## Matter vs Vacuum Oscillations at Long Baseline Accelerator Neutrino Experiments [Bharti, Rahaman, Uma Sankar, arXiv: 2001.08676]



Ushak Rahaman Centre for Astro Particle Physics (CAPP) Department of Physics, University of Johannesburg

# Motivation

- Neutrino oscillations provide a signal for physics beyond Standard Model.
- Two types of oscillation:
- 1. Oscillations driven by smaller mass squared difference:  $\Delta_{21} = m_2^2 m_1^2$ -----Solar neutrino oscillation
- 2. Oscillations driven by larger mass squared difference:  $\Delta_{31} = m_3^2 m_1^2$ ----- first noted in pioneering water Cerenkov detector IMB [Casper et al., Phys. Rev. Let. 66, 2561 (1991); Becker-Senzdy et al., Phys. Rev. D 46, 3720 (1992)] and Kamiokande [Hirata et al., Phys. Lett. B 280, 146 (1992); Fukuda et al., Phys. Lett. B 335, 237 (1994)].

- Atmospheric neutrino experiment Super Kamiokande [Fukuda et al, arXiv: hepex/9807003] and long-baseline accelerator neutrino experiments MINOS, NOvA and T2K [Michael et al., arXiv: hep-ex/0607088; Abe et al., arXiv: 1308.0465; Adamson et al., arXiv: 1701.05891] observed spectral distortions in the  $\nu_{\mu}$  and  $\bar{\nu}_{\mu}$  survival probabilities.
- Initial analysis of these distortions were done with vacuum oscillation hypothesis to obtain  $|\Delta_{31}|$  and sin  $2\theta_{23}$ .
- These experiments could not determine the sign of  $\Delta_{31}$ :
- 1. Normal hierarchy (NH):  $\Delta_{31} > 0$
- 2. Inverted hierarchy (IH):  $\Delta_{31} < 0$



- Due to propagation through earth matter, neutrino oscillation probabilities are expected to be modified by matter effects.
- These matter effects are sensitive to the sign of  $\Delta_{31}$ .
- Up to baseline of 1000 km, the matter effect leads to negligible change in the survival probabilities of  $v_{\mu}$  and  $\bar{v}_{\mu}$ . [Gandhi et al., arXiv: 0707.1723]
- The  $v_{\mu}$  and  $\bar{v}_{\mu}$  disappearance data in long baseline experiments lead to same values of  $|\Delta_{31}|$  and sin  $2\theta_{23}$  for three possible cases:
- 1. Vacuum oscillations
- 2. Matter effect with NH
- 3. Matter effect with IH

- In the case of atmospheric neutrino, the survival probabilities are expected to undergo significant changes due to matter effect.
- But at present, Super Kamiokande is capable of making only small distinctions between vacuum oscillation and matter effect. [Abe et al., arXiv: 1710.09126]

- Two current long-baseline accelerator neutrino experiments NOvA [Ayres et al., 2007] and T2K [Abe et al., arXiv: 1106.1238] are currently looking for the evidence of matter modified neutrino oscillations.
- They measure two survival probabilities  $P(\nu_{\mu} \rightarrow \nu_{\mu})$  and  $P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu})$  and two oscillation probabilities  $P(\nu_{\mu} \rightarrow \nu_{e})$  and  $P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})$ .
- Sensitivity to matter effects come from oscillation probabilities. [M. Narayan and S. Uma Sankar, arXiv: hep-ph/9904302]
- But this oscillation probabilities are also sensitive to unknown CP violating phase  $\delta_{CP}$ .

$$\begin{split} P(\nu_{\mu} \rightarrow \nu_{e}) \\ &= \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \frac{\sin^{2} \widehat{\Delta} (1 - \widehat{A})}{(1 - \widehat{A})^{2}} \\ &+ \alpha \cos \theta_{13} \sin 2\theta_{12} \sin 2\theta_{13} \sin 2\theta_{23} \cos(\widehat{\Delta} + \delta_{CP}) \frac{\sin \widehat{\Delta} \widehat{A} \sin \widehat{\Delta} (1 - \widehat{A})}{\widehat{A} - 1 - \widehat{A}} \end{split}$$
[Cervera et al., arXiv: hep-ph/0002108]

 $\hat{\Delta} = 1.27 \Delta_{31} L(\text{km}) / E(\text{GeV}), \ \alpha = \Delta_{21} / \Delta_{31} \text{ and } \hat{A} = A / \Delta_{31}.$  *A* is the Wolfenstein matter term.  $A(\text{eV}^2) = 0.76 \times 10^{-4} \rho(\text{g/cc}) E(\text{GeV})$ 

