Inclusive processes from lattice QCD （or ，how we go beyond quark－hadron duality）

Shoji Hashimoto（KEK，SOKENDAI）

Quark-hadron duality ?

Well approximated by $e^{+} e^{-} \rightarrow q \bar{q}$?
= Basic assumption in (p)QCD

Duality badly violated...

- A lot of resonances!
- Highly non-perturbative even for quarkonium.

$$
\sim\left(\frac{\alpha_{s}}{v}\right)^{n}
$$

Need to resum, yet incomplete

- Even harder for the light sector

Duality works when...

Poggio, Quinn, Weinberg, PRD13, 1958 (1976)

- Sufficiently smeared:
- Consider a quantity smeared over some range.

$$
\operatorname{Im} \Pi(s) \propto R(s)=\frac{\sigma\left(e^{+} e^{-} \rightarrow q \bar{q}\right)}{\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)}
$$

$$
\begin{aligned}
\bar{R}(s, \Delta) & \equiv \frac{\Delta}{\pi} \int_{0}^{\infty} d s^{\prime} \frac{R\left(s^{\prime}\right)}{\left(s-s^{\prime}\right)^{2}+\Delta^{2}} \\
& =\frac{1}{2 \pi i} \int_{0}^{\infty} d s^{\prime} R\left(s^{\prime}\right)\left(\frac{1}{s-s^{\prime}+i \Delta}-\frac{1}{s-s^{\prime}-i \Delta}\right) \\
& =\frac{1}{2 i}[\Pi(s+i \Delta)-\Pi(s-i \Delta)]
\end{aligned}
$$

- One can avoid the threshold singularity.
- Δ must be larger than $\Lambda_{\mathrm{QCD}}{ }^{2}$ to avoid non-perturbative physics.

QCD sum rule

Shifman, Vainshtein, Zakharov, NPB147 385, 448 (1979)

$\Pi\left(\mathrm{Q}^{2}\right)$: calculable by pQCD and OPE (+ Borel sum)

smearing over energy

$$
\Pi\left(Q^{2}\right)
$$

space-like region: $\mathrm{Q}^{2}=-\mathrm{q}^{2}>0$
pQCD should work

time-like region: $s=q^{2}>4 m_{\pi}{ }^{2}$
exp available
smearing over phase-space

[^0]

$\Pi\left(\mathrm{Q}^{2}\right)$: why not lattice?

Well, it's surely possible!

$$
\Pi_{\mu \nu}(x)=\langle 0| T\left\{J_{\mu}(x) J_{\nu}(0)\right\}|0\rangle
$$

- Calculation on the Euclidean lattice naturally provide the space-like $\Pi\left(\mathrm{Q}^{2}\right)$.
- A bread-and-butter calculation, though need large resources to be realistic.
- An input for hadronic-vacuum-polarization (HVP) contribution of muon g-2.
- Remember: the smearing is crucial to compare with exp.
- But, then, no assumption is involved, plus fully non-perturbative.

Euclidean lattice QCD

LQCD $=a b$ initio calculation of QCD, but on the Euclidean space

- Define the quark and gluon fields on the Euclidean lattice.
- Perform the path integral numerically (Monte Carlo).

Case study: vacuum polarization

Euclidean correlator

- $e^{-E t}$ instead of $e^{-i E t}$
read off the exponential slope at long distances
\rightarrow hadron energy (or mass)

Go space-like

Fourier transform of lattice data
to produce the space-like $\Pi\left(\mathrm{Q}^{2}\right)$

RBC/UKQCD:

Izubuchi@g-2 WS (2017)

smearing proveded by

$$
\hat{\Pi}\left(Q^{2}\right)=Q^{2} \int_{0}^{\infty} d s \frac{R(s)}{s\left(s+Q^{2}\right)}
$$

Smearing in general

Some (weighted) integrals:

- Space-like correlator: $\Pi\left(-Q^{2}\right)=\frac{1}{\pi} \int_{0}^{\infty} d s \frac{\operatorname{Im} \Pi(s+i \epsilon)}{s+Q^{2}}=\int_{0}^{\infty} d s \frac{\rho(s)}{s+Q^{2}}$
- weighted integral over s (or ω)
- can be written as a Fourier transform of the Euclidean lattice correlator
- HVP contribution to Muon g-2: $\quad a_{\mu}^{\mathrm{HVP}}=\left(\frac{\alpha}{\pi}\right)^{2} \int_{0}^{\infty} \frac{d s}{s} \frac{1}{\pi} \operatorname{Im} \Pi(s) K(s)$
- weighted integral over s (or ω)
- can also be written as an integral (or a sum) of lattice correlator

$$
a_{\mu}^{\mathrm{HVP}}=\left(\frac{\alpha}{\pi}\right)^{2} \int_{0}^{\infty} d t C(t) \tilde{f}(t)
$$

Connection to the lattice correlator

correlator:

$$
C(t)=\int_{0}^{\infty} d \omega \rho(\omega) e^{-\omega t}
$$

$$
\sim\langle 0| J e^{-\hat{H} t} J|0\rangle
$$

sum over states: (or smearing)

$$
\Gamma=\int_{0}^{\infty} d \omega K(\omega) \rho(\omega) \quad \sim\langle 0| J K(\hat{H}) J|0\rangle
$$

Approximation of the form

$$
K(\hat{H})=c_{0}+c_{1} e^{-\hat{H}}+c_{2} e^{-2 \hat{H}}+c_{3} e^{-3 \hat{H}}+\cdots
$$

can relate Γ to the correlator.
c.f. spectral func:

$$
\left.\rho(\omega) \propto \sum_{X} \delta\left(\omega-E_{X}\right)|\langle X| J| 0\right\rangle\left.\right|^{2} \quad \sim\langle 0| J \delta(\omega-\hat{H}) J|0\rangle
$$

Approximation?

$$
K(\hat{H}) \simeq k_{0}+k_{1} e^{-\hat{H}}+k_{2} e^{-2 \hat{H}}+\cdots+k_{N} e^{-N \hat{H}}
$$

ω

- Not always possible; when the function varies rapidly, in particular.
- Some methods developed recently.
- Modified Backus-Gilbert Hansen, Lupo, Tantalo, arXiv:1903.06476
- Or, Chebyshev polynomial

Bailas, Ishikawa, SH, arXiv:2001.11779

Chebyshev polynomials

Bailas, SH, Ishikawa (2000)

$$
K(\hat{H}) \simeq \sum_{j=0}^{N} c_{j} T_{j}\left(e^{-\hat{H}}\right)
$$

$$
\begin{aligned}
& \hline \text { (shifted) Chebyshev polynomials } \\
& T_{0}^{*}(x)=1 \\
& T_{1}^{*}(x)=2 x-1 \\
& T_{2}^{*}(x)=8 x^{2}-8 x+1 \\
& \quad \vdots \\
& T_{j+1}^{*}(x)=2(2 x-1) T_{j}^{*}(x)-T_{j-1}^{*}(x) \\
& \hline
\end{aligned}
$$

- Coefficients can be easily calculated.
- The "best" approx (= maximal deviation is minimal)
- Only smooth functions can be approximated.
- (The constraint $\left|\mathrm{T}_{\mathrm{j}}(\mathrm{z})\right|<1$ helps stabilize.)
example of the Chebyshev approx:

Borel sum (as in QCD sum rule)

Ishikawa, SH, Phys. Rev. D104, 074521 (2021)

B meson semileptonic decays: total inclusive rate?

