Phase structure in Gross–Neveu model at finite density on torus

Hiromu Shimoji Hiroshima university (Collaborators: T. Inagaki, Y. Matsuo) 2020/10/29 (Thu.) IITB–Hiroshima Workshop on Neutrino physics @Zoom

Outline

Introduction

quantum chromodynamics, phase diagram, effective model, effective potential

• Analysis

background spacetime, assumption&conditions

• Result

phase diagram on μ -T plane,

thermodynamic quantities (dynamically generated fermion mass, particle number density)

• Summary

We analyzed a QCD-like model

Non-trivial chiral condensation emerged in strongly coupled fermions system

 \rightarrow to analyze non-trivial vacuum structures

- Phase diagrams with effects of finite size (topology) and finite particle density
 - \rightarrow to consider effects from non-trivial environments
- Thermodynamic quantities: Dynamically generated mass, particle number density
 - ightarrow to see effects to physical phenomena

Introduction: Quantum chromodynamics(QCD)

Quarks are considered as fundamental components of nature

 \rightarrow described by Quantum Chromodynamics(QCD)

$$\mathcal{L}_{\text{QCD}} = \bar{\psi} i \gamma^{\mu} \left(\partial_{\mu} - i g G^a_{\mu} T^a \right) \psi - \bar{\psi} m \psi - \frac{1}{4} F^{\mu\nu a} F^a_{\mu\nu}$$

- Strong interactions \rightarrow chiral condensation
- · Asymptotic freedom (at high energies)
- · Color confinement

Introduction: QCD phase diagram

One of main issues in QCD: investigating the QCD phase structure

Why focus on chiral symmetry breaking??

 \Rightarrow One of clues

to investigate the QCD phase structure

- e.g. Hadrons obtain their masses due to spontaneous breaking of chiral symmetry Y. Nambu and G. Jona-Lasinio (1961) 3/15

Four-fermion interaction model : one of effective models

Nambu–Jona Lasinio(NJL) model, Gross–Neveu(GN) model J. Gross and A. Neveu, (1974), ...

Used in the context of nuclear physics, particle physics, condensed matter physics, ...

we used Gross–Neveu model in this work $S_{\rm GN} = \int d^D x \, \left[\bar{\psi}(x) i \gamma^{\mu} \partial_{\mu} \psi(x) + \frac{\lambda}{2N} \left(\bar{\psi}(x) \psi(x) \right)^2 \right]$

 λ : coupling of the four-fermion interaction, N: the number of copies of fermions

- Invariant under a discrete chiral transformation: $\psi \longrightarrow \gamma^5 \psi$
- Very simple model
- · Can describe spontaneous chiral symmetry breaking

Introduction: Effective potential analysis

Derive an effective potential $V(\sigma)$ (an order parameter σ) from the effective action

 \rightarrow Find the value of the order parameter at the minimum of the effective potential (equivalent to solving the gap equation)

Gross-Neveu model

$$S_{\rm GN} = \int d^2 x \left[\bar{\psi}(x) i \gamma^{\mu} \partial_{\mu} \psi(x) + \frac{\lambda}{2N} \left(\bar{\psi}(x) \psi(x) \right)^2 \right]$$

$$\rightarrow \int d^2 x \left[\bar{\psi}(x) \left(i \gamma^{\mu} \partial_{\mu} - \sigma(x) \right) \psi(x) - \frac{N}{2\lambda} \sigma(x)^2 \right]$$

Assuming the homogeneous chiral condensation,

we can solve this model at the leading order of the 1/N expansion

$$\frac{V_{\text{eff}}\left(\sigma;\lambda_{r},\Lambda\right)}{\Lambda^{2}} = \frac{1}{2\lambda_{r}}\left(\frac{\sigma}{\Lambda}\right)^{2} - \frac{1}{4\pi}\left(3 - \ln\left(\frac{\sigma}{\Lambda}\right)^{2}\right)\left(\frac{\sigma}{\Lambda}\right)^{2}$$

Order parameter is introduced as $\sigma\simeq -rac{\lambda}{N}\left<ar{\psi}\psi\right>$ (Chiral condensation)

Gross–Neveu model on 2-dimensional spacetime $\underline{T^2 \simeq S^1 \times S^1}$ (torus)

Not a trivial spacetime \mathbb{R}^2

- A compactified space S^1
- Finite temperature (a compactified imaginary time) S^1
- Solvable analytically
 - \rightarrow similar to 4-dimensional case due to an even dimension

One of extreme situations

Analysis: Assumption & Conditions

Assumption: Homogeneous chiral condensation (order parameter σ)

- Leading order of the 1/N expansion (semi-classical approximation)
- Particle number density $\psi^{\dagger}\psi$ (chemical potential μ)
- · Boundary conditions of fermion
 - Spacial direction: U(1)-valued $\psi(x_1+L,x_2)=e^{-i\pi\delta}\psi(x_1,x_2)$

L: the length of the compactified space, $\delta:$ the phase

- Imaginary-time direction: Anti-periodic $\psi(x_1, x_2 + 1/T) = -\psi(x_1, x_2)$

