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We show that, if they exist, lepton number asymmetries (Lα) of neutrino flavors should be dis-
tinguished from the ones (Li) of mass eigenstates as cosmological (BBN) bounds on the latters
(formers) cannot be directly applied to the formers (latters). Due to the difference of mass and
flavor eigenstates, the cosmological constraint on the asymmetries of neutrino flavors can be much
stronger than conventional expectation.

INTRODUCTION

A large lepton number asymmetry of neutrinos is an
intriguing possibility in regard of its capability of resolv-
ing several non-trivial issues of cosmology (see for exam-
ple [1–3]), but has been known to be constrained tightly
by BigBang nucleosynthesis (BBN) [4, 5]. However[6–8],
even if BBN constrains the lepton number asymmetry
of electron-neutrino very tightly such as Le . O(10−3),
much larger muon- and tau-neutrino asymmetries of
O(0.1−1) are still allowed as long as the total lepton num-
ber asymmetry is sizable. Such large asymmetries are
expected to be constrained mainly by cosmic microwave
background (CMB) via the extra neutrino species ∆Neff

[9].
If asymmetric neutrinos have a thermal distribution,

their contributions to ∆Neff is expressed as

∆Neff =
15
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α

(
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π

)2
[
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(
ξα
π

)2
]

(1)

where ξα ≡ µα/T is the neutrino degeneracy parameter.
Conventionally, the summation in Eq. (1) has been done
with neutrino flavors (νe,µ,τ in case of only three active
neutrinos). An implicit assumption here is that the ex-
tra radiation energy coming from asymmetric neutrinos
are solely from flavor-eigenstates. However, due to neu-
trino flavor oscillations, the equilibrium density matrix is
not diagonal in the flavour basis (as one naively expects,
not being the flavour eigestates the asymptotic states of
the Hamiltonian) and their description in terms of only
diagonal components (a more or less hidden asspumtion
when assuming thermal distribution for flavors) cannot
capture all the contributions to the extra radiation en-
ergy density. On the other hand, well after their decou-
pling from thermal bath, free-streaming neutrinos should
be described as incoherent mass-eigenstates only. Hence,
the appropriate estimation of ∆Neff could be done exclu-
sively with neutrino’s mass-eigenstates instead of flavor-
eigenstates in Eq. (1).

Let’s see why. A standard neutrino flavour transition,
or ”oscillation”, can be understood as follows. A neutrino
is produced by a source together with a charged lepton
`α of flavour α. Therefore, at the production point, the
neutrino is a να. Then, after birth, the neutrino travels

a distance L until it is detected. There, it is where it
reaches a target with which it interacts and produces
another charged lepton `β of flavour β. Thus, at the
interaction point, the neutrino is a νβ . If β 6= α (for
example, if `α is a µ but `β is a τ), then, during its trip
from the source to the detection point, the neutrino has
transitioned from a να into a νβ .

This morphing of neutrino flavour, να −→ νβ , is a
text-book example of a quantum-mechanical effect.

Because, a να is really a coherent superposition of mass
eigenstates νi,

|να >=
∑
i

U∗
αi |νi > . (2)

the neutrino that propagates since it is created until it
interacts, can be any one of the νi’s, therefore we must
add the contributions of all the different νi coherently.
Then, the transition amplitude, Amp(να −→ νβ) con-
tains a share of each νi and it is a product of three fac-
tors. The first one is the amplitude for the neutrino born
at the production point in combination with an `α to be,
specifically, a νi. This amplitude is given by U∗

αi. The
second factor is the amplitude for the νi created by the
source to propagate until it reaches the detector. We will
call this factor Prop(νi) . It is not difficult to see that

Prop(νi) = exp[−im2
i

L

2E
] . (3)

The third factor is the amplitude for the charged lepton
produced by the interaction of the νi with the detector
to be, specifically, an `β , which is Uβi. Therefore the
amplitude for a neutrino born as a να to be detected as
a νβ after covering a distance L through vacuum with
energy E yields

Amp(να −→ νβ) =
∑
i

U∗
αi e

−im2
i

L
2EUβi . (4)

The expression above is valid for an arbitrary number of
neutrino flavours and mass eigenstates. The probability
P(να −→ νβ) for να −→ νβ can be found by squaring it,
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giving

P(να −→ νβ) = |Amp(να −→ νβ)|2

= δαβ − 4
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with

∆m2
ij ≡ m2

i −m2
j . (6)

In order to get Eq. (5) we have used that the mixing
matrix U is unitary.

