Degeneracies in Long-baseline Neutrino Oscillations

S Uma Sankar

Department of Physics Indian Institute of Technology Bombay Mumbai, India

S. Uma Sankar (IITB)

IITB-Hiroshima Workshop

26 October 2020 1 / 29

Neutrino Oscillations with Natural Sources

- Solar neutrino deficit is explained in terms of neutrino oscillations with Δm_{sol}^2 : $(10^{-5}, 10^{-4}) \text{ eV}^2$ and $\theta_{sol} \approx 35^{\circ}$.
- Atmospheric neutrino deficit is also explained in terms of neutrino oscillations with $\Delta m_{\rm atm}^2$: (10⁻³, 10⁻²) eV² and $\theta_{\rm atm} \approx 45^{\circ}$.
- LEP showed that there are three flavours of light, active neutrinos ⇒ three neutrino mass eigenstates.
- Two independent mass-squared differences: $\Delta m_{21}^2 = m_2^2 m_1^2$ and $\Delta m_3^2 = m_3^2 m_1^2$.
- Without loss of generality, can identify $\Delta m_{\rm sol}^2 = \Delta m_{21}^2$ and $\Delta m_{31}^2 = \Delta m_{\rm atm}^2 \approx \Delta m_{32}^2 = m_3^2 m_2^2$.
- Three flavour oscillations can explain both Solar and Atmospheric neutrino deficits.

- The PMNS matrix, connecting the flavour eigenstates to mass eigenstates, is parametrized in terms of three mixing angles θ_{12} , θ_{13} and θ_{23} and one CP-violating phase δ_{CP} .
- The reactor neutrino experiments, CHOOZ and Palo Verde, did not see any evidence for oscillations.
- Interpretation of this result, in terms of three flavour oscillations, leads to the strong constraint

$$\sin^2 2\theta_{13} \le 0.1.$$

• Combining it with solar neutrino data leads to $\theta_{13} \ll 1 \implies \theta_{sol} \approx \theta_{12}$ and $\theta_{atm} \approx \theta_{23}$.

Neutrino Oscillations with Man-made Sources

- Efforts started to verify neutrino oscillations with man-made neutrino sources.
- In particular, the aim was to measure the neutrino spectrum and identify the spectral distortion due to oscillations.
- Nuclear reactors produce $\bar{\nu}_e$ and we can measure only $\bar{\nu}_e$ survival probability.
- Accelerators produce $\nu_{\mu}/\bar{\nu}_{\mu}$ and we can measure both their survival probabilities and their oscillation probabilities to $\nu_e/\bar{\nu}_e$.
- A difference in the oscillation probabilities of neutrinos and anti-neutrinos is the signature for CP-violation in neutrino oscillations.

- Reactor neutrino energies are in the range (3, 10) MeV.
- Matter effects are utterly negligible for such small energies.
- Matter effects are also negligible in the survival probabilites of accelerator neutrinos, if the baseline is of order 1000 km or less.
- Hence, the data of survival probabilities can be analyzed using vacuum probabilities.
- For long-baseline reactor neutrino experiment KamLAND, we can use the approximation $\theta_{13} = 0$.
- Survival probability has effective two flavour form with Δm_{21}^2 and θ_{12} .
- Identifying the spectral distortion leads to a precise measurement

$$\Delta m^2_{21} = (7.58 \pm 0.22) \times 10^{-5} \text{ eV}^2 \text{ and } \tan^2 \theta_{12} = 0.56 \pm 0.14.$$

Effective Two-flavour Oscillations

- For ~ 1 km baseline reactor neutrino experiments, Double-CHOOZ, Daya Bay and RENO, we can use the approximation $\Delta m_{21}^2 = 0$.
- Again the survival probability reduces to effective two flavour form with Δm_{31}^2 and θ_{13} .
- Very high statistics data from Daya Bay and RENO lead to

$$\Delta m_{31}^2 = (2.54 \pm 0.07) \times 10^{-3} \text{ eV}^2 \text{ and } \sin^2 2\theta_{13} = 0.086 \pm 0.003.$$

