theta_{U_L} \\ \sin\theta_{U_L} & \cos\theta_{U_L} \end{array}\right) \begin{pmatrix} 0 & m_{u_L} \\ m_{u_R} & M_U \end{pmatrix} \begin{pmatrix} -\cos\theta_{U_R} & \sin\theta_{U_R} \\ \sin\theta_{U_R} & \cos\theta_{U_R} \end{pmatrix} \begin{pmatrix} u'_R \\ U'_R \end{pmatrix}$ $= -\left(\begin{array}{c} \overline{u'_L} & \overline{U'_L} \end{array}\right) \begin{pmatrix} m_{u_1} & 0 \\ 0 & m_{u_L} \\ 0 & m_{u_R} \end{pmatrix} \begin{pmatrix} u'_R \\ U'_R \end{pmatrix}$

Mass eigenvalue:

$$m_{u_1} = -\frac{\sqrt{M_U^2 + (m_{u_R} - m_{u_L})^2}}{2} + \frac{\sqrt{M_U^2 + (m_{u_R} + m_{u_L})^2}}{2}$$
$$m_{u_2} = \frac{\sqrt{M_U^2 + (m_{u_R} - m_{u_L})^2}}{2} + \frac{\sqrt{M_U^2 + (m_{u_R} + m_{u_L})^2}}{2}$$

Mixing angle:

$$\theta_{U_L} = \theta_{U_R} - \theta_{U_l}$$
$$\tan \theta_{U_l} = \frac{m_{u_R} - m_{u_L}}{M_U}$$
$$\tan 2\theta_{U_R} = \frac{2M_U m_{u_R}}{M_U^2 + m_{u_L}^2 - m_{u_R}^2}$$

Diagonalization of down-type quark and VLQ mass matrix

$$\begin{pmatrix} d_L \\ D_L \end{pmatrix} = \begin{pmatrix} \cos\theta_{D_l} & -\sin\theta_{D_l} \\ \sin\theta_{D_l} & \cos\theta_{D_l} \end{pmatrix} \begin{pmatrix} \cos\theta_{D_R} & \sin\theta_{D_R} \\ -\sin\theta_{D_R} & \cos\theta_{D_R} \end{pmatrix} \begin{pmatrix} d'_L \\ D'_L \end{pmatrix}$$

$$\begin{pmatrix} d_R \\ D_R \end{pmatrix} = \begin{pmatrix} e^{i\theta_{WI}} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \cos\theta_{D_R} & \sin\theta_{D_R} \\ -\sin\theta_{D_R} & \cos\theta_{D_R} \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} d'_R \\ D'_R \end{pmatrix}$$

Lagrangian of down-type mixing become:

$$\mathcal{L}_{d} = -\left(\begin{array}{cc}\overline{d'_{L}} & \overline{D'_{L}}\end{array}\right) \left(\begin{array}{cc}\cos\theta_{D_{L}} & -\sin\theta_{D_{L}}\\\sin\theta_{D_{L}} & \cos\theta_{D_{L}}\end{array}\right) \left(\begin{array}{cc}0 & m_{d_{L}}\\m_{d_{R}}e^{-i\theta_{WI}} & M_{D}\end{array}\right) \left(\begin{array}{cc}-e^{i\theta_{WI}}\cos\theta_{D_{R}} & e^{i\theta_{WI}}\sin\theta_{D_{R}}\\\sin\theta_{D_{R}} & \cos\theta_{D_{R}}\end{array}\right) \left(\begin{array}{cc}d'_{R}\\D'_{R}\end{array}\right)$$
$$= -\left(\begin{array}{cc}\overline{d'_{L}} & \overline{D'_{L}}\end{array}\right) \left(\begin{array}{cc}m_{d_{1}} & 0\\0 & m_{d_{2}}\end{array}\right) \left(\begin{array}{cc}d'_{R}\\D'_{R}\end{array}\right)$$

Mass eigenvalue:

$$m_{d_1} = -\frac{\sqrt{M_D^2 + (m_{d_R} - m_{d_L})^2}}{2} + \frac{\sqrt{M_D^2 + (m_{d_R} + m_{d_L})^2}}{2}$$
$$m_{d_2} = \frac{\sqrt{M_D^2 + (m_{d_R} - m_{d_L})^2}}{2} + \frac{\sqrt{M_D^2 + (m_{d_R} + m_{d_L})^2}}{2}$$

Mixing angle:

$$\theta_{D_L} = \theta_{D_R} - \theta_{D_l}$$
$$\tan \theta_{D_l} = \frac{m_{d_R} - m_{d_L}}{M_D}$$
$$\tan 2\theta_{D_R} = \frac{2M_D m_{d_R}}{M_D^2 + m_{d_L}^2 - m_{d_R}^2}$$