So far, we have been working in natural units, if we
return now the ~’s and c factor (we have happily left
out) into the oscillation probability we find that

sin2

(
∆m2

ij

L

4E

)
−→ sin2

(
∆m2

ijc
4 L

4~cE

)
(7)

Having done that, it is easy and instructive to explore the
semi-classical limit, ~ −→ 0. In this limit the oscillation
length goes to zero (the oscillation phase goes to infinity)
and the oscillations are averaged out. Neutrino propagate
as effectively incoherent mass eigenstates. The interfer-
ence pattern is lost. We no longer talk about oscillations
but about flavour transitions. The same happens if we
let the mass difference ∆m2 become large or when the
distance traveled or the time ellapsed is huge, as it is the
case with the cosmic neutrino background after neutrino
decoupling.

LEPTON NUMBER ASYMMETRIES OF
NEUTRINO FLAVOR VS. MASS EIGENSTATES

The lepton number asymmetries of neutrinos in flavor
basis can be defined as a matrix such as

Lf =
ρ− ρ̄
nγ

(8)

where ρ/ρ̄ and nγ are the density matrices of
neutrinos/anti-neutrinos and the photon number density.
In the very early universe, it is natural to assume that
neutrinos are in interaction eigenstates (i.e., flavor eigen-
states), since their kinematic phases are very small and
collisional interactions to thermal bath are large enough
to block flavor oscillations. Hence, if it were generated
by certain mechanism at very high energy, Lf is likely to
be diagonal and to remain constant. After all while oscil-
lations are blocked, individual flavor lepton numbers are
conserved. However, due to the fact that neutrino are not
massless and mix, according to the values of the mixing
parameters and mass differences measured by a variety
of experiments [10] , as the temperature of the radiation

dominated universe drops below around T ∼ 15 MeV, fla-
vor oscillations becomes active. Lf starts evolving at this
epoch, and settles down to an equilibrium state finally at
T ∼ 2 MeV before BBN starts [4, 11–15].

Once it reaches its final equilibrium value, Lf becomes
time-independent. The shape of Lf at the final equi-
librium is determined by various effects including vac-
uum oscillation, MSW-like effect coming from charged
lepton backgrounds, neutrinos self-interaction and colli-
sional scattering. So, it is difficult to be predicted analyt-
ically, and in practice, only accesible via numerical meth-
ods. However, all these effects except vacuum oscilla-
tions are active during particular windows in temperature
and eventually disappear. Hence, the final shape of Lf

should be determined by vacuum oscillation parameters
only. Note that the flavor states mixed by vacuum os-
cillation parameters are nothing but mass-eigenstates in
flavor-basis. Therefore, the statistical equilibrium state
of Lf should be that of mass-eigenstates expressed in the
flavor-basis.

Since in vacuum mass- and flavor-eigenstates are re-
lated to each other by PMNS matrix, UPMNS [16, 17],
our argument implies that for a diagonalization matrix
D, Lm the matrix of asymmetries in mass basis is given
by

Lm = DLfD
−1 = U−1

PMNSLfUPMNS (9)

implying D = U−1
PMNS.

On general grounds, at late times we do not expect Lf

to be diagonal. The operator responsible for the evolu-
tion of the density matrix is not diagonal, so that a diag-
onal density matrix will not be the asymptotic solution
of those equations unless it is proportional to the identity
matrix, which is clearly not the case. Hence, generically
the asymmetries of neutrino mass eigenstates differ from
those of flavor, and this fact should be taken into ac-
count when observational constraints on lepton number
asymmetries are considered.

In order to verify our argument, we solved numerically
the quantum kinetic equations of neutrino/anti-neutrino
density matrices in a simplified way as done in Ref. [6].
An example is shown in Fig. 1 where one finds the evo-
lutions of Lαβ , the entries of Re [Lf ]. The change across
e+e−-annihilation around T ∼ 2 MeV (or x ∼ 0.5) was
taken into account as a global suppression factor 4/11 for
simplicity. As shown in the right panel of the figure, the
off-diagonal entries of Re [Lf ] do not disappear, making
Lm be different from Lf . Also, we found that the numer-
ical simulation reproduces the relation D = U−1

PMNS quite
precisely within errors of O(0.1)% even at x = 1.