- Oscillation probability depends on sign of  $\Delta_{31}$ , value of  $\delta_{CP}$  and octant of  $\theta_{23}$ .
- It is possible to cancel the change induced by matter effect by choosing a wrong value of  $\delta_{CP}$  or wrong octant of  $\theta_{23}$ .
- Given a set of data, three solutions are possible [Prakash, Raut, Uma Sankar, arXiv: 1201.6485]:
- 1. Matter modified oscillation with NH and  $\delta_{CP}^1$
- 2. Vacuum oscillation with  $\delta_{CP}^2$
- 3. Matter modified oscillation with IH and  $\delta_{CP}^3$

- For T2K matter effect leads to small changes in the appearance probabilities.
- Therefore the value of  $\delta_{CP}$  obtained from T2K data is independent of whether matter effect is included or not.
- For NOvA, the changes introduced in appearance probabilities is comparable to the change induced when  $\delta_{CP}$  value is changed by 90°. [Bharti, Prakash, Rahaman, Uma Sankar, arXiv: 1805.10182]
- Therefore, the measured value of  $\delta_{CP}$  depends significantly on the oscillation hypothesis used to analyse the NOvA data.

- Matter effects play a crucial role in the solution of solar neutrino problem. [Mikheev, Smirnov, Sov. J. Nucl. Phys. 42, 913 (1985)]
- Matter effect in the case of oscillation driven by  $\Delta_{21}$  has been established in more than 5  $\sigma$  confidence level (C.L.). [Fogli et al., arXiv: hep-ph/0506083]
- As of now, there is no evidence of matter effects in the case of oscillation driven by  $\Delta_{31}$ .
- Establishing CP violation in neutrino sector is one of the most important goals of the current and future long-baseline neutrino oscillation experiments.
- To achieve this goal, it is important to establish matter effects in the case of oscillation driven by  $\Delta_{31}$  independently as has been done in the case of oscillation driven by  $\Delta_{21}$ .

# Analysis procedure

- We calculated theoretical event rates using GLoBES [Huber et al., arXiv: hepph/0407333], for the appearance and disappearance channels in neutrino and anti-neutrino modes for T2K and NOvA.
- We have tuned the efficiencies in the software to match the simulated event rates given my the collaborations when the input values of the oscillation parameters are at their best-fit values.
- These event rates are calculated using matter term parameterized as q \* A, where A is the standard Wolfenstein matter term and q is a multiplicative factor.
- $\Delta_{21}$  and  $\sin^2 \theta_{12}$  have been fixed in their best-fit values taken from [http://www.nu-fit.org/?q=node/45].
- The values of  $\sin^2 \theta_{13}$ ,  $\sin^2 \theta_{23}$  and  $|\Delta_{31}|$  have been varied in their 3  $\sigma$  range taken from [http://www.nu-fit.org/?q=node/45] for both the hierarchies.

- $\delta_{CP}$  has been varied in its complete range [0,360°].
- The non-standard matter effect term q has been varied from 0 to 2.
- Theoretical event rates have been calculated for both hierarchies separately.

These theoretical event rates have been compared with the experimental event rates by computing  $\chi^2$  between theory and experiment:

$$\chi^{2} = \sum_{i} 2\left[ \left( N_{i}^{\text{th}} - N_{i}^{\exp} \right) + N_{i}^{\exp} \times \ln\left(\frac{N_{i}^{\exp}}{N_{i}^{\text{th}}}\right) \right] + \sum_{j} \left[ 2 \times N_{j}^{\text{th}} \right] + \chi^{2}(\text{sys})$$

- $\chi^2$ (sys) arises due to systematic uncertainty.
- For each of the two experiments we used 10% systematic uncertainties using pull method.
- We varied the pull parameter in its 3  $\sigma$  range and then marginalized the  $\chi^2$  over it to calculate  $\chi^2_m$  as a function of oscillation parameters, hierarchies and q.

- Total  $\chi^2$  has been calculated by adding all the  $\chi^2_m$ s from different channels and modes for both the hierarchies.
- $\chi^2$ (tot) is a function of all the oscillation parameters, hierarchies and q.
- We determined the minimum of  $\chi^2$ (tot) to subtract it from all the  $\chi^2$ (tot) to determine  $\Delta \chi^2$  as a function of oscillation parameters, hierarchies and q.
- Then we marginalized  $\Delta \chi^2$  over all the parameters except hierarchy and q.