Effective potential analysis with the model parameters: L, δ, T, μ

Previous studies (U(1)-valued boundary conditions)

- Relativistic anyon-like systems on $\mathbb{R}^{1 ext{or}\ 2} imes S^1$ D. Y. Song (1993), S. Huang and B. Schreiber (1994)
- Revised the effective potential analysis on $\mathbb{R}^{D-1}\times S^1$ from the above studies

T. Inagaki, Y. Matsuo, and H.S. (2019)

 \longrightarrow At zero temperature and particle number density

Our work

Extended to finite temperature and particle number density

Phase structures of the chiral condensation in <u>a QCD-like theory</u>

(a strongly coupled fermions system)

We evaluate

- the Gross-Neveu model
- at the leading order of the 1/N expansion
- at finite particle number density
- under the U(1)-valued and anti-periodic boundary conditions
- on the torus spacetime(finite size and temperature)

and then investigate the phase structure.

Through thermodynamic quantities

we see characteristics of phases and phase transitions

Result: Expression of the effective potential

$$\frac{V_{\text{eff}}\left(\sigma;L,\delta,T,\mu\right)}{m_{0}^{2}} = -\frac{1}{4\pi} \left[1 - \ln\left(\frac{\sigma}{m_{0}}\right)^{2} \right] \left(\frac{\sigma}{m_{0}}\right)^{2}$$
$$-\frac{1}{\pi} \frac{1}{Lm_{0}} \int_{0}^{\infty} \frac{\mathrm{d}q}{m_{0}} \ln\left(2\frac{\cosh L\sqrt{q^{2} + \sigma^{2}} - \cos \pi\delta}{\exp L\sqrt{q^{2} + \sigma^{2}}}\right)$$
$$-\frac{T}{Lm_{0}^{2}} \sum_{n=-\infty}^{\infty} \ln\left(2\frac{\cosh\sqrt{k_{\delta,n}^{2} + \sigma^{2}}/T + \cosh\mu/T}{\exp\sqrt{k_{\delta,n}^{2} + \sigma^{2}}/T}\right)$$

a dynamical mass at the trivial spacetime \mathbb{R}^2 : $\frac{m_0}{\Lambda} = \exp\left(1 - \frac{\pi}{\lambda_r}\right)$, a discrete momentum: $k_{\delta,n} = \frac{2n + \delta}{L}\pi$

Result: Phase diagrams: μ -*T* plane (smaller size)

Size
$$Lm_0 = 3.0$$
 (the critical chemical potential at \mathbb{R}^2 : $\frac{\mu_c}{m_0} = \frac{1}{\sqrt{2}} \simeq 0.71$)

Result: Phase diagrams: μ -*T* plane (larger size)

Size $Lm_0 = 8.0$

Result: Phase diagrams: Thermodynamic quantities

Size $Lm_0 = 8.0$, Temperature $T/m_0 = 0.005$

Dynamically generated fermion mass

Purple: periodic boundary condition,

Particle number density

Green: anti-periodic boundary condition

Summary

- The finite temperature and particle number density Gross–Neveu model with a compactified space under the U(1)-valued boundary condition has been considered.
- The effective potential derived from the Gross–Neveu action at the leading order of the 1/N expansion has been evaluated.

We have showed the chiral phase diagrams with the effects of size and boundary conditions on a μ -T plane and showed the thermodynamic quantities, the dynamically generated fermion mass and particle number density including contributions of the chiral phase transition.

Future works: the magnetic field, flavors(u,d,s), current masses, ...

I expect to associated with the dimensional reduction under a strong magnetic field: $3+1 \rightarrow 1+1$

Backups: Chiral symmetry

Dirac fermions, ψ , decomposed into left- and right-handed states, ψ_L and ψ_R

 $\psi = \psi_L + \psi_R$

Eigenstates of chirality operator γ^5 ($\gamma^{\mu}\gamma^5 = -\gamma^5\gamma^{\mu}$, $(\gamma^5)^2 = 1$):

$$\gamma^5 \psi_L = -\psi_L, \quad \gamma^5 \psi_R = +\psi_R$$

Discrete chiral transformation: $\psi \longrightarrow \gamma^5 \psi$

Simple product of Dirac fermions appearing as a mass term

 $\bar{\psi}\psi = \bar{\psi}_L\psi_R + \bar{\psi}_R\psi_L \quad \xrightarrow{\text{chiral trans.}} \quad -\bar{\psi}\psi \qquad \text{Not invariant}$

197MeVfm $\simeq 1 \longrightarrow 100$ MeV · 0.5fm ~ 1 or 1MeV · 5pm ~ 1 or 1keV · 5nm ~ 1 0.7 ~ 170MeV/240MeV ($m_0 \sim 240$ MeV) 1T(= 10⁴G) $\simeq 195$ eV² (Neutron star: ~ 10⁸T, Magnetar: ~ 10¹¹T) 100MeV ~ 1.2 × 10¹²K