The differences between diagonal entries of Lf and Lm

can be seen by expressing the former in terms of the
latter. At first, Le is given by

Le = c213

(
c212L1 + s2

12L2

)
+ s2

13L3 (10)
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FIG. 1. Evolutions of Lf for θ = (θ12, θ13, θ23) with (ξe, ξµ, ξτ ) = (−1, 1.6, 0.3). Left/Right : Diagonal/off-diagonal entries.
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FIG. 2. Comparisons of lepton number asymmetries of both mass-eigenstates (Li; i = 1, 2, 3) and flavor-eigenstates (Lα; α =
e, µ, τ) for θ = (θ12, θ13, θ23) with θij being the mixing angles in PMNS matrix. Dashed lines are the asymmetries of mass
eigenstates. Solid line are for flavors eigenstates. Left and right panels are showing two examples of Lm leading to Le = 0
satisfying BBN constraint. Left : Lm = diag(L1, L2, L3) = (−t212L0, L0, 0). Right : Lm = diag(−(t212 + t213/c

2
12)L0, L0, L0).

where cij/sij/tij = cos θij/ sin θij/ tan θij with θij being
the mixing angle in PMNS matrix. Since BBN requires
Le . O(10−3), we may set Le = 0 for an illustration. In
this case, Lµ and Lτ are given by

Lµ = c23

[
(1− t212)c23 − 2s13s23t12

]
L2

+
[
(1− t213)s2

23 − t12t
2
13c23(2s13s23 + t12c23)

]
L3 (11)

Lτ = s23

[
(1− t212)s23 + 2s13c23t12

]
L2

+
[
(1− t213)c223 − t12t

2
13s23(2s13c23 − t12s23)

]
L3 (12)

From Eqs. (11) and (12) with measured values of mixing
angles [10], we find that Lµ ∼ Lτ for |L3| . |L2|, as
shown in Fig. 2.

COSMOLOGICAL CONSTRAINTS

A large lepton number asymmetry in one or more neu-
trino species creates an extra radiation density in the

universe relative to the standard contributions of photons
and CP-symmetric active neutrinos, a form of so-called
“dark radiation”. Extra relativistic degrees of freedom in
cosmology have attracted considerable recent attention
as a way to resolve the apparent discrepancy in mea-
surement of the Hubble parameter from CMB data and
type-Ia supernovae [9, 18]. In this section, we investi-
gate the possibility that a primordial lepton asymmetry
may provide a dark radiation density which can reconcile
CMB and SNIa values for the Hubble parameter.

We consider an eight-parameter ΛCDM+ξ cosmology
without contribution from primordial tensor fluctuations
and assume a normal mass hierarchy for neutrinos, with
one massive neutrino with mass mν = 0.06 eV. Since the
BBN constraint on Le should be satisfy, we are not free to
choose |Li| � |Le| in an arbitrary way, but constrained
to satisfy approximately

c212L1 + s2
12L2 + t213L3 = 0 (13)
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coming from Le = 0. As the simplest possibility, we may
set L3 = 0 leading to L1 = −t212L2. Then, for thermal
distributions of two light mass eigenstates,

∆Neff =
15

7

∑
i=1,2

(
ξi
π

)2
[

2 +

(
ξi
π

)2
]

≈ 15

7

(
ξ2
π

)2

×{
(1 + t412)2 +

[
1 + (4 + t412)t412

](ξ2
π

)2
}

(14)

where ξis are degeneracy parameters of each mass eigen-
state, and |ξi| . 1 and t212 � 1 were assumed. Strictly
speaking, the late-time free-streaming neutrino mass-
eigenstates are not in thermal distribution since they
are linear combinations of thermal distributions of flavor-
eigenstates. Hence, ξis in Eq. (14) should be understood
as effective degeneracy parameters. The error in ∆Neff

depends on the initial configuration of the lepton number
asymmetries in flavor-basis, but it is expected to be of or
small than O(10)% for ξ . 1.