- Later we have calculated the expected data from the future runs of T2K, NOvA and future experiment DUNE.
- These future expected event rates have been calculated using the best-fit values of mass squared differences, mixing angles and  $\delta_{CP}$  for q = 1.
- These simulations have been done considering both NH and IH as true hierarchies.
- These simulated evnts have been considered as experimental events and the  $\chi^2$  values have been calculated between theory and experiment as described earlier.
- In the case of simulation,  $\chi^2$  is equivalent to  $\Delta \chi^2$ .

### Results

- NOvA has taken data corresponding to 8.85 × 10<sup>20</sup> POT in neutrino mode and 12.33 × 10<sup>20</sup> POT in anti-neutrino mode. [Acero et al., arXiv: 1906.04907]
- T2K has taken data corresponding to  $14.9 \times 10^{20}$  POT in neutrino mode and  $16.4 \times 10^{20}$  POT in anti-neutrino mode. [Abe et al., arXiv: 1910.03887]
- These data have been fit to standard 3 flavor oscillation hypothesis with variable matter term.

- The minimum  $\chi^2 = 173.2$  occurs for  $\Delta_{31} > 0$  and q = 0.7.
- Standard matter oscillation (q = 1) with NH has essentially the same  $\chi^2$ .
- Standard matter oscillation with IH has been disfavoured with  $\Delta \chi^2 = 4.5$ .
- > Vacuum oscillation (q = 0) provides as good fit to the data as matter modified oscillation with NH ( $\chi^2 =$ 173.8).



Observed appearance event numbers in both neutrino and antineutrino modes have been plotted along with their predicted rates at best-fit points.

There is hardly any difference between the predictions of vacuum and matter modified oscillations.



- Best-fit points and 1 σ contours of T2K data, NOvA data and T2K+NOvA data for the two cases of vacuum and matter modified neutrino oscillations with NH.
- Best fit points of T2K hardly changes with oscillation hypothesis.
- Best fit value of δ<sub>CP</sub> for NOvA largely depends on oscillation hypothesis.
- There is less discrepancy between the two experiments in case of vacuum oscillation hypothesis.



# Expectation from T2K and NOvA

- Using GLoBES we simulated T2K data 37.4 × 10<sup>20</sup> POT each in neutrino and anti-neutrino mode corresponding to a 5 year run in each mode.
- NOvA events have been simulated for 30.25 × 10<sup>20</sup> POT each for neutrino and anti-neutrino mode again corresponding to 5 years run in each mode.
- Such extended runs can rule out IH at 3  $\sigma$  C.L. if NH is true but rules out NH only at 2  $\sigma$  if IH is true.
- Vacuum oscillation has a very small  $\Delta \chi^2 \simeq 2$ .



#### Expectation from DUNE

- The future long-baseline accelerator neutrino experiment DUNE is designed to disentangle the changes due to matter effect from the changes due to δ<sub>CP</sub>.
- > Its baseline  $L \simeq 1300$  km is much longer than T2K and NOvA.

[Abi et al., arXiv: 1807.10334]

- Its peak energy is correspondingly higher and matter effect larger.
- > After 1 year neutrino run (14.7 ×  $10^{20}$  POT), vacuum oscillation can be ruled out at > 3  $\sigma$  C.L. if NH is the true hierarchy.
- Same can be done only at  $2 \sigma$  C.L. if IH is true.



>  $5\sigma$  exclusion of vacuum oscillation is possible for both the hierarchies if  $(5\nu + 5\bar{\nu})$  run of DUNE is combined with  $(5\nu + 5\bar{\nu})$  runs of NOvA and  $(5\nu + 5\bar{\nu})$  runs of T2K.

> Values of q outside the range  $1 \pm 0.4$  is ruled out at  $3 \sigma$  or better.



## Conclusions

- At the scale of  $\Delta_{31}$ , vacuum oscillation fits the data as good as matter modified oscillation.
- Extended rums of T2K and NOvA have no discriminating ability against vacuum oscillation.
- A 3  $\sigma$  discrimination against vacuum oscillation can be achieved with one year neutrino run of DUNE only if NH is the true hierarchy.
- 5  $\sigma$  discrimination against vacuum oscillation can be achieved for both the hierarchies only if  $(5 \nu + 5 \overline{\nu})$  run of DUNE is combined with  $(5 \nu + 5 \overline{\nu})$  run of T2K and  $(5 \nu + 5 \overline{\nu})$  run of NOvA.
- Such run can establish the strength of matter effect with good precision.