
Introduction

To draw the 𝐺𝑁 phase diagram, we need to find a set of minima of the effective action.

As 𝑆𝑒𝑓𝑓 can be decomposed as 𝛽𝐿 × 𝑈𝑒𝑓𝑓, we find the minima of renormalized effective

potential eq.(14).
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The term ෡𝑈0 is the effective potential at vanishing 𝑇 and 𝜇, while ∆෡𝑈 is a correction by

the finite 𝑇 and 𝜇 effects. We define dimensionless values with hats; ෠𝒪 ≡ 𝒪/𝜎0 where

𝜎0 is the non-trivial minimum of ෡𝑈0. By numerically seeking the minima of ෡𝑈𝑒𝑓𝑓 with

respect to ො𝜎, the 𝐺𝑁 phase diagram is obtained.

In this section, we have assumed that the order parameter 𝜎 does not depend on the

spatial coordinate, 𝑥. The 𝐺𝑁 model in 1+1 dimensions, however, predicts another

phase where 𝜎 is spatially varying at high densities.

Introduction

If we take the dependence of 𝜎 on 𝑥 into consideration, the story becomes more

complex. We newly construct a Hamiltonian ℎ𝜎 eq.(15) and read the Dirac operator 𝐷
in terms of the Hamiltonian.

ℎ𝜎 ≡ 𝛾0𝛾1𝜕1 + 𝛾0𝜎(𝑥) (15) 𝐷 = 𝛾0 𝜕0 + 𝜇 + ℎ𝜎 (16)

The order parameters should be a family of solutions of a self-consistency equation:
Τ𝛿𝑆𝑒𝑓𝑓 𝛿𝜎(𝑥) = 0. As it is badly difficult to directly solve it, M. Thies and K. Urlichs

(2003) [4] focused on energy. At higher densities where asymptotic freedom becomes

predominant, we can apply perturbation theory to eq.(15). The renormalized energy

density proved to be minimized by different forms of 𝜎(𝑥), depending on the density

circumstances as described in eqs.(17): at a high 𝜇, (18): at a low 𝜇.
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(18)

The structure of kinks and anti-kinks expected in low densities is approximated to

eq.(18). The period ∆, lattice spacing 𝑎 = 𝐿/𝑁, and the coefficients for both types of

order parameters monotonously decrease as the baryon density 𝜌 grows. The inhom-

ogeneous phase proved to be energetically favored above ො𝜇𝐶 . Hence the 1+1

dimensional Gross-Neveu phase diagram is revised as Fig. 3 [4].
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Introduction

Quantum Chromodynamics (QCD) is a 𝑆𝑈(3) gauge theory that explains the strong

interaction. The phase diagram supplies us with important clues for studying the birth

of the universe and hadronic physics. When drawing the diagram, numerical methods

by Lattice QCD are applicable at low densities. On the other hand, toy models and

perturbation theory are effective for higher density regions. I mainly review the analysis

by J. Lenz et al. [1], aiming to draw a phase diagram based on the Gross-Neveu (𝐺𝑁)

model, which is one of the famous toy models for QCD.
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The 𝐺𝑁 model [2] was advocated by D. J. Gross and A. Neveu in 1974 as a toy model

for chiral symmetry breaking studies. The Lagrangian in a 1+1 dimensional spacetime

eq.(5) assumes 𝑁𝑓 flavors of quarks.

ℒ𝐺𝑁(𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛) = ത𝜓𝒾𝛾𝜇𝜕𝜇𝜓 +
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ത𝜓𝜓 2 (5)

As is the case with QCD, the 𝐺𝑁 Lagrangian contains an interaction term, the four-

fermi term, which is proportional to the positive power of the coupling constant. This

realizes asymptotic freedom. The theory also shares the chiral 𝑍2 invariance with QCD,

where the Dirac fields are transformed as 𝜓 → 𝑖𝛾5𝜓. Although the 𝐺𝑁 theory itself is 𝑍2
symmetric, symmetry broken states are preferred under certain conditions. This

phenomenon is called spontaneous symmetry breaking (SSB).

We investigate SSB of the chiral 𝑍2 symmetry predicted by the 𝐺𝑁 model in 1+1

dimensions based on the methods from statistical mechanics. The order parameter is

the expectation value of ത𝜓𝜓, given by eq.(6).
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1

𝑍
𝒟׬ ത𝜓𝒟𝜓 𝑒−𝑆𝜓 ത𝜓𝜓 (6)

𝑆𝜓 ≡ 𝑑2𝑥׬ ℒ𝐺𝑁 (7) 𝑍 = 𝒟׬ ത𝜓𝒟𝜓 𝑒−𝑆𝜓 (8)

The path integral over the Dirac fields in eq.(6) is not analytically evaluable due to the

four-fermi term. Then we prescribe an auxiliary scalar field 𝜎 and rewrite the

Lagrangian into a bilinear form. The Ward-Takahashi Identity formula states that 𝜎 is

proportional to ത𝜓𝜓 , and therefore we can regard the former as the order parameter.

