A comparative study of $0\nu\beta\beta$ decay in symmetric and asymmetric left-right model

Prativa Pritimita (Post Doctoral Fellow)

> Department of Physics, IIT Bombay.

IITB-HU Neutrino meeting (October, 2020)

• • • • • • • • • • •

Open questions in neutrino sector

- What gives neutrinos such a tiny mass?
- What is the absolute scale of neutrino mass?
- Are neutrinos their own anti-particles?
- Are they normal hierarchial or inverted hierarchial?
- Is there lepton number violation in nature?

Journey Towards Beyond Standard Model Physics

不得る とうちょうちょ

Neutrinoless Double beta Decay * Neutrino mass: through Seesaw Mechanism

- ★ Seesaw Mechanism: Majorana Nature of Neutrinos
- ★ Majorana nature of neutrinos: Lepton Number Violation
- ★ Direct consequence of lepton number violation: Neutrinoless Double Beta Decay

(A,Z)
ightarrow (A,Z+2)+2e

★ Neutrino flavour eigenstates ν_{α} are related to mass eigenstates ν_i as; $\nu_{\alpha} = U_{\alpha i} \nu_i$ with mass eigenvalues m_i

$$\mathcal{L}_{\rm CC}^{\ell} = \frac{\mathbf{g}_{\mathsf{L}}}{\sqrt{2}} \,\overline{\mathbf{e}}_{\mathsf{L}\mathbf{i}} \, \gamma^{\mu} \, \mathbf{U}_{\alpha \mathbf{i}} \nu_{\mathbf{i}} \, \mathbf{W}_{\mu_{\mathsf{L}}} + \text{h.c.}$$

Motivation for new phy contributions to $0\nu\beta\beta$

Isotope	$T_{1/2}^{0\nu}$		Collaboration
⁷⁶ Ge	> 8.0 $ imes$ 10 ²⁵ yrs	< (0.22 - 0.53)	GERDA-II
¹³⁶ Xe	$> 1.6 imes 10^{26}$ yrs	< (0.06 - 0.16)	KamLAND-Zen

 $\sum_{i} m_{i} < 0.23$ eV (Planck 1) $\sum_{i} m_{i} < 1.08$ eV (Planck 2) $m_{\beta} < 0.2$ eV (KATRIN)

Left-Right Model as New Physics

Gauge Symmetry

$$\mathcal{G}_{LR} \equiv SU(2)_L imes SU(2)_R imes U(1)_{B-L} imes SU(3)_C$$

with

$$Q = I_{3L} + I_{3R} + \frac{B-L}{2}$$

Particle Content

$$\begin{aligned} q_L &= \begin{pmatrix} u_L \\ d_L \end{pmatrix} \equiv [2, 1, \frac{1}{3}, 3], \quad q_R = \begin{pmatrix} u_R \\ d_R \end{pmatrix} \equiv [1, 2, \frac{1}{3}, 3], \\ \ell_L &= \begin{pmatrix} \nu_L \\ e_L \end{pmatrix} \equiv [2, 1, -1, 1], \quad \ell_R = \begin{pmatrix} \nu_R \\ e_R \end{pmatrix} \equiv [1, 2, -1, 1], \end{aligned}$$

Symmetry breaking of LRSM

$$SU(2)_L imes SU(2)_R imes U(1)_{B-L} \stackrel{\langle \Delta_R
angle}{\longrightarrow} SU(2)_L imes U(1)_Y \stackrel{\langle \phi
angle}{\longrightarrow} U(1)_{
m em}$$

When $SU(2)_R \times U(1)_{B-L}$ symmetry breaking occurs at few TeV scale, rich collider phenomenology is expected.

P. Pritimita (IITB)

Feynman diagrams for $0\nu\beta\beta$ decay in LRSM

э

Asymmetric Left-Right Model

Left-Right Model with spontaneous D-parity breaking

[Phys. Rev. Lett. 52 (1984) 1072 ; D. Chang, R.N. Mohapatra, M.K. Parida]

 $\mathcal{G}_{LR} \equiv SU(2)_L imes SU(2)_R imes U(1)_{B-L} imes SU(3)_C imes extbf{D}$

where D is the discrete left-right symmetry or D-parity (not Lorentz parity)

Symmetry breaking

• $SU(2)_L \times SU(2)_R \times U(1)_{B-L} \times SU(3)_C \times D \xrightarrow{\langle \sigma \rangle} SU(2)_L \times SU(2)_R \times U(1)_{B-L} \times SU(3)_C$

• $SU(2)_L \times SU(2)_R \times U(1)_{B-L} \times SU(3)_C \xrightarrow{\langle \Delta_R \rangle} SU(2)_L \times U(1)_Y \times SU(3)_C$

- $SU(2)_L \times U(1)_Y \times SU(3)_C \xrightarrow{\langle \Phi \rangle} U(1)_{em} \times SU(3)_C$
- D-parity breaks earlier than SU(2)_R gauge symmetry, thereby introducing a new scale.
- immediate result: $SU(2)_L$ and $SU(2)_R$ gauge couplings become unequal i.e, $g_L \neq g_R$.

