Origin of flavor structures for elementary particles

Yusuke Shimizu (Hiroshima U.)

29th. Oct., 2020

IITB-Hiroshima Workshop on Neutrino Physics @Zoom

Plan of my talk

1. Introduction

- Standard model for particle physics
 Neutrino oscillation and lepton mixing
- 2. Non-Abelian discrete symmetry

3. Flavor model in lepton sector

- A_4 neutrino model
- Modified A_4 model
- Toward the minimal model
- 4. Summary

1. Introduction

- Standard model for particle physics

Particle	First	Second	Third	Mixing matrix
Quark	$\left \begin{array}{c} \begin{pmatrix} u \\ d \end{pmatrix}_L \\ u_R^c \\ d_R^c \\ d_R^c \end{array}\right $	$\begin{pmatrix} c \\ s \end{pmatrix}_L \\ c^c_R \\ s^c_R \\ s^c_R \end{pmatrix}$	$\begin{bmatrix} t \\ b \\ L \\ t_R^c \\ b_R^c \end{bmatrix}$	CKM matrix (Cabibbo-Kobayashi-Maskawa)
Lepton	$ \begin{bmatrix} $	$ \begin{pmatrix} \nu_{\mu} \\ \mu \end{pmatrix}_{L} \\ \mu_{R}^{c} $	$ \begin{pmatrix} \nu_{\tau} \\ \tau \end{pmatrix}_{L} \\ \tau_{R}^{c} $	PMNS matrix (Pontecorvo-Maki-Nakagawa-Sakata)

- Generation Mysteries
 - Masses of elementary particles are different each generation.
 - Lepton flavor mixing is quite different from quark one.

Spontaneous symmetry breaking and Higgs mechanism 0

Kinetic terms Yukawa interactions (y_{ij} : Yukawa couplings)

Spontaneous symmetry breaking $h \rightarrow v + \delta \overline{h}$

Kinetic terms Mass terms

Masses of fermions 0

 $m_f = y_{ij}v$... however not mass eigenstates

moving from gauge eigenstates to mass eigenstates

Charged current interaction for left-handed quarks 0 $u_{i} = (U_{u})_{ik} u_{k}^{m}, \quad d_{i} = (U_{d})_{ik} d_{k}^{m}$ u_i, d_i : gauge eigenstate u_i^m, d_i^m : mass eigenstate W_{μ} : Weak boson g : Gauge coupling $\mathcal{L}_{CC} = \frac{g}{\sqrt{2}} W^+_{\mu} (\bar{u}_L, \bar{c}_L, \bar{t}_L) \gamma^{\mu} \begin{pmatrix} d_L \\ s_L \\ b_L \end{pmatrix} + h.c.$ $= \frac{g}{\sqrt{2}} W^+_{\mu}(\bar{u}^m_L, \bar{c}^m_L, \bar{t}^m_L) \gamma^{\mu} U^{\dagger}_{u} U_{d} \begin{pmatrix} d^m_L \\ s^m_L \\ b^m \end{pmatrix} + h.c.$ u_L CKM matrix 0

 $V_{\rm CKM} \equiv U_u^{\dagger} U_d$

- CP symmetry
 - CP transformation:

$$\psi_L \xrightarrow{C} (i\gamma^2\psi^*)_R \xrightarrow{P} (\gamma^0 i\gamma^2\psi^*)_L$$

$$\mathcal{L}_{CC} = \frac{g}{\sqrt{2}} V_{ij} W^+_{\mu} \bar{u}^m_{Li} \gamma^{\mu} d^m_{Lj} + \frac{g}{\sqrt{2}} V^*_{ij} W^-_{\mu} \bar{d}^m_{Lj} \gamma^{\mu} u^m_{Li}$$
$$\xrightarrow{CP} \frac{g}{\sqrt{2}} V_{ij} W^-_{\mu} \bar{d}^m_{Lj} \gamma^{\mu} u^m_{Li} + \frac{g}{\sqrt{2}} V^*_{ij} W^+_{\mu} \bar{u}^m_{Li} \gamma^{\mu} d^m_{Lj}$$

Condition of the CP violation
 CKM matrix V_{ij} is complex
 CP

Parameters of CKM matrix (N generations case)

$$V_{ij} = \begin{pmatrix} V_{ud} & \cdots & V_{uj} \\ \vdots & & \vdots \\ V_{id} & \cdots & V_{ij} \end{pmatrix}$$