- Introduction
- The model
- Weak-basis invariants
- WL-WR mixing, mass eigenvalue, and mixing angle
- Hierarchy limit
- Summary

$$\begin{split} M_{U}, M_{D} \gg v_{R} \gg v_{L} & \begin{pmatrix} \cos \theta_{U_{L}} & -\sin \theta_{U_{L}} \\ \sin \theta_{U_{L}} & \cos \theta_{U_{L}} \end{pmatrix} \begin{pmatrix} 0 & m_{u_{L}} \\ m_{u_{R}} & M_{U} \end{pmatrix} \begin{pmatrix} -\cos \theta_{U_{R}} & \sin \theta_{U_{R}} \\ \sin \theta_{U_{R}} & \cos \theta_{U_{R}} \end{pmatrix} = \begin{pmatrix} m_{u_{1}} & 0 \\ 0 & m_{u_{2}} \end{pmatrix} \\ \begin{pmatrix} \cos \theta_{D_{L}} & -\sin \theta_{D_{L}} \\ \sin \theta_{D_{L}} & \cos \theta_{D_{L}} \end{pmatrix} \begin{pmatrix} 0 & m_{d_{L}} \\ m_{d_{R}}e^{-i\theta_{W1}} & M_{D} \end{pmatrix} \begin{pmatrix} -e^{i\theta_{W1}}\cos \theta_{D_{R}} & e^{i\theta_{W1}}\sin \theta_{D_{R}} \\ \sin \theta_{D_{R}} & \cos \theta_{D_{R}} \end{pmatrix} = \begin{pmatrix} m_{d_{1}} & 0 \\ 0 & m_{d_{2}} \end{pmatrix} \\ \begin{pmatrix} m_{u_{1}} & \frac{m_{u_{R}}m_{u_{L}}}{M_{U}} & = \frac{v_{R}y_{u}Ry_{u}v_{L}v_{L}}{2M_{U}} \end{pmatrix} \begin{bmatrix} m_{u_{2}} \simeq M_{U} \\ m_{d_{2}} \simeq M_{U} \end{bmatrix} \\ \hline m_{d_{1}} \simeq \frac{m_{d_{R}}m_{d_{L}}}{M_{D}} & = \frac{v_{R}y_{d}Ry_{d}Lv_{L}}{2M_{D}} \end{bmatrix} \begin{bmatrix} m_{u_{2}} \simeq M_{U} \\ m_{d_{2}} \simeq M_{D} \end{bmatrix} \\ \hline \text{Recall:} \\ W = \operatorname{Im}(m_{uL}m_{u_{R}}^{*}m_{d_{L}}^{*}m_{d_{R}}) = m_{uL}m_{uR}m_{dL}m_{dR}\operatorname{Im}(e^{i\theta_{W1}}) \end{split}$$

$$\Pi_{W_L W_R}^{\mu\nu}(0) = \frac{g_L g_R}{16\pi^2} (V_{U_{L11}}^* m_{u_1} V_{U_{R11}}) (V_{D_{L11}} m_{d_1} V_{D_{R11}}) g_{\mu\nu} [f(m_{u_1}, m_{d_1}) + f(m_{u_2}, m_{d_2}) - f(m_{u_1}, m_{d_2}) - f(m_{u_2}, m_{d_1})]$$

$$\operatorname{Im}\left(\Pi_{W_L W_R}^{\mu\nu}(0)\right) = \operatorname{Im}\left(\frac{m_{uL}m_{uR}m_{dL}m_{dR}}{M_U M_D}e^{-i\theta_{WI}}\right) = -\frac{W}{M_U M_D}$$

 $M_U, M_D \gg v_R \gg v_L$

This hierarchy limit is applied for:

1st generation quark

2nd generation quark

$$m_c \simeq \frac{m_{c_R} m_{c_L}}{M_C} = \frac{v_R y_{cR} y_{cL} v_L}{2M_C} \qquad m_{c'} \simeq M_C$$
$$m_s \simeq \frac{m_{s_R} m_{s_L}}{M_S} = \frac{v_R y_{sR} y_{sL} v_L}{2M_S} \qquad m_{s'} \simeq M_S$$