Asymmetric LR Model with inverse seesaw

• Neutrino mass: through inverse seesaw mechanism $(\nu_L + N_R + S_L)$ [JHEP 08(2013)122 ; R. L Awasthi, M.K. Parida, S. Patra]

$$\mathcal{M} = \begin{pmatrix} 0 & M_D & 0 \\ M_D^T & M_N & M^T \\ 0 & M & \mu_S \end{pmatrix}$$
$$m_{\nu} = \begin{pmatrix} \underline{M_D} \\ \overline{M} \end{pmatrix} \mu_S \left(\frac{M_D}{M} \right)^T$$

- **2** what is explained: neutrino mass, $n \bar{n}$ oscillation, proton decay
- what is not explained: effect of g_L ≠ g_R in 0νββ sector
 Our work: Nucl. Phys. B 954 (2020) 115000 S. Senapati, C. Majumdar, P. Pritimita, S. Patra
- **essence of the work:** how different contributions to $0\nu\beta\beta$ transition in $W_R - W_R$ and $W_L - W_R$ channels are suppressed or enhanced depending on the ratio $\frac{g_R}{g_L}$

We do the comparison for 3 different cases;

O Case - I : Symmetric LR model ($g_L = g_R$)

$$SO(10) \xrightarrow{M_U} \mathcal{G}_{2213D} \xrightarrow{M_R} \mathcal{G}_{SM} \xrightarrow{M_Z} \mathcal{G}_{13}$$

Case - II : Asymmetric LR model $(g_L \neq g_R)$ (without Pati-Salam symmetry in the chain)

$$SO(10) \xrightarrow{M_U} \mathcal{G}_{2213D} \xrightarrow{M_C} \mathcal{G}_{2213} \xrightarrow{M_R} \mathcal{G}_{SM} \xrightarrow{M_Z} \mathcal{G}_{13}$$

Orace - III: Asymmetric LR model $(g_L \neq g_R)$ (with Pati-Salam symmetry in the chain)

S	$SO(10) \xrightarrow{M_U} \mathcal{G}_{224D}$	$\xrightarrow{M_{P}} \mathcal{G}_{224}$	$\xrightarrow{M_C} \mathcal{G}_{221}$	$_{3} \xrightarrow{M_{R}} \mathcal{G}_{SI}$	$M \xrightarrow{M_Z}$	\mathcal{G}_1	3
	Breaking Chain	g _R	<i>g</i> L	$\delta = \frac{g_R}{g_L}$			
	Case I	0.632	0.632	1			
	Case II	0.589	0.632	0.93			
	Case III	0.414	0.632	. 0.65	<	æ	ç

P. Pritimita (IITB)

A comparative study of $0\nu\beta\beta$ decay

Comparative study of $0\nu\beta\beta$ decay

In an asymmetric LR model, the term $\frac{g_R}{g_L}$ appears in Feynman amplitudes for $0\nu\beta\beta$ via $W_R - W_R$ and $W_L - W_R$ chanels. ex.

$$\mathcal{A}_{\Delta_R} \simeq G_F^2 \left(rac{M_{W_L}}{M_{W_R}}
ight)^4 \left(rac{g_R}{g_L}
ight)^4 \sum_i rac{V_{ei}^2 M_i}{m_{\Delta_R^{--}}^2}$$

E.M.P.(eV)	E.M.P.(eV) E.M.P.(eV)	
(symmetric)	(asymmetric (Case II))	$\mathbf{m}_{ ext{ee}}^D/\mathbf{m}_{ ext{ee}}$
$\mathbf{m}_{\mathrm{ee,R}}^{N}=0.040$	$\mathbf{m}_{\mathrm{ee,R}}^{N,D}=0.030$	$\left(rac{g_R}{g_L} ight)^4 \simeq 0.75$
$m{m}_{ee}^{\Delta_R}=1.74 imes10^{-20}$	$\mathbf{m}_{ ext{ee}}^{\Delta_R,D} = 1.30 imes 10^{-20}$	$\left(\frac{g_R}{g_L}\right)^4 \simeq 0.75$
$\mathbf{m}_{ ext{ee}}^{\lambda, u}=$ 1.142	$\mathbf{m}_{ ext{ee}}^{\lambda, u,D}=0.988$	$\left(\frac{g_R}{g_L}\right)^2 \simeq 0.86$
$\mathbf{m}_{ ext{ee}}^{\lambda,\mathcal{S}}=0.0035$	$\mathbf{m}_{ ext{ee}}^{\lambda,\mathcal{S},D}=0.0030$	$\left(\frac{g_R}{g_L}\right)^2 \simeq 0.86$
$\mathbf{m}_{\mathrm{ee}}^{\lambda,N}=4.486 imes10^{-8}$	$\mathbf{m}_{ ext{ee}}^{\lambda,\mathcal{S},D}=3.858 imes10^{-8}$	$\left(\frac{g_R}{g_L}\right)^2 \simeq 0.86$

Continued..

