Relativistic Hydrodynamic Model in High-Energy Heavy-Ion Collisions

Graduate School of Advanced Science and Engineering, Hiroshima University International Institute for Sustainability with Knotted Chiral Meta Matter / SKCM². Hiroshima University Kobayashi Maskawa Institute, Nagoya University Department of Physics, Nagoya University

Chiho NONAKA

Kobayashi-Maskawa Institute for the Origin of Particles and the Universe

February 21, 2023@3rd IITB-Hiroshima workshop in HEP

What is the QGP?

Quark-Gluon Plasma

• Quarks and gluons at extreme conditions

High temperature and/or high density

Т

What is the QGP?

Quark-Gluon Plasma

 $\mu_{\rm B}$

Quarks and gluons at extreme conditions

What is the QGP?

Quark-Gluon Plasma

• Quarks and gluons at extreme conditions

- Relativistic Heavy Ion Collisions : Little Bang

What is the sQGP?

Quark-Gluon Plasma

Quarks and gluons at extreme conditions

Relativistic Heavy Ion Collisions

Heavy Ion Collisions

Multiple particle production

Hydrodynamic picture Landau Bjorken

Success of hydrodynamic model at RHIC Relativistic viscous hydrodynamic model One of important phenomenological models

Equation of State

EoS: lattice QCD

Equation of State

Equation of State

QGP Bulk Properties

collisions

hydrodynamics

Hydrodynamics QCD phase diagram EoS: lattice QCD Shear and bulk viscosities

Experimental data

Property of QGP

• Current Status for transport coefficients

bulk viscosity shear viscosity 3 ---- α_s < 0.1 ---- α_s < 0.1 (a) (b) __0.1 < α < 0.2 — 0.1 < α_s < 0.2 Hydro + v data I LQCD --- Hydro + v² data II 10⁻¹ 2 ₹Ī Sum rule -- pion gas --- pion gas l LQCD I s/μ ్లో 10⁻² pion gas II LQCD II massless pions 10⁻³ Hydro **10**⁻⁴ 10⁻⁵ 10⁻² 10⁻¹ 10² 10 10 T/T_c т/т

- Shear viscosity takes the minimum around $T_{\rm c}$. Cf. $\eta/s=1/4\pi$ AdS/CFT
- Hydrodynamic model constant η/s

NONAKA

Chen,Deng,Dong,Wang,PRC87,024910(2013) Bulk viscosity

10²

Temperature dependence is unclear.

 Hydrodynamic model vanishing

Detailed feature of shear and bulk viscosities

QGP Bulk Properties

collisions

hydrodynamics

Hydrodynamics QCD phase diagram EoS: lattice QCD Shear and bulk viscosities

Experimental data

Initial Condition

Energy (entropy) density distributions

From Fluid to Particle Experimental data collisions thermalization hydro hadronization freezeout mm m Initial conditions Hydrodynamics Final state interactions QCD phase diagram Hadron based event **EoS:** lattice QCD generator Shear and bulk viscosities

Energy (entropy) density distributions

Quantitative Analyses Experimental data collisions thermalization hadronization hydro freezeout my m **Hydrodynamics** Initial conditions Final state interactions QCD phase diagram Hadron based event **EoS:** lattice QCD generator Shear and bulk viscosities New hydrodynamics Energy (entropy) density distributions code $\partial_{\mu}T^{\mu\nu}$

Akamatsu et al, JCP256,34(2014) Okamoto, Akamatsu, Nonaka, EPJC76,579(2016) Okamoto and Nonaka, EPJC77,383(2017) 15

Application to analyses of RHIC and LHC data NONAKA

Our Model

Experimental data

Shear viscosity

Effect on Collective Flow

• Collective flow as a function of $\eta_{\rm p}$

• (3+1)-d calculation

- v_n with bulk viscosity is much closer to the ALICE data: amplitude and slope
- Effect of bulk viscosity at forward rapidity is large.

Finite bulk viscosity

Collective Flow

Collective Flow

- (3+1)-d calculation
- v_n with bulk viscosity is much closer to the ALICE data: amplitude and slope
- Effect of bulk viscosity at forward rapidity is large.

Finite bulk viscosity

pseudorapidity

 $\eta_{\rm p}$

Temperature Dependent η/s

In both centrality classes $v_2(\eta_p)$ is larger.

NONAKA

 $T_{
m SW}=150~{
m MeV}$

22

400

Temperature Dependent η/s

Temperature Dependent η/s

Temperature Dependent η/s

- 0-5 % centrality η/s of QGP and hadron phases is important.
- 30-40 % centrality η/s of hadron phase is important.