$M_U, M_D \gg v_R \gg v_L$

$$V_L^{\text{CKM}} = \begin{pmatrix} \cos \theta_{U_L} \cos \theta_{D_L} & \cos \theta_{U_L} \sin \theta_{D_L} \\ \sin \theta_{U_L} \cos \theta_{D_L} & \sin \theta_{U_L} \sin \theta_{D_L} \end{pmatrix} \simeq \begin{pmatrix} \simeq 1 & \frac{m_{dL}}{M_D} \\ \frac{m_{uL}}{M_U} & \frac{m_{uL}}{M_D} \frac{m_{dL}}{M_D} \end{pmatrix}$$

$$V_R^{\text{CKM}} = \begin{pmatrix} \cos\theta_{U_R}\cos\theta_{D_R} & \cos\theta_{U_R}\sin\theta_{D_R} \\ \sin\theta_{U_R}\cos\theta_{D_R} & \sin\theta_{U_R}\sin\theta_{D_R} \end{pmatrix} \begin{pmatrix} -e^{i\theta_{\text{WI}}} & 0 \\ 0 & e^{i\theta_{\text{WI}}} \end{pmatrix} \simeq \begin{pmatrix} \simeq 1 & \frac{m_{dR}}{M_D} \\ \frac{m_{uR}}{M_U} & \frac{m_{uR}}{M_U}\frac{m_{dR}}{M_D} \end{pmatrix} \begin{pmatrix} -e^{i\theta_{\text{WI}}} & 0 \\ 0 & e^{i\theta_{\text{WI}}} \end{pmatrix}$$

$$\mathcal{L}_{\rm CC} = -\frac{g_L}{\sqrt{2}} \left(\bar{u}'_{Li} V_{L_{ij}}^{\rm CKM} \gamma^{\mu} d'_{Lj} W_{\mu L}^{+} + h.c \right) - \frac{g_R}{\sqrt{2}} \left(\bar{u}'_{Ri} V_{R_{ij}}^{\rm CKM} \gamma^{\mu} d'_{Rj} W_{\mu R}^{+} + h.c. \right)$$

This hierarchy limit is applied for:

1st generation2nd generation $j_L^{\mu-} = \bar{u}_L \gamma^{\mu} d_L + \frac{m_{dL}}{M_D} \bar{u}_L \gamma^{\mu} d'_L + \frac{m_{uL}}{M_U} \bar{u}'_L \gamma^{\mu} d_L + \frac{m_{uL}}{M_U} \frac{m_{dL}}{M_D} \bar{u}'_L \gamma^{\mu} d'_L$ $j_L^{\mu-} = \bar{c}_L \gamma^{\mu} s_L + \frac{m_{sL}}{M_S} \bar{c}_L \gamma^{\mu} s'_L + \frac{m_{cL}}{M_C} \bar{c}'_L \gamma^{\mu} s_L + \frac{m_{cL}}{M_C} \frac{m_{sL}}{M_S} \bar{c}'_L \gamma^{\mu} s'_L$ $j_R^{\mu-} = \bar{u}_R \gamma^{\mu} d_R + \frac{m_{dR}}{M_D} \bar{u}_R \gamma^{\mu} d_R + \frac{m_{uR}}{M_U} \frac{m_{dR}}{M_D} \bar{u}'_R \gamma^{\mu} d_R$ $j_R^{\mu-} = \bar{c}_R \gamma^{\mu} s_R + \frac{m_{sR}}{M_S} \bar{c}_R \gamma^{\mu} s'_R + \frac{m_{cR}}{M_C} \bar{c}'_R \gamma^{\mu} s_R + \frac{m_{cR}}{M_C} \frac{m_{sR}}{M_S} \bar{c}'_R \gamma^{\mu} s'_R$