- For the accelerator experiment MINOS, with L = 730 km and $E_{\nu} \sim 3.5$ GeV, we set $\Delta m_{21}^2 = 0 = \theta_{13}$.
- The effective two flavour form of the survival probability gives

$$\Delta m_{31}^2 = (2.32 \pm 0.12) \times 10^{-3} \text{ eV}^2 \text{ and } \sin^2 2\theta_{23} \ge 0.94.$$

The Unknowns in Neutrino Oscillations

- The two mass-squared differences are measured to a precision of about 3%.
- The mixing angles $\sin^2 \theta_{12}$ and $\sin^2 2\theta_{13}$ are also measured to a similar precision.
- Survival probabilities give no information on δ_{CP} .
- Matter effects are crucial to explain the solar neutrino problem. They also fix that $\Delta m_{sol}^2 = \Delta m_{21}^2$ is positive.
- At present, there is no information whether Δm_{31}^2 is positive or negative.
- Both atmospheric and accelerator data prefer sin² 2θ₂₃ ≃ 1 but there is no information if θ₂₃ < π/4 or θ₂₃ > π/4.

- Look for evidence of matter effects in atmospheric/accelerator experiments and determine the sign of Δm_{31}^2 .
- The case of Δm_{31}^2 positive is called Normal Hierarchy (NH) and that of Δm_{31}^2 negative is called Inverted Hierarchy (IH).
- Determine whether $\theta_{23} < \pi/4$ or $\theta_{23} > \pi/4$.
- The first case is called Lower Octant (LO) and the second case is called Higher Octant (HO).
- Look for evidence for CP-violation in neutrino oscillations and measure $\delta_{\rm CP}.$

- Till 2014, all the experiments measured only survival probabilities.
- They are not sensitive to the unknowns.
- Good News: The $\nu_{\mu} \rightarrow \nu_{e}$ oscillation probability is sensitive to all the three unknowns.
- Can measure all three in one experiment.
- Bad News: The $\nu_{\mu} \rightarrow \nu_{e}$ oscillation probability is sensitive to all the three unknowns.
- The change in the probability, induced by the change in one unknown can be cancelled by the change in another unknown.
- Have to do a set of very careful measurements to disentangle the effects due to different unknowns.

Matter Effects and Sign of Δm^2

 Matter effects can be included in two flavour oscillations in a straight forward manner, by means of the Wolfenstein matter term

$$A(\text{in eV}^2) = 2\sqrt{2}G_F N_e E = 0.76 \times 10^{-4} \rho (\text{in gm/cc}) E (\text{in GeV}).$$

 \blacksquare With this inclusion, the $\nu_{\mu} \rightarrow \nu_{e}$ oscillation probability becomes

$$P^{m}(\nu_{\mu} \to \nu_{e}) = \sin^{2} 2\theta_{m} \sin^{2} \left(\frac{\Delta m_{m}^{2} L}{4E}\right), \text{ where}$$
$$\Delta m_{m}^{2} = \sqrt{(\Delta m^{2} \cos 2\theta - A)^{2} + (\Delta m^{2} \sin 2\theta)^{2}}$$
$$\sin 2\theta_{m} = \sin 2\theta \frac{\Delta m^{2}}{\Delta m_{m}^{2}}$$

This probability is sensitive to the sign of the product $(\Delta m^2 \cos 2\theta)$.

Matter Effects in Three Flavour Oscillations

- In two flavour oscillations, we can not determine sign of Δm^2 and octant of θ separately.
- A physically meaningful question to ask is: Is the overlap of the lighter mass eigenstate with electron neutrino larger/smaller than 0.5?
- This is equivalent to asking if $(\Delta m^2 \cos 2\theta)$ positive or negative?
- That is not so in three flavour oscillations for two of the three mixing angles.
- Inclusion of matter effects in three flavour oscillations is more complicated.
- Usually, the calculations are done numerically.
- Since $\Delta m_{21}^2 \ll \Delta m_{31}^2$, we can treat the terms proportional to Δm_{21}^2 perturbatively, in the neutrino Hamiltonian.