Central dependence of $v_2(\eta_p)$ reveals $\frac{1}{2}$ temperature dependence of viscosities.

Electromagnetic Field in HIC

Strong Electromagnetic field ? •

- Au + Au ($\sqrt{s_{NN}}$ = 200 GeV) : 10¹⁴ T ~10 m_{π}^2
- Pb + Pb ($\sqrt{s_{NN}}$ = 2.76 TeV) : 10¹⁵ T

Nakamura, Miyoshi, C. N. and Takahashi, Phys. Rev. C 107, no.1, 014901 (2023) Nakamura, Miyoshi, C. N. and Takahashi, arXiv:2211.02310 [nucl-th] Nakamura, Miyoshi, C. N. and Takahashi, arXiv:2212.02124 [nucl-th]

Relativistic Resistive Magneto-

Glauber model +approximate solutions of Maxwell eq. Hydrodynamic eq. + Maxwell eq. + Ohm's law

$$\partial_{\mu}T^{\mu\nu} = F^{\nu\lambda}J_{\lambda} \quad J^{\mu} = \sigma e^{\mu}$$

Relativistic Resistive Magneto-Hydrodynamics (RRMHD)

Nakamura, Miyoshi, C.N. and Takahashi, arXiv:2211.02310 [nucl-th]

RRMHD equation

Komissarov, Mon. Not. R. Astron. Soc. 382, 995-1004 (2007)

RRMHD eq. in the Milne Coordinates

Nakamura, Miyoshi, C. N, and Takahashi, arXiv:2211.02310 [nucl-th]

- Milne Coordinates
 - Expansion system in the longitudinal coordinates (au, x, y, η_s)
 - Strong velocity in the longitudinal direction -> 0
 - Saves the number of cells in the collision axis direction

RRMHD eq.

$$\partial_{\tau}(\tau U) + \partial_i(\tau F^i) = \tau S$$

$$U = \begin{pmatrix} D \\ m_{j} \\ \varepsilon \\ B^{j} \\ E^{j} \\ q \end{pmatrix}, F^{i} = \begin{pmatrix} Dv^{i} \\ \Pi^{ji} \\ m^{i} \\ \varepsilon^{jik}E_{k} \\ \varepsilon^{jik}B_{k} \\ J^{i} \end{pmatrix}, S = \begin{pmatrix} 0 \\ \frac{1}{2}T^{ik}\partial_{j}g_{ik} \\ -\frac{1}{2}T^{ik}\partial_{0}g_{ik} \\ 0 \\ J^{i}_{c} \\ 0 \end{pmatrix}$$

Newly developed RRMHD code in Milne coordinates

Validation of the Code

Nakamura, Miyoshi, C. N.and Takahashi, arXiv:2211.02310 [nucl-th]

- RRMHD in the Milne coordinates
- **New Test Problem**
- (1+1) dimensional expansion system $u^{\mu} = (\cosh Y, 0, 0, \sinh Y)$
 - Comparison between quasi-analytical solution and RRMHD simulation

Symmetric and Asymmetric Systems

RHIC $\sqrt{s_{NN}} = 200 \text{ GeV}$

■Au-Au collisions

- Symmetric pressure gradient
- > Almond-shaped medium

Cu-Au collisions

Asymmetric pressure gradient

Distorted Almond-shaped medium

Electromagnetic Field in Symmetric and Asymmetric Systems

■Au-Au collisions

➤ Magnetic field

Strong magnetic field

➢ Electric field

• No electric field

■Cu-Au collisions

➤ Magnetic field

- Strong magnetic field
- ➤ Electric field
 - $E \neq 0\,$ due to the asymmetry of the charge distribution

Nakamura, Miyoshi, C. N. and Takahashi, PRC 107, no.1, 014901 (2023)

Au+Au collision system

Analysis of Heavy Ion Collisions

Directed Flow

Nakamura, Miyoshi, C. N. and Takahashi, PRC 107, no.1, 014901 (2023)

•
$$v_1 \coloneqq \langle \cos(\phi - \Psi_1) \rangle \sim \langle \frac{p_x}{p_T} \rangle$$

> Au-Au collisions ($\sqrt{s_{NN}} = 200 \text{ GeV}$)

• Parameter fixed in initial condition from comparison with STAR data

 $\eta = \frac{1}{2} \ln \frac{|p| + p_z}{|p| - p_z}$

ightarrow Cu-Au collisions ($\sqrt{s_{NN}} = 200 \text{ GeV}$)