Based on the collaborations of
- Gambino, SH, Phys. Rev. Lett. 125 (2020) 032001; arXiv:2005.13730
- Gambino, SH, Machler. Panero, Sanfilippo, Simula, Smecca, Tantalo, JHEP 07 (2022) 083; arXiv:2203.11762
- Barone, Kellerman, SH, Juttner, Kaneko, arXiv:2211.15623, arXiv:2211.16830

Inclusive and exclusive B semileptonic decays

Inclusive semi-leptonic rate

Differential decay rate:

$$
d \Gamma \sim\left|V_{c b}\right|^{2} l^{\mu \nu} W_{\mu \nu}
$$

Structure function (or hadronic tensor):

$$
W_{\mu \nu}=\frac{\sum_{X}(2 \pi)^{2} \delta^{4}\left(p_{B}-q-p_{X}\right) \frac{1}{2 M_{B}}\left\langle B\left(p_{B}\right)\right| J_{\mu}^{\dagger}(0)|X\rangle\langle X| J_{\nu}(0)\left|B\left(p_{B}\right)\right\rangle}{\longrightarrow\langle B(\mathbf{0})| \tilde{J}_{\mu}^{\dagger}(-\boldsymbol{q} ; t) \delta(\omega-\hat{H}) \tilde{J}_{\nu}(\boldsymbol{q} ; 0)|B(\mathbf{0})\rangle}
$$

Total decay rate:

$$
\Gamma \propto \int_{0}^{\boldsymbol{q}_{\max }^{2}} d \boldsymbol{q} \int_{\sqrt{m_{D}^{2}+\boldsymbol{q}^{2}}}^{m_{B}-\sqrt{\boldsymbol{q}^{2}}} d \omega K\left(\omega ; \boldsymbol{q}^{2}\right)\langle B(\mathbf{0})| \tilde{J}^{\dagger}(-\boldsymbol{q}) \delta(\omega-\hat{H}) \tilde{J}(\boldsymbol{q})|B(\mathbf{0})\rangle
$$

Energy integral to be evaluated:

$$
\Gamma \propto \int_{0}^{\boldsymbol{q}_{\max }^{2}} d \boldsymbol{q} \int_{\sqrt{m_{D}^{2}+\boldsymbol{q}^{2}}}^{m_{B}-\sqrt{\boldsymbol{q}^{2}}} d \omega K\left(\omega ; \boldsymbol{q}^{2}\right)\langle B(\mathbf{0})| \tilde{J}^{\dagger}(-\boldsymbol{q}) \delta(\omega-\hat{H}) \tilde{J}(\boldsymbol{q})|B(\mathbf{0})\rangle
$$

$$
=\langle B(\mathbf{0})| \tilde{J}^{\dagger}(-\boldsymbol{q}) K\left(\hat{H} ; \boldsymbol{q}^{2}\right) \tilde{J}(\boldsymbol{q})|B(\mathbf{0})\rangle
$$

Compton amplitude obtained on the lattice:

$$
\langle B(\mathbf{0})| \tilde{J}_{\mu}^{\dagger}(-\boldsymbol{q} ; t) \quad \tilde{J}_{\nu}(\boldsymbol{q} ; 0)|B(\mathbf{0})\rangle \longrightarrow\langle B(\mathbf{0})| \tilde{J}^{\dagger}(-\boldsymbol{q}) e^{-\hat{H} t} \tilde{J}(\boldsymbol{q})|B(\mathbf{0})\rangle
$$

Using

$$
K(\hat{H})=k_{0}+k_{1} e^{-f}+k_{2} e^{-2 \hat{A}}+\cdots+k_{k_{0}}-k_{1} \hat{H}
$$

Phase-space factor as a kernel

upper limit

$$
K(\omega) \sim e^{2 \omega t_{0}} \frac{\left(m_{B}-\omega\right)^{l} \theta\left(m_{B}-|\mathbf{q}|-\omega\right)}{\text { kinematical }}
$$

smear by sigmoid with a width σ;
Need to take the $\sigma \rightarrow 0$ limit

Inclusive decay rate

- Prototype lattice calculation
- $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{Xc}$
- the b quark is lighter than physical.
- Decay rate in each channel
- VV and AA
- parallel or perpendicular to the recoil momentum
- compared to "exclusive" (dashed lines)
- $V V_{\|}$is dominated by $B \rightarrow D$
- Others are by $B \rightarrow D^{*}$
differential rate / |q|