Figure 3 shows constraints on H0 and ξ for the case of
the eight-parameter ΛCDM+ξ fit. We plot constraints
from Planck+BICEP/Keck only (filled contours), and
Planck+BICEP/Keck+Riess et al. (dotted contours).
The CMB data alone show no evidence for nonzero neu-
trino chemical potential, with a 95%-confidence upper
bound of ξ < 0.53. For combined CMB and supernova
data, there is weak evidence for a nonzero chemical po-
tential, with ξ = 0.50 ± 0.19 at 68% confidence. The
combined CMB+supernova data, however, should be in-
terpreted with caution: as the filled contours illustrate,
the CMB data and supernova data taken separately are
barely compatible, with only a small overlap in the 95%
confidence regions, even when dark radiation from a neu-
trino asymmetry is included as a parameter. Combining
two fundamentally incompatible data sets in a Bayesian
analysis is likely to give a biased fit, which is reflected in
the best-fit values for the two cases, with the best-fit to
CMB alone having − ln(L) = 6794.87, while the best-fit
for the the combined CMB+supernova data is measur-
ably worse, with − ln(L) = 6798.47. For the CMB data
alone, including lepton asymmetry, the best-fit Hubble
parameter is H0 = 67.7± 0.9, with a 95%-confidence up-
per bound of H0 < 69.7. This can be compared with
a 95%-confidence lower bound from Type-Ia supernovae
of H0 > 69.8. We therefore conclude, that inclusion of
dark radiation from a neutrino asymmetry does not fully
reconcile the discrepancy between CMB and supernova
data but may be a step in the direction of doing it.

CONCLUSIONS

In this talk, I argued that, when lepton number asym-
metries of neutrinos in flavor basis are mixed among
themselves due to neutrino oscillation in the early uni-
verse before BBN, the asymmetries at the final equilib-
rium are well described in the basis of mass eigenstates
which is related to flavor eigenstates by PMNS matrix.
That is, the matrices of lepton number asymmetries in
mass- and flavor-basis (Lm and Lf , repectively) are re-
lated as

Lm = U−1
PMNSLfUPMNS (15)

where UPMNS is the PMNS matrix, and Lm appears to be
diagonal. We demonstrated this argument by a numer-
ical simulation, and showed analytically that the asym-
metries of mass-eigenstate can be even larger than those
of flavor-eigenstates.

Conventionally, the constraint on the lepton number
asymmetries of neutrino flavors has been associated with
neutrino flavor-eigenstates, counting their contributions
to the extra radiation energy density ∆Neff . However,
our argument and finding showed that a proper estima-
tion should be done with neutrino mass-eigenstates in
order not to miss the contributions of flavor-mixed states
in flavor-basis, and the resulting ∆Neff can be larger than
the one estimated with flavor-eigenstates only.

As shown in Ref. [6–8] and realized in [19] in principle
∆Neff can be of O(0.1− 1) just from asymmetric neutri-
nos without resorting to an unknown “dark radiation”.
Such a large ∆Neff has been considered in literature as a
possible solution to the discrepancy of the measured ex-
pansion rate H0 in CMB and SNIa data. In analyses of
cosmological data, typically, if ∆Neff is from asymmet-
ric neutrinos, the neutrino degeneracy parameters have
been taken in an arbitrary way without distinguishing
mass- and flavor-eigenstates, although implicitly the lep-
ton number asymmetry (Le) of electron-neutrinos might
be assumed to be small to satisfy BBN constraint. We
showed that this approach is inconsistent unless the lep-
ton number asymmetries (Li) of mass-eigenstates which
are relevant for CMB data for example are constrained
to satisfy

Le = c212L1 + s2
12L2 + t213L3 ≈ 0 (16)

for |Le| ≪ |Li|. Also, analyzing cosmological data
(CMB only or CMB+SNIa), we found that CMB data
alone show no evidence for nonzero neutrino lepton num-
ber asymmetries, with 95% CL upper bound of |ξ| .
0.5 − 0.6 at 95% CL as the degeneracy parameters of
two light neutrinos only. For combined CMB and SNIa
data, there is weak evidence for nonzero lepton number
asymmetries, with ξ ≈ 0.50 ± 0.19 at 68% CL, but the
fit became worse relative to the case of CMB data alone.
So, even if large lepton number asymmetries may fit to
the data, it does not look preferred.
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FIG. 3. Constraints on H0 and ξ for the eight-parameter ΛCDM+ξ case. Filled contours show the 68% (dark red) and 95%
(light red) constraints from Planck+BICEP/Keck alone. Dashed contours show the corresponding constraints with the addition
of the Riess et al. supernova data. The constraint on H0 from the supernova data alone, H0 = 73.24 ± 1.74 [18] is shown by
the grey filled regions, with 1σ limits in dark grey, and 2σ limits in light grey.
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