In this manner, we obtain

$$\begin{split} \mathcal{P}_{\mu e}^{m} &= \sin^{2}\theta_{23}\sin^{2}2\theta_{13}\frac{\sin^{2}[(1-\hat{A})]\hat{\Delta}}{(1-\hat{A})^{2}} \\ &+ \alpha \tilde{J}\cos(\hat{\Delta}+\delta_{\mathrm{CP}})\frac{\sin(1-\hat{A})\hat{\Delta}}{[(1-\hat{A})]}\frac{\sin(\hat{A}\hat{\Delta})}{\hat{A}}, \end{split}$$

where $\alpha = \Delta m_{21}^2 / \Delta m_{31}^2$ and $\tilde{J} = \cos \theta_{13} \sin 2\theta_{12} \sin 2\theta_{13} \sin 2\theta_{23}$.

- In the above equation, we have used the notation $\hat{A} = A/\Delta m_{31}^2$ and $\hat{\Delta} = (\Delta m_{31}^2 L)/(4E)$.
- In the case of anti-neutrinos, we can obtain $P^{\text{mat}}(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}) \equiv P^{m}_{\bar{\mu}\bar{e}}$ by the replacements $\hat{A} \rightarrow -\hat{A}$ and $\delta_{\text{CP}} \rightarrow -\delta_{\text{CP}}$.

- We need $\theta_{13} \neq 0$ for $P_{\mu e}^m$ (and $P_{\overline{\mu} \overline{e}}^m$) to be non-zero.
- The sin² θ_{23} factor in the leading term makes it sensitive to the octant of θ_{23} .
- If the sign of Δm_{31}^2 is changed, $\hat{A} \rightarrow -\hat{A}$ and $\alpha \rightarrow -\alpha$, making it sensitive to hierarchy.
- \blacksquare The δ_{CP} dependence appears only in the sub-leading term.
- This is a consequence of the fact that CP-violation is unoservable if any one of the mass-squared differences vanishes.

Eight-fold Degeneracy of $P_{\mu e}$

- Before the measurement of θ_{13} , it was argued that there is an eight-fold degeneracy in $P_{\mu e}^m$.
- If the value of θ_{13} is not precisely known, then a measured value of $P^m_{\mu e}$ can be reproduced by eight combinations of the unknowns.

1 θ_{13}^0 (true value), true hierarchy, true octant, true $\delta_{\rm CP}$

- **2** θ_{13}^1 (wrong value), wrong hierarchy, true octant, true $\delta_{\rm CP}$
- 3 θ_{13}^2 (wrong value), true hierarchy, wrong octant, true $\delta_{\rm CP}$
- 4 θ_{13}^3 (wrong value), true hierarchy, true octant, wrong $\delta_{\rm CP}$
- There will four more cases of wrong value of θ₁₃: three where two of the unknowns are wrong and the third is correct and the fourth one where all the three unknowns take the wrong values.
- With the precision measurement of θ_{13} , it seems as if all the wrong solutions can be ruled out.

Degeneracies in $P_{\mu e}$ with fixed θ_{13}

- However, depending on the values of the unknowns, there are leftover degeneracies.
- To understand these, let us define a standard value of $P_{\mu e}$ where we set all the unknowns equal to ZERO.
- That is we consider $P_{\mu e}$ for vacuum oscillations with $\theta_{23} = \pi/4$ and $\delta_{\rm CP} = 0$.
- For the sake of simplicity we consider all the unknowns to be binary variables.
- Hierarchy, of course, is a binary variable. Octant also becomes a binary variable if the value of sin 2θ₂₃ is measured accurately through survival probability. We assume δ_{CP} takes only the maximal CP-violating values ±π/2.