Inclusive decay rate

ETMC data from
Gambino et al., 2203.11762

From 2203.11762
Analysis with Backus-Gilbert (by Smecca et al)

- Backus-Gilbert works equally well
- $\sigma \rightarrow 0$ limit is taken (with different smearings)

- calculated at many \mathbf{q}^{2} points
- lighter b quark

- SM JLQCD
- SM OPE

From 2203.11762
OPE calculation by Gambino and Machler

- PT including $O\left(\alpha_{s}\right)$, OPE up to $O\left(1 / m^{3}\right)$
- Hadronic parameters $\mu_{\pi^{2}}$ etc are taken from the phono analysis.
- b quark mass is adjusted to match the lattice calculations.
- OPE breaks down near the \mathbf{q}^{2} endpoint.
\checkmark Good agreement.
\checkmark Error of OPE is from the hadronic parameters. Large because of small m_{b}.
$\sqrt{ }$ Better for moments $\left\langle\mathrm{Mx}^{2}\right\rangle,\left\langle\mathrm{E}_{\mathrm{l}}\right\rangle, \ldots$

Sum over states: dangerous game?

Sum over states with a kernel $K(s): \quad \int_{0}^{\infty} d s K(s) \rho(s)$

Crucially depends on our ability to approximate the energy integral.

- Possible to treat any $K(s)$?
- No, because $K(s)=\delta(s)$ leads us back to the ill-posed problem (reconstruction of full spectral function from lattice data!)
- Then, what is the limitation or potential systematic effect?

Kernel approximation: an example
narrow smearing $(\sigma=0.02)$

$K(\omega) \sim e^{2 \omega t_{0}}\left(m_{B}-\omega\right)^{l} \theta\left(m_{B}-|\mathbf{q}|-\omega\right)$
medium $(\sigma=0.056)$

Smearing:

- Too wide = away from the true func
- Too narrow = bad approx

Kernel approximation: an example
$K(\omega) \sim e^{2 \omega t_{0}}\left(m_{B}-\omega\right)^{l} \theta\left(m_{B}-|\mathbf{q}|-\omega\right)$
narrow smearing $(\sigma=0.02)$

Good news:

- Error cancels due to the oscillating approximation (Chebyshev polynomial) when the states distribute evenly.

Bad news:

- Physical spectrum may be non-flat. (A large gap between ground and excited states, for instance. Finite volume spectrum is not even continuous.)
- The integral range gets narrower for larger \mathbf{q}^{2}. The problem gets harder. (But we can keep the ground state only, there.)

Prospects

"The devil is in the details."

- Still in the early stage. Concerning the errors, I am optimistic, but more studies are necessary for various kinematical setups.
- Real calculation of $B \rightarrow X_{c}, X_{u}$ at physical masses still to be done (actually on-going).
- Many potential applications
- D and B. Not just total rate, but moments, e.g. $\left\langle\mathrm{Mx}^{2}\right\rangle,\left\langle\mathrm{E}_{\mid}\right\rangle$
- Comparison with OPE, then to determine MEs (see 2203.11762)
- Borel sum (as in the SVZ sum rule; see Ishikawa-SH, 2103.06539)
- lepton-nucleon scattering, not-so-deep inelastic scattering (see Fukaya et al. 2010.01253, Yoo et al. 2111.15194)

So, what happened to duality?

Smearing is the key (as anticipated).

- Once sufficiently smeared (over energy spectrum), one can transform the problem to the one calculable in PT or on the lattice. Fully nonperturbative in the latter. Systematic errors can be addressed rigorously.

Jets, hadronization, ... ?

- Large momentum is a stumbling block on the lattice, yet. Go quantum?

[^0]: Yes, sufficiently smeared!

