Is there an early Universe solution to Hubble tension?

Ruchika

INFN, Roma

Feb 21, 2023

Reference: Phys. Rev. D 97,103511(2018) Jarah Evslin, Anjan A Sen, Ruchika Reference: Phys. Rev. D 102.103525(2020)

C. Krishnan, E. O Colgain, Ruchika, A. A. Sen, Sheikh-Jabbari and T. Yang

IITB-Hiroshima Workshop, 2023

Outline of the talk >

- Introducing Hubble law and tension
- How early dark energy was proposed to be a solution to Hubble tension?
- Can early dark energy be a solution to Hubble Tension?

Outline of the talk >

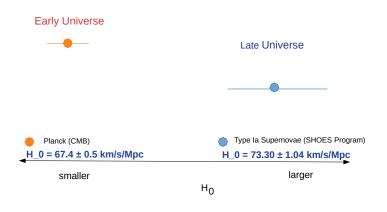
- Introducing Hubble law and tension
- How early dark energy was proposed to be a solution to Hubble tension?
- Can early dark energy be a solution to Hubble Tension?
- No!
- Motivating to find solution of Hubble tension in late Universe.

Hubble Law ⋄

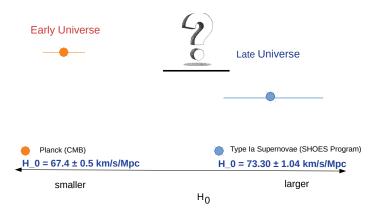
velocity distance
$$v = H_0 * d$$

 Astronomers use this value to make a variety of cosmological estimations, most critically the expansion rate and age of the universe ~ 13.8 Gyr.

Tension between Early and Late Universe ◊

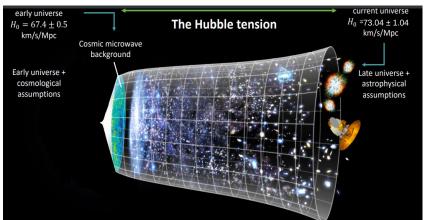


Tension between Early and Late Universe >



Hubble Tension ◊

> 5 sigma



The Price of Shifting the Hubble Constant.

Jarah Evslin, Anjan A Sen, Ruchika

Phys. Rev. D 97,103511(2018)

Question: How early dark energy was proposed to be a solution to Hubble Tension?

Maintaining Consistency with CMB and BAO >

- \diamond CMB best constrains the angular size of the acoustic scale θ .
- \diamond Ignoring the small difference between drag epoch and recombination epoch $\theta = r_d/D_A(z)$.

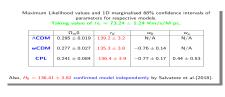
```
\Rightarrow \theta \text{ Intact}
\Rightarrow \text{Lower } D_A(D_A \propto 1/H_0)
\Rightarrow \text{Higher } H_0(\text{at z} = 1100, \text{ CMB})
\Rightarrow \text{Lower } r_d
```

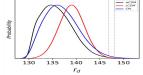
 \diamond BAO constraints the product r_dH_0 together.

 $^{1}r_{d}$ is the sound horizon at the drag epoch

4 D > 4 B > 4 B > 4 B > 9 Q P

Question: If we fix H_0 to SH0ES value, how much low-redshift data(BAO+Masers+TDSL) shifts the value of Sound Horizon at drag epoch r_d ? \diamond





 $r_d=147.26\pm0.29 \textit{Mpc}$ (Planck)

- ΛCDM : 2.52 σ away from Planck
- ullet wCDM : 3.14 σ away from Planck
- \bullet CPL : 2.79 σ away from Planck

So, our results are quite model independent. So, The Price of shift in Hubble constant is the shift in r_d .

Answer: The shift in value of sound horizon is more than 2 σ away than Planck inferred r_d value.

Interpretation: How early dark energy was a proposed solution to Hubble Tension? \diamond

BAO together with measurement of H_0 by Strong Lensing and Local Distance Ladder, give r_d which is significantly smaller than that from Planck-2018 for LCDM.

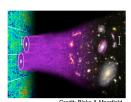
 r_d is the Sound Horizon at drag epoch

$$r_d = \int_0^{t(zd)} c_s(1+z)dt$$

Physics: sound waves in early Universe propagate until radiation and matter decouple.