• Compared to the standard value, $P_{\mu e}^m$ increases if

- 1 Hierarchy is normal or
- 2 Octant is higher or

3
$$\delta_{\rm CP} = -\pi/2.$$

- $P^m_{\mu e}$ decreases if the unknowns take the opposite binary value.
- If all the unknowns take values that increase P^m_{µe}, we have the largest possible increase with respect to the standard value.
- If the measured value is equal to this the highest predicted value, we have a unique solution for the three unknowns.
- Similarly if measured P_{µe} is much below the the standard value, it means that all the three unknowns take values which reduce P_{µe}.

Degeneracies in $P_{\mu e}$ with fixed θ_{13}

- But suppose the measured $P_{\mu e}$ is a little higher than the standard value.
- This happens if two of the unknowns take values which increase P_{µe} and the third one takes the value which decreases it.
- There are three possible ways this can happen and hence there is a three fold degenerate set of solutions.
- Such a three fold degeneracy also occurs for the case where the measured $P_{\mu e}$ is a little smaller than the standard value, where two of the unknowns take values to decrease $P_{\mu e}$ and the third one takes value to increase it.
- In such a situation, the anti-neutrino data is helpful in partially lifting this three fold degeneracy.

- For Normal Hierarchy, P_{μe} increases and P_{μe} decreases relative to the standard value.
- Situation is reversed for Inverted Hierarchy.
- For Higher Octant (HO) both P_{µe} and P_{µe} increase and they both decrease for Lower Octant (LO).
- For $\delta_{\rm CP} = -\pi/2$, $P_{\mu e}$ increases and $P_{\bar{\mu}\bar{e}}$ decreases relative to the standard value.
- Situation is reversed for $\delta_{\rm CP} = +\pi/2$.
- Thus hierarchy and δ_{CP} have opposite effects on P_{μe} and on P_{μe} but octant has the same effect on both of them.

- Suppose the measured $P_{\mu e}$ is a little higher than the standard value.
- That means two of the unknowns take value to increase P_{µe} and the third takes value to decrease it.
- If the unknown causing the decrease is the octant, then the predicted value of $P_{\mu\bar{e}}$ also should be smaller than the standard value.
- Hence a measurement of P_{µē} will uniquely determine if the unknown causing the decrease is the octant or not.
- If the unknown causing the decrease is either the hierarchy or $\delta_{\rm CP}$, then the anti-neutrino data is not of any help in determining which is responsible.
- Very similar arguments also apply when the measured P_{μe} is a little smaller than the standard value.

- We saw that if the hierarchy increases $P_{\mu e}$ and $\delta_{\rm CP}$ decreases it, then hierarchy decreases $P_{\bar{\mu}\bar{e}}$ and $\delta_{\rm CP}$ increases it.
- A similar situation occurs when the hierarchy decreases $P_{\mu e}$ and $\delta_{\rm CP}$ increases it.
- \blacksquare This hierarchy- δ_{CP} degeneracy is one of the most difficult one to resolve.
- The hierarchy sensitivity of atmospheric neutrinos is independent of $\delta_{\rm CP}$.
- Determining hierarchy with an atmospheric neutrino data of INO or Hyper-Kamiokande and $\delta_{\rm CP}$ with an accelerator neutrino experiment is one possibility.

- Accelerator neutrino experiments typically tune their energy such that $(\Delta m_{31}^2 L)/(4E) \simeq \pi/2$ (called first maximum), so that the $\nu_{\mu} \rightarrow \nu_{e}$ appearance probability is maximized.
- DUNE plans to employ a wide band energy beam of neutrinos so that there is appreciable flux at energy $(\Delta m_{31}^2 L)/(4E) = 3\pi/2$ (called second maximum).
- DUNE plans to use a two pronged strategy:
 - 1 Have a longer baseline so that the change in $P_{\mu e}$ due to hierarchy at the first maximum is more than that due to δ_{CP} .
 - 2 Arrange the energies such that change in $P_{\mu e}$ due to hierarchy at the smaller energy of the second maximum is less than that due to δ_{CP} .
- Thus the combined data from the first and second maxima can resolve the hierarchy- $\delta_{\rm CP}$ degeneracy.