• # of real parameters for $N \times N$ complex matrix: $N^2 \times 2$

- Unitarity condition: $\sum_{k} V_{ik}^* V_{jk} = \delta_{ij} \rightarrow N^2$
 - for diagonal elements (i = j): N
 - for off-diagonal elements $(i \neq j)$: N(N-1)
- # of removing phases for quark fields: 2N 1
- # of physical parameters:

$$2N^2 - N^2 - (2N - 1) = (N - 1)^2$$

- We consider the mixing angles and phase parameters:
 - # of mixing angles (θ_{ij}) : $_NC_2 = \frac{1}{2}N(N-1)$
 - # of phase parameters:

$$(N-1)^2 - {}_N C_2 = \frac{1}{2}(N-1)(N-2)$$

- CP violation occurs at least 3 generations
 - Kobayashi-Maskawa Theory

$$V_{\text{CKM}} \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{\text{CP}}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{\text{CP}}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta_{\text{CP}}} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta_{\text{CP}}} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta_{\text{CP}}} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta_{\text{CP}}} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta_{\text{CP}}} & c_{23}c_{13} \end{pmatrix}$$

- Neutrino oscillation and lepton mixing
- Neutrino flavor, mass eigenstates and time evolution

$$|\nu_{\alpha}\rangle = \sum_{i} U_{\alpha j} |\nu_{j}\rangle, \quad |\nu_{\alpha}(t)\rangle = \sum_{i} U_{\alpha j} |\nu_{j}\rangle e^{-iE_{j}t}$$

We consider 2 generations

$$|\nu_e(t)\rangle = \cos\theta |\nu_1\rangle e^{-iE_1t} + \sin\theta |\nu_2\rangle e^{-iE_2t}$$
$$|\nu_\mu(t)\rangle = -\sin\theta |\nu_1\rangle e^{-iE_1t} + \cos\theta |\nu_2\rangle e^{-iE_2t}$$

• Transition probability of $\nu_e
ightarrow
u_\mu$

$$P(\nu_e \to \nu_\mu; t) = |\langle \nu_\mu | \nu_e(t) \rangle|^2 = \sin^2 2\theta \sin^2 \frac{E_2 - E_1}{2} t$$
$$\simeq \sin^2 2\theta \sin^2 \frac{\Delta m^2 L}{4E}, \quad \Delta m^2 = m_2^2 - m^2$$
$$E_j = \sqrt{p^2 + m_j^2} \simeq p + \frac{m_j^2}{2E}$$

Neutrino mass squared differences

$$\Delta m_{\rm sol}^2 \equiv m_2^2 - m_1^2, \quad \left| \Delta m_{\rm atm}^2 \right| \equiv \left| m_3^2 - m_1^2 \right|.$$

Leptons get masses through Higgs mechanism

$$\mathcal{L}_Y = y\psi_L H\psi_R \to y\langle H\rangle\psi_L\psi_R = m_f\psi_L\psi_R.$$

- In the SM, because there are not right-handed neutrinos, neutrino is massless.

Seesaw mechanism

Minkowski '77; Gell-Mann, Ramond, Slansky; Yanagida; Glashow; Mohapatra, Senjanovic '79

- Adding three right-handed Majorana neutrinos

 $M = \begin{pmatrix} 0 & M_D \\ M_D^T & M_N \end{pmatrix} \xrightarrow{\text{diagonalized}} M_\nu \simeq -M_D^T M_N^{-1} M_D$

- If $M_N >> M_D$, left-handed Majorana neutrinos get non-zero and small masses

- Parameters of PMNS matrix (N generations case)
- # of real parameters for $N \times N$ complex matrix: $N^2 \times 2$
- Unitarity condition: $\sum_{k} V_{ik}^* V_{jk} = \delta_{ij} \rightarrow N^2$
 - for diagonal elements (i = j): N
 - for off-diagonal elements $(i \neq j)$: N(N-1)
- \circ # of removing phases for lepton fields: N
- # of physical parameters:

 $2N^2 - N^2 - N = N(N - 1)$

We consider the mixing angles and phase parameters

- # of mixing angles: $_NC_2 = \frac{1}{2}N(N-1)$

- # of phase parameters: $N(N-1) - NC_2 = \frac{1}{2}N(N-1)$

- Phase parameters (3 generations case)
 - $\frac{1}{2}N(N-1) \rightarrow 3$ (1 Dirac phase and 2 Majorana phases) Lepton flavor mixing matrix (PMNS matrix)

$$U \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{CP}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} e^{i\mathbf{a}} & 0 & 0 \\ 0 & e^{i\mathbf{b}} & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta_{CP}} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta_{CP}} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta_{CP}} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta_{CP}} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta_{CP}} & c_{23}c_{13} \end{pmatrix} \begin{pmatrix} e^{i\mathbf{a}} & 0 & 0 \\ 0 & e^{i\mathbf{b}} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- $\delta_{\rm CP}$ is Dirac phase and α , β are Majorana phases
- Neutrino mass hierarchy

0

- Normal hierarchy (NH)
- Inverted hierarchy (IH)
- Quasi-degenerated (QD)

- Experimental situations
- Reactor neutrino experiments indicate non-zero θ_{13}
 - Experimental result by Daya Bay

 $\sin^2 2\theta_{13} = 0.084 \pm 0.005$

- Consistent with RENO, Double Chooz, and T2K experiments
- Global fit of the neutrino oscillation

M. C. Gonzalez-Garcia, M. Maltoni, T. Schwetz, JHEP 1411 (2014) 052

parameter	best fit	1σ	3σ
$\sin^2 \theta_{12}$	0.304	0.292-0.317	0.270-0.344
$\sin^2 \theta$	0.452	0.424-0.504	0.382-0.643
$SIII V_{23}$	0.579	0.542 - 0.604	0.389- 0.644
$\sin^2 \theta$	0.0218	0.0208-0.0228	0.0186-0.0250
$SIII V_{13}$	0.0219	0.0209-0.0230	0.0188 - 0.0251
$\Delta m_{\rm sol}^2 \ [10^{-5} {\rm eV}^2]$	7.50	7.33-7.69	7.02-8.09
$ \Lambda_m^2 $ [10 ⁻³ V^2]	2.457	2.410-2.504	2.317-2.607
$ \Delta m_{\rm atm} [10 ev]$	2.449	2.401- 2.496	2.307 - 2.590
δ _{ατ.} [°]	306	236-345	0.360
OCD []	254	192-317	0-000

- Global fit of the neutrino oscillation

NuFIT 5.0 (2020)

