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Abstract

We study the minimal extensions of the Standard Model with three right-handed
neutrinos by gauged U(1) lepton flavor symmetries. In some of those models, the mass
matrix for the light neutrinos has the so-called two-zero-minor structure, namely, the
inverse of the neutrino mass matrix has two vanishing components. Analyzing these
conditions, we obtain all the CP phases, such as the Dirac CP phase δ and the Majorana
CP phases α2 and α3, and the mass eigenvalues of the light neutrinos mi as functions of
the neutrino mixing angles θ12, θ23, and θ13, and the squared mass differences ∆m2

21 and
∆m2

31. Furthermore, using these results, we also obtain the predictions for the sum of the
neutrino masses Σimi and the effective neutrino mass 〈mββ〉. In addition, we also discuss
the implication of our results for leptogenesis. Because space is limited, in this report, we
show a part of our work.

1 Introduction

A gauged U(1) lepton flavor symmetry is one of the possibilities of extension of the Stan-
dard Model (SM) and it is known that U(1)Li−Lj gauge symmetries, where Li represents the
lepton number of generation associated with i (= e, µ, τ), can be introduced without anoma-
lies. We focus on the cases where the neutrino mass matrix has the so-called two-zero-minor
structure, namely, the inverse of them has two vainishing components. In Ref. [1], the relation
between gauged U(1) lepton flavor symmetries and structures of the neutrino mass matrix was
comprehensively discussed. In the case of the minimal extended model by a U(1)Lµ−Lτ gauge
symmetry, we discussed the relation between two-zero-minor conditions and the neutrino pa-
rameters, such as the CP phases, the neutrino masses, and the effective neutrino mass, and
gave the predictions for them in Ref. [2].

In the workshop, we presented results of the study [3], where we extended extra U(1) gauge
symmetries to ones obtained as a linear combination of the ULe−Lµ , U(1)Lµ−Lτ , and U(1)B−L
gauge symmetries. Then, we discussed that relation as we have done in Ref. [2] and, in the case
of the five U(1) gauge symmetries that were consistent with the resent neutrino oscillation data,
we obtained all the CP phases, such as the Dirac CP phase δ and the Majorana CP phases
α2 and α3, and the mass eigenstates of the light neutrinos as functions of the neutrino mixing
angles θ12, θ23, and θ13, and the squared mass differences ∆m2

21 and ∆m2
31. We also discussed

the implication of our results for leptogenesis. However, since space is limited, we show only
the derivation of the two-zero-minor conditions and the prediction for the sum of the neutrino
masses in this report.2

2 Analyses of neutrino mass structure

Because of the anomaly-free condition, allowed linear combination of gauged U(1) lepton
flavor symmetries are U(1)aLe+bLµ−(a+b)Lτ and U(1)B+aLe+bLµ+(3−a−b)Lτ , where a and b are real
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numbers. To avoid verbose description, however, we consider only the U(1)Lµ−Lτ case and
analyze the neutrino mass matrix following Ref [2]. In the case of other U(1) symmetries,
we can use the same method. In the minimal gauged U(1)Lµ−Lτ model, the interaction terms
relevant to neutrino masses are given by

∆L =− λeN c
e (Le ·H)− λµN c

µ(Lµ ·H)− λτN c
τ (Lτ ·H)

− 1

2
MeeN

c
eN

c
e −MµτN

c
µN

c
τ − λeµσN c

eN
c
µ − λeτσ∗N c

eN
c
τ + h.c. , (1)

where the dots indicate the contraction of the SU(2)L indices. After the Higgs field H and the
singlet scalar σ acquire VEVs 〈H〉 = v/

√
2 and 〈σ〉,3 the Dirac and Majorana mass matrices

are obtained as follows:

MD =
v√
2



λe 0 0
0 λµ 0
0 0 λτ


 , MR =




Mee λeµ〈σ〉 λeτ 〈σ〉
λeµ〈σ〉 0 Mµτ

λeτ 〈σ〉 Mµτ 0


 . (2)

The mass matrix for the light neutrinos is given by [4]

MνL ' −MDM−1
R M

T
D . (3)

We can obtain the mass eigenvalues of the light neutrinos by diagonalizing this matrix using a
unitary matrix U (PMNS matrix 4 [5]):