E.M.P.(eV)	E.M.P.(eV)	Suppression Factor
(symmetric)	(asymmetric (Case III))	$\mathbf{m}_{ ext{ee}}^D/\mathbf{m}_{ ext{ee}}$
$\mathbf{m}_{ee,R}^{N}=0.040$	$\mathbf{m}_{ ext{ee,R}}^{N,D}=0.0052$	$\left(\frac{g_R}{g_L}\right)^4 \simeq 0.13$
$\mathbf{m}_{\mathrm{ee}}^{\Delta_R} = 1.74 imes 10^{-20}$	$\mathbf{m}_{ ext{ee}}^{\Delta_R,D}=2.58 imes10^{-21}$	$\left(\frac{g_R}{g_L}\right)^4 \simeq 0.13$
$\mathbf{m}_{ ext{ee}}^{\lambda, u}=$ 1.142	$\mathbf{m}_{ ext{ee}}^{\lambda, u,D}=$ 0.411	$\left(\frac{g_R}{g_L}\right)^2 \simeq 0.36$
$\mathbf{m}_{ ext{ee}}^{\lambda,\mathcal{S}}=0.0035$	$\mathbf{m}_{ ext{ee}}^{\lambda,\mathcal{S},D}=0.0013$	$\left(rac{g_R}{g_L} ight)^2 \simeq 0.37$
$\mathbf{m}_{ee}^{\lambda,N} = 4.486 \times 10^{-8}$	$\mathbf{m}_{\mathrm{ee}}^{\lambda,\mathcal{S},D}=1.615 imes10^{-8}$	$\left(rac{g_R}{g_L} ight)^2 \simeq 0.36$

2

イロト イポト イヨト イヨト

Continued..

The expression for inverse half-life in terms of effective mass parameter;

$$\begin{bmatrix} T_{1/2}^{0\nu} \end{bmatrix}^{-1} = G_{01}^{0\nu} \left| \frac{\mathcal{M}_{\nu}^{0\nu}}{m_{e}} \right|^{2} \left[|\mathbf{m}_{ee}^{\nu}|^{2} + |\mathbf{m}_{ee,L}^{S,N}|^{2} + |\mathbf{m}_{ee,R}^{S,N}|^{2} + |\mathbf{m}_{ee}^{\Delta_{R}}|^{2} + |\mathbf{m}_{ee}^{\lambda}|^{2} + |$$

Half Life	Enhancement Factor	Enhancement Fac	
	(Case-I vs Case-II)	(Case-I vs Case-	
	$\left[\mathbf{T}_{1/2}^{0 u} ight]_{D}/\left[\mathbf{T}_{1/2}^{0 u} ight]$	$\left[\mathbf{T}_{1/2}^{0\nu} \right]_{D} / \left[\mathbf{T}_{1/2}^{0\nu} \right]$	
$\left[\mathbf{T}_{1/2}^{0\nu}\right]_{N} = 1 / \left(\mathcal{K}_{0\nu} \mathbf{m}_{ee}^{N} ^{2}\right)$	$\left(\frac{g_L}{g_R}\right)^8 \simeq 1.78$	$\left(\frac{g_L}{g_R}\right)^8 \simeq 59.29$	
$\left[\left[\mathbf{T}_{1/2}^{0\nu} \right]_{\Delta_R} = 1 / \left(\mathcal{K}_{0\nu} \mathbf{m}_{ee}^{\Delta_R} ^2 \right) \right]$	$\left(rac{g_L}{g_R} ight)^8\simeq 1.78$	$\left(rac{g_L}{g_R} ight)^8 \simeq 59.29$	
$\left[\mathbf{T}_{1/2}^{0\nu} \right]_{\lambda}^{2} = 1 / \left(\mathcal{K}_{0\nu} \mathbf{m}_{ee}^{\lambda} ^{2} \right)$	$\left(rac{g_L}{g_R} ight)^4\simeq 1.33$	$\left(rac{g_L}{g_R} ight)^4 \simeq 7.7$	

Result

Figure: Half life of $0\nu\beta\beta$ process due to all possible channels in the model vs $\delta (= \frac{g_R}{g_L})$.

э

Summary

- Left-Right models in which D-parity breaking and $SU(2)_R$ breaking scales are decoupled give rise to $g_L \neq g_R$.
- 2 Thus the analytic expressions for $0\nu\beta\beta$ contributions in $W_R W_R$ and $W_L - W_R$ channels become different.
- We have considered an asymmetric LR model where neutrino mass is explained via inverse seesaw mechanism.
- Inverse seesaw allows large light-heavy neutrino mixing which facilitates λ and η diagrams in $0\nu\beta\beta$ sector.
- We have considered 3 different cases for the comparative study of 0νββ decay.
- When Pati-Salam symmetry appears in the symmetry breaking chain of SO(10) GUT, the enhancement factor for the decay increases significantly.

3

< 日 > < 同 > < 回 > < 回 > < □ > <

イロト イヨト イヨト イヨト

some more plots

P. Pritimita (IITB)

æ

some more plots

Figure: Plot shows half life due to *N* exchange in $W_R - W_R$ channel vs mass of W_R .

э