		Normal Ore	lering (best fit)	Inverted Orde	ering $(\Delta \chi^2 = 2.7)$
		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range
~	$\sin^2 \theta_{12}$	$0.304^{+0.013}_{-0.012}$	$0.269 \rightarrow 0.343$	$0.304^{+0.013}_{-0.012}$	$0.269 \rightarrow 0.343$
: data	$\theta_{12}/^{\circ}$	$33.44_{-0.75}^{+0.78}$	$31.27 \rightarrow 35.86$	$33.45_{-0.75}^{+0.78}$	$31.27 \rightarrow 35.87$
heric	$\sin^2 \theta_{23}$	$0.570\substack{+0.018\\-0.024}$	$0.407 \rightarrow 0.618$	$0.575_{-0.021}^{+0.017}$	$0.411 \rightarrow 0.621$
losp	$\theta_{23}/^{\circ}$	$49.0^{+1.1}_{-1.4}$	$39.6 \rightarrow 51.8$	$49.3^{+1.0}_{-1.2}$	$39.9 \rightarrow 52.0$
atn	$\sin^2 heta_{13}$	$0.02221^{+0.00068}_{-0.00062}$	$0.02034 \rightarrow 0.02430$	$0.02240^{+0.00062}_{-0.00062}$	$0.02053 \rightarrow 0.02436$
t SK	$\theta_{13}/^{\circ}$	$8.57^{+0.13}_{-0.12}$	$8.20 \rightarrow 8.97$	$8.61_{-0.12}^{+0.12}$	$8.24 \rightarrow 8.98$
ithou	$\delta_{ m CP}/^{\circ}$	195^{+51}_{-25}	$107 \rightarrow 403$	286^{+27}_{-32}	$192 \rightarrow 360$
M	$\frac{\Delta m_{21}^2}{10^{-5} \ {\rm eV}^2}$	$7.42^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.04$	$7.42_{-0.20}^{+0.21}$	$6.82 \rightarrow 8.04$
	$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.514^{+0.028}_{-0.027}$	$+2.431 \rightarrow +2.598$	$-2.497^{+0.028}_{-0.028}$	$-2.583 \rightarrow -2.412$
		Normal Ore	lering (best fit)	Inverted Orde	ering $(\Delta \chi^2 = 7.1)$
		Normal Ore bfp $\pm 1\sigma$	$\frac{\text{dering (best fit)}}{3\sigma \text{ range}}$	Inverted Orde bfp $\pm 1\sigma$	ering $(\Delta \chi^2 = 7.1)$ 3σ range
	$\sin^2 \theta_{12}$	Normal Ord bfp $\pm 1\sigma$ 0.304^{+0.012}_{-0.012}	$\frac{\text{dering (best fit)}}{3\sigma \text{ range}}$ $0.269 \rightarrow 0.343$	Inverted Orde bfp $\pm 1\sigma$ 0.304^{+0.013}_{-0.012}	ering $(\Delta \chi^2 = 7.1)$ 3σ range $0.269 \rightarrow 0.343$
data	$\frac{\sin^2 \theta_{12}}{\theta_{12}/^{\circ}}$	$\begin{tabular}{ c c c c c c c }\hline Normal Ord \\ \hline bfp \pm 1\sigma \\ \hline 0.304^{+0.012}_{-0.012} \\ \hline 33.44^{+0.77}_{-0.74} \\ \hline \end{tabular}$	$\frac{\text{dering (best fit)}}{3\sigma \text{ range}}$ $0.269 \rightarrow 0.343$ $31.27 \rightarrow 35.86$	Inverted Orde bfp $\pm 1\sigma$ $0.304^{+0.013}_{-0.012}$ $33.45^{+0.78}_{-0.75}$	ering $(\Delta \chi^2 = 7.1)$ 3σ range $0.269 \rightarrow 0.343$ $31.27 \rightarrow 35.87$
ric data	$\frac{\sin^2 \theta_{12}}{\theta_{12}/^{\circ}}$ $\sin^2 \theta_{23}$	$\begin{tabular}{ c c c c c c }\hline Normal Ord \\\hline bfp \pm 1\sigma \\\hline 0.304^{+0.012}_{-0.012} \\\hline 33.44^{+0.77}_{-0.74} \\\hline 0.573^{+0.016}_{-0.020} \end{tabular}$	$\frac{\text{dering (best fit)}}{3\sigma \text{ range}}$ $0.269 \rightarrow 0.343$ $31.27 \rightarrow 35.86$ $0.415 \rightarrow 0.616$	Inverted Orde bfp $\pm 1\sigma$ $0.304^{+0.013}_{-0.012}$ $33.45^{+0.78}_{-0.75}$ $0.575^{+0.016}_{-0.019}$	ering $(\Delta \chi^2 = 7.1)$ 3σ range $0.269 \rightarrow 0.343$ $31.27 \rightarrow 35.87$ $0.419 \rightarrow 0.617$
spheric data	$\frac{\sin^2 \theta_{12}}{\theta_{12}/^{\circ}}$ $\frac{\sin^2 \theta_{23}}{\theta_{23}/^{\circ}}$	$\begin{tabular}{ c c c c c c }\hline Normal Ord \\ \hline bfp \pm 1\sigma \\ \hline 0.304^{+0.012}_{-0.012} \\ \hline 33.44^{+0.77}_{-0.74} \\ \hline 0.573^{+0.016}_{-0.020} \\ \hline 49.2^{+0.9}_{-1.2} \end{tabular}$	$\frac{\text{dering (best fit)}}{3\sigma \text{ range}}$ $0.269 \rightarrow 0.343$ $31.27 \rightarrow 35.86$ $0.415 \rightarrow 0.616$ $40.1 \rightarrow 51.7$		ering $(\Delta \chi^2 = 7.1)$ 3σ range $0.269 \rightarrow 0.343$ $31.27 \rightarrow 35.87$ $0.419 \rightarrow 0.617$ $40.3 \rightarrow 51.8$