- Decreases with conductivity
- Dissipation suppresses flow in the Cu direction

Energy Transfer by Ohm Dissipation

Nakamura, Miyoshi, C. N. and Takahashi, PRC 107, no.1, 014901 (2023)

Au+Au collisions

NONAKA

Cu+Au collisions

contribution to v_1

Directed Flow

Nakamura, Miyoshi, C. N. and Takahashi, PRC 107, no.1, 014901 (2023)

•
$$v_1 \coloneqq \langle \cos(\phi - \Psi_1) \rangle \sim \langle \frac{p_x}{p_T} \rangle$$

> Au-Au collisions ($\sqrt{s_{NN}} = 200 \text{ GeV}$)

• Parameter fixed in initial condition from comparison with STAR data

 $\eta = \frac{1}{2} \ln \frac{|p| + p_z}{|p| - p_z}$

ightarrow Cu-Au collisions ($\sqrt{s_{NN}} = 200 \text{ GeV}$)

- Decreases with conductivity
- Dissipation suppresses flow in the Cu direction

Charge Dependence of Δv_2 : Au + Au

Nakamura, Miyoshi, C. N. and Takahashi, PRC 107, no.1, 014901 (2023)

•
$$\Delta v_2 = v_2^{\pi^+}(\boldsymbol{\eta}) - v_2^{\pi^-}(\boldsymbol{\eta})$$

- Negative Elliptic Flow
 - Contribution of negative charge on freezeout hypersurface
 - Symmetric structure: initial electric field to the collision axis
 - Electric conductivity dependence is observed even in the symmetry system.

Charge distribution on freezeout hypersurface

X [fm]

Charge Dependence of Δv_2 : Cu + Au

y [fm]

Nakamura, Miyoshi, C. N. and Takahashi, PRC 107, no.1, 014901 (2023)

•
$$\Delta v_2 = v_2^{\pi^+}(\boldsymbol{\eta}) - v_2^{\pi^-}(\boldsymbol{\eta})$$

- Negative Elliptic Flow
 - Contribution of negative charge on freezeout hypersurface
 - Asymmetric structure: initial electric field to the collision axis
 - Electric conductivity dependence is observed.

Charge distribution on freezeout hypersurface

 Δv_2 : initial electromagnetic field distribution electrical conductivity

Charge Dependence of Δv_1 : Au + Au

Nakamura, Miyoshi, C. N. and Takahashi, arXiv:2212.02124 [nucl-th]

- $\Delta v_1 = v_1^{\pi^+}(\eta) v_1^{\pi^-}(\eta)$
 - Clear dependence of charge conductivity
 - Proportion to electric conductivity
 - Negative charge induced in the opposite direction of fluid flow suppression of v₁ of negative charge
 - Δv_1 with finite σ is consistent with STAR data
 - $\sigma = 0.0058 \text{ fm}^{-1}$

ex. $\sigma_{LQCD} = 0.023 \text{ fm}^{-1}$

Gert Aarts, et al. Phys. Rev. Lett., 99:022002, 2007.

✓ QGP electrical conductivity from $\frac{1}{2}$ high-precision measurement of Δv_1

Charge distribution on freezeout hypersurface

Charge Dependence of Δv_1 : Au + Au

Nakamura, Miyoshi, C. N. and Takahashi, arXiv:2212.02124 [nucl-th]

- $\Delta v_{1} = v_{1}^{\pi^{+}}(\eta) v_{1}^{\pi^{-}}(\eta)$
 - Electric field created by initial condition
 - Δv_1 is finite at $\eta = 0$
 - Asymmetry structure to $\eta = 0$ ٠
 - **Proportion to electric conductivity**
 - Δv_1 vanishes at $\eta = 0.5$.
 - Electrical conductivity <- Δv_1 at $\eta = 0$
 - Initial electrical field from η dependence of Δv_1

QGP electrical conductivity.

Charge distribution on freezeout hypersurface

• Tools for analyses of relativistic heavy ion collisions

- New relativistic viscous hydrodynamics code
- New relativistic resistive hydrodynamic model

Quantitative Analysis on QGP bulk property

Space time evolution

temperature dependence of viscosities

Hydrodynamic Model medium (light quarks u,d,s) electromagnetic fields

Medium

• Tools for analyses of relativistic heavy ion collisions

- Application to other physical observables
 - Jets, heavy quarks, photons, electromagnetic probes...