Lower r_d as compared to Planck suggets:

- ♦ changing z_d
- modifying the speed of sound
- changing the age of universe at drag epoch
- changing primodial fluctuations



Conclusion ♦

- Along with Hubble Tension, there is a similar tension involving sound horizon at drag epoch from low-redshift and Planck measurements.
- It does not depend on dark energy behaviour.
- ♦ Solution: One needs to modify the early Universe cosmology.

Is there an early Universe solution to Hubble tension?

Chethan Krishnan, Eoin Ó Colgáin, Ruchika, Anjan A. Sen, M. M.

Sheikh-Jabbari, Tao Yang

Phys. Rev. D 102, 103525(2020)

Question: Is Early Dark Energy a solution to Hubble Tension?

H0LiCOW XIII. A 2.4% measurement of **H0** from lensed quasars \diamond

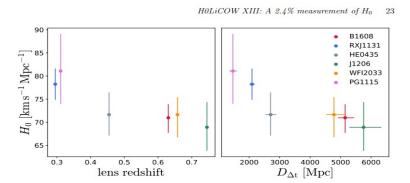


Figure A1. H_0 constraints for the individual H0LiCOW lenses as a function of lens redshift (left) and time-delay distance (right). The trend of smaller H_0 value with increasing lens redshift and with increasing $D_{\Delta t}$ has significance levels of 1.9 σ and 1.8 σ , respectively.

Why is it interesting? ⋄

If the H0LiCOW result is substantiated, Implications are as follows:

- \diamond First, this trend cannot be explained by keeping Λ CDM and adjusting the sound horizon using early Universe physics , since this will only raise and lower the trend
- ♦ Thus may be staring at preliminary evidence for a new cosmology at late times

Data Sets Used:

- ullet Isotropic BAO measurements by the 6dF survey (z = 0.106), SDSS-MGS survey (z = 0.15)
- Anisotropic BAO measurement by BOSS-DR12 at $z=0.38,\,0.51,\,0.61$
- Angular diameter distances from megamaser hosting galaxies: UGC 3789, NGC 6264, NGC 6323, NGC 5765b, CGCG 074-064 and NGC 4258 in the range $0.002 \le z < 0.034$
- Cosmic chronometer (CC) data for $z \le 0.7$
- We incorporate 924 Type Ia SNe from the Pantheon dataset in the range $0.01 < z \le 0.7$ [32], including both the statistical and systematic uncertainties.

Constraints while taking datasets $\leq 0.7 \diamond$

Table: Best-fit values for cosmological parameters

$H_0 \left[\frac{\mathrm{km}}{\mathrm{s \ Mpc}} \right]$	Ω_m	r _d [Mpc]	М
$69.74^{+1.60}_{-1.56}$	$0.30^{+0.02}_{-0.02}$	144.83 ^{+3.44} _{-3.34}	$-19.36^{+0.05}_{-0.05}$

 \diamond If we don't do binning, we get value of H_0 around 69.74 $^{+1.60}_{-1.56}$, So now it is conceivable that the Planck result for flat Λ CDM is an "averaged" value, which is essentially a *coarse-grained* value for H_0 .

And then we introduce the bining! \diamond

Bin	Data		
1	Masers, SNe		
2	iso BAO, SNe, CC		
3	SNe, CC		
4-6	aniso BAO, SNe, CC		

TABLE I: Summary of the data in each bin.

$$\begin{array}{lll} \text{bin 1:} & \bar{z}_1 = 0.021 \in (0,0.029], \\ \text{bin 2:} & \bar{z}_2 = 0.122 \in (0.029,0.21], \\ \text{bin 3:} & \bar{z}_3 = 0.261 \in (0.21,0.321]. \\ \text{bin 4:} & \bar{z}_4 = 0.38 \in (0.321,0.47], \\ \text{bin 5:} & \bar{z}_5 = 0.51 \in (0.47,0.557], \\ \text{bin 6:} & \bar{z}_6 = 0.61 \in (0.557,0.7], \end{array}$$

And then we introduce the bining! \diamond

Bin	Data Masers, SNe		
1			
2	iso BAO, SNe, CC		
3	SNe, CC		
4-6	aniso BAO, SNe, CC		

TABLE I: Summary of the data in each bin.