Current Long-Baseline Experiments: T2K and NOvA

- T2K has a narrow band beam of neutrinos, with peak flux at E = 0.6 GeV, from JPARC to Super-Kamiokande detector 295 km away.
- They have taken data in neutrino mode with 14.9×10^{20} POT and in anti-neutrino mode with 16.4×10^{20} POT. (Protons on Target)
- NOvA far detector receives narrow band neutrino beam, with peak flux at E = 2 GeV, from Fermilab 810 km away.
- So far, NOvA collected data with 13.6×10^{20} POT in neutrino mode and 12.5×10^{20} POT in anti-neutrino mode.
- Both experiments have near detectors to monitor the neutrino fluxes and to measure the interaction cross sections.
- Their analysis of $\nu_{\mu}/\bar{\nu}_{\mu}$ disappearance (based on the survival probabilities) agree with each other.
- T2K: $\Delta m_{31}^2 = (2.54 \pm 0.07) \times 10^{-3} \text{ eV}^2$ and $\sin^2 \theta_{23} = 0.53 \pm 0.04$.
- NOvA: $\Delta m_{31}^2 = (2.48 \pm 0.07) \times 10^{-3} \text{ eV}^2$ and $\sin^2 \theta_{23} = 0.57 \pm 0.03$.

- T2K observes a total of 90 ν_e appearance events and 15 ν_e appearance events.
 Nature 580 (2020) 7803, 339-344, Nature 583 (2020) 7814, E16 (erratum); e-Print: 1910.03887
- The ν_e events are much larger than the standard number of 60, whereas the $\bar{\nu}_e$ events are a little lower than the standard number of 17.2.
- According to the arguments made before, this data indicates that the hierarchy is normal, the octant is higher and $\delta_{\rm CP} \simeq -\pi/2$.
- Based on their data, T2K claim to rule out $\delta_{\rm CP} = 0$ at 99.79% (3 σ) confidence level.

- NOvA observes 82 ν_e appearance events and 33 $\bar{\nu}_e$ appearance events.
- The ν_e event number is somewhat larger than the standard number of 62 and the $\bar{\nu}_e$ event number is also somewhat larger than the standard number of 23.
- The best fit point is (NH, HO with $\sin^2 \theta_{23} = 0.57$, $\delta_{\rm CP} = 5\pi/6$).
- But, multiple solutions with (NH, LO), (NH, HO), (IH, LO) and (IH, HO) are all acceptable at 68% (1 σ) confidence level.
- So there is a strong tension between the appearance data of T2K and NOvA.
- Eventhough, the best-fit points of both T2K and NOvA choose normal hierarchy, a fit to the combined data of the two experiments prefers inverted hierarchy
 - K. J. Kelly, P. A. Machado, S. J. Parke, Y. F. Perez Gonzalez and
 - R. Zukanovich-Funchal, [arXiv:2007.08526 [hep-ph]].

T2K Results from 2018

э

э

- 一司

NOvA Results from Neutrino-2020

S. Uma Sankar (IITB)

26 October 2020 26 / 29

NOvA Results from Neutrino-2020

Upper Octant at

< □ > < @ >

S. Uma Sankar (IITB)

26 October 2020 27 / 29

Tension Between Appearance Data of T2K and NOvA

S. Uma Sankar (IITB)

IITB-Hiroshima Workshop

26 October 2020 28 / 29

- Precision measurement of sin² 2θ₁₃ removes a large number of degeneracies in P_{μe}.
- Combined data on P_{μe} and P_{μē} can lift the degeneracies related to the θ₂₃ octant.
- Overcoming the hierarchy- δ_{CP} degeneracy is quite difficult and various different proposals are being pursued.
- The ν_e and $\bar{\nu}_e$ appearance data of the current long-baseline accelerator neutrino experiments seem to be in severe tension.
- A joint analysis team, with representives from the two experiments, is looking into the causes for this tension.