 $M_D \gg v_B \gg v_L$ $\begin{pmatrix} \cos\theta_{U_L} & -\sin\theta_{U_L} \\ \sin\theta_{U_L} & \cos\theta_{U_L} \end{pmatrix} \begin{pmatrix} 0 & m_{u_L} \\ m_{u_R} & M_U \end{pmatrix} \begin{pmatrix} -\cos\theta_{U_R} & \sin\theta_{U_R} \\ \sin\theta_{U_R} & \cos\theta_{U_R} \end{pmatrix} = \begin{pmatrix} m_{u_1} & 0 \\ 0 & m_{u_2} \end{pmatrix}$ $v_{B} > M_{U} \gg v_{L}$ $\begin{pmatrix} \cos\theta_{D_L} & -\sin\theta_{D_L} \\ \sin\theta_{D_L} & \cos\theta_{D_L} \end{pmatrix} \begin{pmatrix} 0 & m_{d_L} \\ m_{d_R}e^{-i\theta_{WI}} & M_D \end{pmatrix} \begin{pmatrix} -e^{i\theta_{WI}}\cos\theta_{D_R} & e^{i\theta_{WI}}\sin\theta_{D_R} \\ \sin\theta_{D_R} & \cos\theta_{D_R} \end{pmatrix} = \begin{pmatrix} m_{d_1} & 0 \\ 0 & m_{d_2} \end{pmatrix}$ Mass eigenvalues: Mixing angle: $m_{u_1} \simeq m_{uL}$ $m_{u_2} \simeq m_{uR}$ $\sin \theta_{U_L} \simeq \frac{M_U m_{uL}}{m_{uD}^2} \qquad \sin \theta_{D_L} \simeq \frac{m_{dL}}{M_D}$ $m_{d_1} \simeq \frac{m_{d_R} m_{d_L}}{M_D} = \frac{v_R y_{dR} y_{dL} v_L}{2M_D} \qquad \qquad m_{d_2} \simeq M_D$ $\sin \theta_{U_R} \simeq 1 \qquad \qquad \sin \theta_{D_R} \simeq \frac{m_{dR}}{M_D}$ $\cos \theta_{U_L} \simeq 1$ $\cos \theta_{D_L} = \cos \theta_{D_R} \simeq 1$ $\cos\theta_{U_R} \simeq \frac{M_U}{M_U}$ $\operatorname{Im}\left(\Pi_{W_L W_R}^{\mu\nu}(0)\right) = \operatorname{Im}\left(\frac{m_{uL}M_U m_{dL}m_{dR}}{m_{uR}M_D}e^{-i\theta_{WI}}\right) = -\frac{M_U W}{m_{\pi}^2 M_D}$

 $M_D \gg v_R \gg v_L$ $v_R > M_U \gg v_L$

This hierarchy limit applied for:

3rd generation quark

$$m_t \simeq m_{t_L} = \frac{y_{tL}v_L}{\sqrt{2}}$$

$$m_{t'} \simeq m_{t_R} = \frac{y_{tR}v_R}{\sqrt{2}}$$

$$m_b \simeq \frac{m_{b_R}m_{b_L}}{M_B} = \frac{v_R y_{bR} y_{bL} v_L}{2M_B}$$

$$m_{b'} \simeq M_B$$

 $M_D \gg v_R \gg v_L$ $v_R > M_U \gg v_L$

$$V_{L}^{\text{CKM}} = \begin{pmatrix} \cos\theta_{U_{L}}\cos\theta_{D_{L}} & \cos\theta_{U_{L}}\sin\theta_{D_{L}} \\ \sin\theta_{U_{L}}\cos\theta_{D_{L}} & \sin\theta_{U_{L}}\sin\theta_{D_{L}} \end{pmatrix} \simeq \begin{pmatrix} \simeq 1 & \frac{m_{dL}}{M_{D}} \\ \frac{M_{U}m_{uL}}{m_{uR}^{2}} & \frac{M_{U}m_{uL}}{m_{uR}^{2}} \frac{m_{dL}}{M_{D}} \end{pmatrix}$$
$$V_{R}^{\text{CKM}} = \begin{pmatrix} \cos\theta_{U_{R}}\cos\theta_{D_{R}} & \cos\theta_{U_{R}}\sin\theta_{D_{R}} \\ \sin\theta_{U_{R}}\cos\theta_{D_{R}} & \sin\theta_{U_{R}}\sin\theta_{D_{R}} \end{pmatrix} \begin{pmatrix} -e^{i\theta_{\text{WI}}} & 0 \\ 0 & e^{i\theta_{\text{WI}}} \end{pmatrix} \simeq \begin{pmatrix} \frac{M_{U}}{m_{uR}} & \frac{M_{U}}{m_{uR}} \frac{m_{dR}}{M_{D}} \\ \simeq 1 & \frac{m_{dR}}{M_{D}} \end{pmatrix} \begin{pmatrix} -e^{i\theta_{\text{WI}}} & 0 \\ 0 & e^{i\theta_{\text{WI}}} \end{pmatrix}$$

$$\mathcal{L}_{\rm CC} = -\frac{g_L}{\sqrt{2}} \left(\bar{u}'_{Li} V_{L_{ij}}^{\rm CKM} \gamma^{\mu} d'_{Lj} W^+_{\mu L} + h.c \right) - \frac{g_R}{\sqrt{2}} \left(\bar{u}'_{Ri} V_{R_{ij}}^{\rm CKM} \gamma^{\mu} d'_{Rj} W^+_{\mu R} + h.c. \right)$$

This hierarchy limit is applied for:

3rd generation quark

$$j_L^{\mu-} = \bar{t}_L \gamma^{\mu} b_L + \frac{m_{dL}}{M_D} \bar{t}_L \gamma^{\mu} b'_L + \frac{M_U m_{uL}}{m_{uR}^2} \bar{t}'_L \gamma^{\mu} b_L + \frac{M_U m_{uL}}{m_{uR}^2} \frac{m_{dL}}{M_D} \bar{t}'_L \gamma^{\mu} b'_L$$
$$j_R^{\mu-} = \frac{M_U}{m_{uR}} \bar{t}_R \gamma^{\mu} b_R + \frac{M_U}{m_{uR}} \frac{m_{dR}}{M_D} \bar{t}_R \gamma^{\mu} b'_R + \bar{t}'_R \gamma^{\mu} b_R + \frac{m_{dR}}{M_D} \bar{t}'_R \gamma^{\mu} b'_R$$

- Introduction
- The model
- Weak-basis invariants
- WL-WR mixing, mass eigenvalue, and mixing angle
- Hierarchy limit
- Summary

Summary

- We study quark sector of universal seesaw model, in particular in one generation case
- There is one CP violating weak-basis invariant

$$W = \text{Im}(m_{uL}m_{uR}^*m_{dL}^*m_{dR}) = \frac{J_9}{2i}$$

which appears in the WL-WR mixing

- We have applied the hierarchy limit to the appropriate generation
- On going work: Effective theory → Integrated out down-type and up-type VLQ and obtained the dim 5 and 6 effective lagrangian

THANK YOU

BACKUP

Most BSM model, reduction to SM at low energies proceeds via decoupling of heavy
particles with masses of order Λ [B. Grzadkowski, M. Iskrzynski, M. Misiak, J. Rosiek (2010)]

$$\mathcal{L}_{\rm SM} = \mathcal{L}_{\rm SM}^{(4)} + \frac{1}{\Lambda} \sum_{i} C_i^{(5)} Q_i^{(5)} + \frac{1}{\Lambda^2} \sum_{i} C_i^{(6)} Q_i^{(6)} + \mathcal{O}\left(\frac{1}{\Lambda^3}\right)$$

Mass hierarchy (three generation case) :

Mass hierarchy (one generation case) :

Integrate out down-type VLQ at tree level

$$\mathcal{A}_{1} = \frac{y_{dR}y_{dL}^{*}}{M_{D}} \left(\bar{\psi}_{R}(x)\phi_{R}(x) \right) \left(\phi_{L}^{\dagger}(x)\psi_{L}(x) \right) \qquad \qquad \mathcal{L}_{\text{eff}}^{(5)} = C_{D}^{(5)}(\mu) \left(\bar{\psi}_{R}(x)\phi_{R}(x) \right) \left(\phi_{L}^{\dagger}(x)\psi_{L}(x) \right) + h.c.$$

$$C_D^{(5)}(M_D) = \frac{y_{dR}y_{dL}^*}{M_D}$$

Integrate out up-type VLQ at tree level

$$\mathcal{A}_3 = \frac{y_{uR}y_{uL}^*}{M_U} \left(\bar{\psi}_R(x)\tilde{\phi}_R(x) \right) \left(\tilde{\phi}_L^{\dagger}(x)\psi_L(x) \right)$$

$$\mathcal{L}_{\text{eff}}^{(5)} = C_U^{(5)}(\mu) \left(\bar{\psi}_R(x) \tilde{\phi}_R(x) \right) \left(\tilde{\phi}_L^{\dagger}(x) \psi_L(x) \right) + h.c.$$

$$C_U^{(5)}(M_U) = \frac{y_{uR}y_{uL}^*}{M_U}$$

Summary:

$$\mathcal{L}_{\text{eff}}^{(5)} = \frac{y_{dR} y_{dL}^*}{M_D} \left(\bar{\psi}_R(x) \phi_R(x) \right) \left(\phi_L^{\dagger}(x) \psi_L(x) \right) + h.c. + \frac{y_{uR} y_{uL}^*}{M_U} \left(\bar{\psi}_R(x) \tilde{\phi}_R(x) \right) \left(\tilde{\phi}_L^{\dagger}(x) \psi_L(x) \right) + h.c.$$

$$\mathcal{L}_{\text{eff}}^{(6)} = \frac{y_{dL} y_{dL}^*}{M_D^2} \left(\bar{\psi}_L(x) \phi_L(x) \right) i \not\!\!\!D_D \left(\phi_L^\dagger(x) \psi_L(x) \right) + (L \to R) + \frac{y_{uL} y_{uL}^*}{M_U^2} \left(\bar{\psi}_L(x) \tilde{\phi}_L(x) \right) i \not\!\!\!D_U \left(\tilde{\phi}_L^\dagger(x) \psi_L(x) \right) + (L \to R)$$