Recent Results from Heavy ion collisions

3rd IITB-Hiroshima Workshop,

20/2/2023 -22/2/2023

Relativistic Heavy Ion collisions

For non-central heavy ion collisions, overlap region is ellipsoid in shape.

Pressure gradient is largest along the shorter axis.

> Initial spatial anisotropy manifests in final state momentum anisotropy

For non-central heavy ion collisions, overlap region is ellipsoid in shape.

Pressure gradient is largest along the shorter axis.

Initial spatial anisotropy manifests in final state momentum anisotropy

 $\frac{dN}{d\phi} \propto 1 + 2\sum_{n} v_n \cos(n(\phi - \Psi_n))$ V_2 : Elliptic flow

Identified particle v_2 measurements using 4-particle cumulants

Identified particle v_2 measurements using 4-particle cumulants Presence of mass ordering and baryon-meson grouping

Identified particle v_2 measurements using 4-particle cumulants Presence of mass ordering and baryon-meson grouping Approximate NCQ (number of constituent quark) scaling

Identified particle v_2 measurements using 4-particle cumulants Presence of mass ordering and baryon-meson grouping Well described by CoLBT model

First measurement of of D-meson flow using four particle cumulant method.

D-meson flow increases significantly from central to semi-central collisions.

ALICE: Phys.Letts.B 813, 136054 (2021)

Mass hierarchy observed in the low p_T region $v_n(D) < v_n(p) < v_n(\pi)$

Quark coalescence in the intermediate p_T region as D meson flow comparable to pions

Hot Medium properties

Explore medium with R_{AA} R_{AA} : Nuclear modification factor

$$R_{AA}(p_T) = \frac{1}{\langle N_{coll} \rangle} \frac{dN_{AA} / dp_T}{dN_{pp} / dp_T}$$

Explore medium with R_{AA} : light flavours

R_{AA} shows a strong centrality dependence

 R_{AA} of D mesons shows a strong centrality dependence

Suppression increases from peripheral to central collisions

Suppression observed in Pb-Pb collisions due to final state effects induced by the medium

Different R_{AA} of D mesons and light flavored mesons

Different R_{AA} of D mescus and light flavored mesons R_{AA} of D mesons and prompt J/¥ signals interplay of different QGP effects in charm sector.

Different R_{AA} of D mesons and light flavored mesons R_{AA} of D mesons and prompt J/Ψ signals interplay of different QGP effects in charm sector.

Different R_{AA} of D mesons and non-prompt J/ Ψ from beauty hadron decays signals quark mass dependence of in-medium energy loss .

Suppression increases from peripheral to central collisions

Suppression observed in Pb-Pb collisions due to final state effects induced by the medium

Explore medium with R_{AA} (II) : heavy+strange

Phys. Lett. B 827 (2022) 136986

Strong suppression of D_{S^+} reaching a minimum at pT ~ 10 GeV/c

Explore medium with R_{AA} (II) : heavy+strange

Suppression of Λ_c^+ at pT > 6 GeV/c Hierarchy R_{AA} (Λ_c) > R_{AA} (D_S) > R_{AA}(D) for pT > 4.5 GeV

Hadronization

Baryon to meson anomaly in charm sector

Baryon to meson anomaly in charm sector

Enhancement of Λ_c/D^0 at intermediate $p_{T.}$

This observation is similar to that observed for light

flavour sector

Baryon to meson anomaly in charm sector

Ratio increases from pp to central Pb-Pb collisions

Compatible with theoretical models that include both fragmentation and coalescence mechanism of hadronization.

Centrality dependence of $\Psi(2S)/J/\Psi$ production well described by TAMU and slightly underestimated by SHMc

Stronger suppression of of $\Psi(2S)$ compared to J/Ψ .

Stronger suppression of of Ψ (2S) compared to J/ Ψ .

Increasing trend of R_{AA} towards low p_T for $\Psi(2S)$

Stronger suppression of of $\Psi(2S)$ compared to J/Ψ .

Increasing trend of R_{AA} towards low p_T for $\Psi(2S)$

Compatible with midrapidity CMS results in common pT range

 p_T dependence of R_{AA} reproduced by TAMU

Transport models (including recombination of charm quarks in QGP) describe the data well in central events

Freeze out and Rescattering

Summary

Heavy ion collisions are our door to study the properties of strong interactions at very high energy densities.

The various facilities from a few GeV to a few TeV centre of mass energies provided a lot of results which demonstrates a strong sensitivity to the properties of the medium.

The medium formed in such collisions has the characteristics foreseen for a quark gluon Plasma, behaves like a fluid and has spectacular effects on hard probes.

The vibrant experimental programs with precision measurements have been answering long standing questions driving heavy ion physics to the multi messenger era.