UTMνLU = diag(m1,m2,m3) . (4)

In this report, we consider only the mi 6= 0 cases. For if mi = 0 (i = 1 or 3), the mass matrix
for the light neutrinosMνL is block-diagonal, and we cannot have desired mixing angles. From
Eqs. (3) and (4),

M−1
νL

= Udiag(m−1
1 ,m−1

2 ,m−1
3 )UT ' −(M−1

D )TMRM−1
D . (5)

In this model,MD is diagonal and (µ, µ) and (τ, τ) components inMR vanish, so these compo-
nents in the inverse ofMνL also have to vanish. These two conditions, which these components
in M−1

νL
have to satisfy, are given by

1

m1

V 2
µ1 +

1

m2

V 2
µ2 e

iα2 +
1

m3

V 2
µ3 e

iα3 = 0 , (6)

1

m1

V 2
τ1 +

1

m2

V 2
τ2 e

iα2 +
1

m3

V 2
τ3 e

iα3 = 0 , (7)

where the matrix V is defined by U = V · diag(1, eiα2/2, eiα3/2). We notice that neither the
U(1)Lµ−Lτ -breaking singlet VEV 〈σ〉 nor Majorana masses Mee and Mµτ appear in these condi-
tions explicitly, and so the following discussions and results based on the above conditions are
independent of these scales. Eqs. (6) and (7) are two complex equations, therefore, by solving
these equations, we can obtain the Dirac CP phase δ, the Majorana CP phases α2,3, and the
mass eigenvalue of the lightest neutrino m1, as functions of the mixing angles θ12, θ23, and θ13,
and the squared mass differences ∆m2

21 and ∆m2
32.
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3We can always take the VEV of σ to be real by using U(1)Lµ−Lτ transformations.
4We follow the convention of the Particle Data Group [6].
5For concrete calculations and explicit expressions, see Ref [2].
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Figure 1: The prediction for the sum of the neutrino masses as a function of θ23. The dark
(light) red band shows the uncertainty coming from the 1σ (2σ) errors in the parameters θ12,
θ13, δm

2, and ∆m2. The entire region is within the 2σ range of θ23, while its 1σ range is between
the thin vertical dotted lines. We also show in the black dashed line the present limit imposed
by the Planck experiment:

∑
imi < 0.23 eV (Planck TT+lowP+lensing+ext) [7].

Since space is limited, we show only the prediction for the sum of the neutrino masses
as a function of θ23 in Fig. 1, where the dark (light) red band shows the uncertainty com-
ing from the 1σ (2σ) errors in the parameters other than θ23. We also show in the black
dashed line the present limit imposed by the Planck experiment: Σimi < 0.23 eV (Planck
TT+lowP+lensing+ext) [7]. From this figure, we find that a wide range of the parameter re-
gion predicts a value of Σimi which is below the present limit, though a part of the parameter
region has already been disfavored by the Planck limit.

Acknowledgement

KA is supported by the Program for Leading Graduate Schools, MEXT, Japan.

References

[1] T. Araki, J. Heeck, and J. Kubo, JHEP 07 (2012) 083.

[2] K. Asai, K. Hamaguchi, and N. Nagata, Eur. Phys. J. C77 (2017) no.11 763.

[3] K. Asai, Mater’s thesis (Unpublished), Univ. of Tokyo (2018); K. Asai, K. Hamaguchi,
and N. Nagata (in preparation).

[4] P. Minkowski, Phys. Lett. B67 (1977) 421-428; T. Yanagida, Conf. Proc. C7902131
(1979) 95-99; M. Gell-Mann, P. Ramond, and R. Slansky, Conf. Proc. C790927 (1979)
315-321; R. N. Mohapatra and G. Senjanovic, Phys. Rev. Lett. 44 (1980) 912.

[5] B. Pontecorvo, Sov. Phys. JETP 7 (1958) 172-173. [Zh. Eksp. Teor. Fiz. 34 (1957) 247];
Z. Maki, M. Nakagawa, and S. Sakata, Prog. Theor. Phys. 28 (1962) 870-880.

[6] Particle Data Group Collaboration, C. Patrignani et al., Chin. Phys. C40 (2016), no.
10 100001.

[7] Planck Collaboration, P. A. R. Ade et al., Astron. Astrophys. 594 (2016) A13.