Besides, we introduce 𝛽 and 𝜇, which are an inverse temperature and a chemical

potential, respectively. Consistency with statistical mechanics implies 𝛽 corresponds to

imaginary temporal periodicity −𝑖𝑡𝑝𝑒𝑟𝑖𝑜𝑑. 𝜇 is explicitly put in the Dirac operator as in

eq.(11).
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𝜎2 (10) 𝐷 = 𝛾𝜇𝜕𝜇 + 𝜎 + 𝜇𝛾0 (11)

Now we can evaluate eq.(9) with respect to ത𝜓 and 𝜓 following the integration rule in

complex Grassman Algebra. This rule was introduced to the Dirac fields to express the

Pauli exclusion principle of fermions. We eventually obtain an effective action eq.(13) in

the Boltzmann factor.
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In the large limit, 𝑁𝑓 → ∞, the saddle point approximation becomes exact. This means

we can identify 𝜎 by minimizing the effective action.

Introduction

There are two properties of QCD which are the keys when studying the phase diagram.

Other than the 𝑆𝑈(3) gauge symmetry, QCD Lagrangian given by eq.(1) has a

𝑈(𝑁𝑓)𝐿 × 𝑈(𝑁𝑓)𝑅 chiral symmetry in the massless limit, 𝑀 → 0. When the symmetry is

spontaneously broken, quarks become massive.

ℒ𝑄𝐶𝐷(𝑀𝑖𝑛𝑘𝑜𝑤𝑠𝑘𝑖) = ത𝜓 𝒾𝛾𝜇𝐷𝜇 −𝑀 𝜓 −
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Another important property is asymptotic freedom. The interaction term of the Dirac

fields and the gauge fields is proportional to a coupling constant 𝑔. This is an indicator

of the strength of the interaction. It becomes smaller at higher energies, which means

the interaction gets weaker. At that time quarks move without being affected by the

gluons. One of the difficulties in investigating QCD is that perturbation theory is not

applicable to lower energy studies where the coupling constant is large. The region can

be numerically reached by Lattice QCD, while it suffers from a notorious sign problem

for higher densities. Hence to study such regions, toy models and perturbative

methods have been used. One of the famous models is the Gross-Neveu model [2].
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Introduction

I have reviewed the 𝐺𝑁 phase diagram mainly based on the work by J. Lenz et al. [1].

The 𝐺𝑁 model predicts another phase than the 𝑍2 symmetric phase and the homogen-

eous 𝑍2 broken phase. By considering the spatially varying order parameter 𝜎(𝑥), we

see the inhomogeneous phase at high densities. The orders of phase transition are

different between two-phase and three-phase. The raison d’être of the inhomogeneous

phase is still under discussion. It might be a secret phase in QCD, or, can be just a

feature of the toy model. In any case, it is worth considering.
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Fig. 1 The QCD phase diagram in

recent studies [3].

the quark-gluon phase

The system is disordered at high tempe-

ratures. The chiral symmetry is restored.

the hadronic phase

Quarks and gluons are condensed

below 𝑇𝐶 and 𝜇𝐶. The order parameter

ത𝑞𝑞 is finite, indicating SSB of the chiral

symmetry.

the CSC phases

Quarks condensate pairwise. This

resembles the superconducting phase

in electromagnetics.

(14)

Fig. 2 The two-phase diagram by the 𝐺𝑁 phase

model [drawn with Mathematica].

the blue colored region: chiral 𝑍2 symmetric

the red colored region: spontaneously 𝑍2 broken

The order parameter jumps at Ƹ𝜇 ≈ 0.7, whereas it

smoothly grows around ෠𝑇 ≈ 0.5 . These are the

reflection of the phase transition orders. First order

phase transition occurs at vanishing temperatures,

while second order one at very low densities. The

critical temperature ෠𝑇𝐶 and chemical potential Ƹ𝜇𝐶
well accord with the following estimations by ෡𝑈𝑒𝑓𝑓.

Ƹ𝜇𝐶 = Τ1 2 ≈ 0.707

෠𝑇𝐶 = Τ𝑒𝛾 𝜋 [1] ≈ 0.567.
෡ 𝑻

ෝ𝝁

ෝ𝝈
(analytically derived)

(semi-analytically derived)

Fig. 3 The revised 𝐺𝑁 phase diagram [4].

the dashed line:

first order phase transition with the constant 𝜎

the two solid lines above Ƹ𝜇𝐶:

second order phase transition associated with 𝜎(𝑥)

The critical chemical potential for hom.-inhom.

phase transition is estimated to be lower than the

previous one ( 2/𝜋 < 1/ 2 ). The point 𝐵 ≈
(0.608, 0.318) is a triple point called the Lifshitz

point in condensed matter physics [5]. The curve

𝐴𝐵 is common for the two-phase and three-phase

diagrams.
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