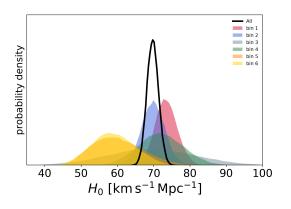
$$\begin{array}{lll} \text{bin 1:} & \bar{z}_1 = 0.021 \in (0,0.029], \\ \text{bin 2:} & \bar{z}_2 = 0.122 \in (0.029,0.21], \\ \text{bin 3:} & \bar{z}_3 = 0.261 \in (0.21,0.321]. \\ \text{bin 4:} & \bar{z}_4 = 0.38 \in (0.321,0.47], \\ \text{bin 5:} & \bar{z}_5 = 0.51 \in (0.47,0.557], \\ \text{bin 6:} & \bar{z}_6 = 0.61 \in (0.557,0.7], \end{array}$$

$$\bar{z}_i = \frac{\sum_k^{N_i} z_k(\sigma_k)^{-2}}{\sum_k^{N_i} (\sigma_k)^{-2}},$$

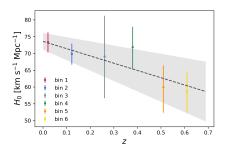
Results \diamond

\bar{z}	$H_0 \left[\frac{\mathrm{km}}{\mathrm{s \; Mpc}} \right]$	Ω_m	r_d [Mpc]	M
0.021	$73.41^{+3.10}_{-2.88}$	$0.51^{+0.33}_{-0.34}$	-	$-19.26^{+0.09}_{-0.09}$
0.122	$69.85^{+3.17}_{-3.10}$	$0.26^{+0.10}_{-0.09}$	$143.08^{+7.14}_{-6.74} \\$	$-19.36\substack{+0.09 \\ -0.09}$
0.261	$69.10^{+12.46}_{-12.12}$	$0.27^{+0.20}_{-0.15}$	-	$-19.39^{+0.40}_{-0.33}$
0.38	$71.90^{+6.42}_{-6.03}$	$0.22^{+0.11}_{-0.09}$	$143.94^{+9.94}_{-8.91} \\$	$-19.33^{+0.15}_{-0.15}$
0.51	$59.98^{+7.64}_{-6.45}$	$0.37\substack{+0.12 \\ -0.10}$	$164.05^{+17.66}_{-15.92}$	$-19.65^{+0.23}_{-0.23}$
0.61	$58.72^{+6.40}_{-5.87}$	$0.44^{+0.12}_{-0.10}$	161.04 ^{+13.31} _{-11.55}	$-19.59^{+0.18}_{-0.17}$

Decreasing Trend of H_0 with redshift is verified! \diamond

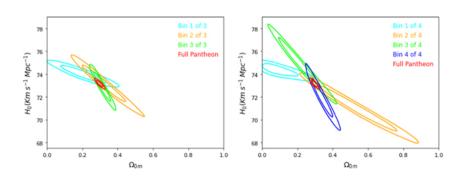


Decreasing Trend of H_0 with redshift is verified! \diamond



- We fit the same linear regression through the data with the original binned H_0 values and find that the slope of the data falls $2.1~\sigma$ (which is $1.7~\sigma$ in H0LiCOW) away from the slope of the null hypothesis.
- Concretely, we find the intercept $H_0 = 73.6 \pm 2.5$, which is curiously close to H0LiCOW's H_0 determination.

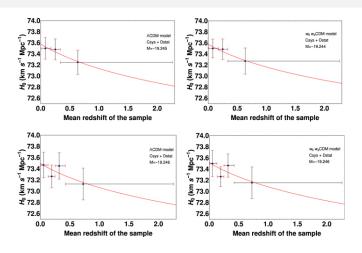
Decreasing Trend of H_0 with redshift is verified by other studies \diamond



22

²M. G. Dainotti et al 2021, ApJ 912 150

Decreasing Trend of H_0 with redshift is verified by other studies \diamond



M. G. Dainotti et al 2021, ApJ 912 150

Conclusions >

- Decreasing trend of H_0 with redshift as proposed by H0LICOW is verified.
- If the trend is true, Then all the Early Universe Solutions to Hubble Tension will be falsified.
- If we don't do binning we get value of H_0 around $69.74^{+1.60}_{-1.56}$, So now it is conceivable that the Planck result for flat Λ CDM is an "averaged" value, which is essentially a *coarse-grained* value for H_0 .

THANK YOU!

25