atmospheric data	$\frac{\sin^2 \theta_{12}}{\theta_{12}/^{\circ}}$ $\frac{\sin^2 \theta_{23}}{\theta_{23}/^{\circ}}$ $\sin^2 \theta_{13}$	$\begin{tabular}{ c c c c c c }\hline Normal Ord \\\hline bfp \pm 1\sigma \\\hline 0.304^{+0.012}_{-0.012} \\\hline 33.44^{+0.77}_{-0.74} \\\hline 0.573^{+0.016}_{-0.020} \\\hline 49.2^{+0.9}_{-1.2} \\\hline 0.02219^{+0.00062}_{-0.00063} \\\hline \end{tabular}$	$\frac{\text{dering (best fit)}}{3\sigma \text{ range}}$ $0.269 \rightarrow 0.343$ $31.27 \rightarrow 35.86$ $0.415 \rightarrow 0.616$ $40.1 \rightarrow 51.7$ $0.02032 \rightarrow 0.02410$		ering $(\Delta \chi^2 = 7.1)$ 3σ range $0.269 \rightarrow 0.343$ $31.27 \rightarrow 35.87$ $0.419 \rightarrow 0.617$ $40.3 \rightarrow 51.8$ $0.02052 \rightarrow 0.02428$
SK atmospheric data	$\frac{\sin^2 \theta_{12}}{\theta_{12}/^{\circ}}$ $\frac{\sin^2 \theta_{23}}{\theta_{23}/^{\circ}}$ $\frac{\sin^2 \theta_{13}}{\theta_{13}/^{\circ}}$	$\begin{tabular}{ c c c c c c }\hline Normal Ord \\ \hline bfp \pm 1\sigma \\\hline 0.304^{+0.012}_{-0.012} \\\hline 33.44^{+0.77}_{-0.74} \\\hline 0.573^{+0.016}_{-0.020} \\\hline 49.2^{+0.9}_{-1.2} \\\hline 0.02219^{+0.00062}_{-0.00063} \\\hline 8.57^{+0.12}_{-0.12} \\\hline \end{tabular}$	$\frac{\text{dering (best fit)}}{3\sigma \text{ range}}$ $0.269 \rightarrow 0.343$ $31.27 \rightarrow 35.86$ $0.415 \rightarrow 0.616$ $40.1 \rightarrow 51.7$ $0.02032 \rightarrow 0.02410$ $8.20 \rightarrow 8.93$		ering $(\Delta \chi^2 = 7.1)$ 3σ range $0.269 \rightarrow 0.343$ $31.27 \rightarrow 35.87$ $0.419 \rightarrow 0.617$ $40.3 \rightarrow 51.8$ $0.02052 \rightarrow 0.02428$ $8.24 \rightarrow 8.96$
with SK atmospheric data	$\frac{\sin^2 \theta_{12}}{\theta_{12}/^{\circ}}$ $\frac{\sin^2 \theta_{23}}{\theta_{23}/^{\circ}}$ $\frac{\sin^2 \theta_{13}}{\theta_{13}/^{\circ}}$ $\delta_{\rm CP}/^{\circ}$	$\begin{tabular}{ c c c c c c }\hline & Normal Ord \\ \hline & bfp \pm 1\sigma \\ \hline & 0.304^{+0.012}_{-0.012} \\ & 33.44^{+0.77}_{-0.74} \\ \hline & 0.573^{+0.016}_{-0.020} \\ & 49.2^{+0.9}_{-1.2} \\ \hline & 0.02219^{+0.00062}_{-0.00063} \\ & 8.57^{+0.12}_{-0.12} \\ \hline & 197^{+27}_{-24} \\ \hline \end{tabular}$	$\frac{\text{dering (best fit)}}{3\sigma \text{ range}} \\ 0.269 \to 0.343 \\ 31.27 \to 35.86 \\ 0.415 \to 0.616 \\ 40.1 \to 51.7 \\ 0.02032 \to 0.02410 \\ 8.20 \to 8.93 \\ 120 \to 369 \\ \end{cases}$	$\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$	$\begin{array}{c} \text{ering } (\Delta\chi^2 = 7.1) \\ \hline 3\sigma \text{ range} \\ \hline 0.269 \rightarrow 0.343 \\ 31.27 \rightarrow 35.87 \\ \hline 0.419 \rightarrow 0.617 \\ 40.3 \rightarrow 51.8 \\ \hline 0.02052 \rightarrow 0.02428 \\ 8.24 \rightarrow 8.96 \\ \hline 193 \rightarrow 352 \end{array}$
with SK atmospheric data	$\frac{\sin^2 \theta_{12}}{\theta_{12}/^{\circ}}$ $\frac{\sin^2 \theta_{23}}{\theta_{23}/^{\circ}}$ $\frac{\sin^2 \theta_{13}}{\theta_{13}/^{\circ}}$ $\delta_{CP}/^{\circ}$ $\frac{\Delta m_{21}^2}{10^{-5} \text{ eV}^2}$	$\begin{tabular}{ c c c c c c }\hline & Normal Ord \\ \hline & bfp \pm 1\sigma \\ \hline & 0.304^{+0.012}_{-0.012} \\ & 33.44^{+0.77}_{-0.74} \\ \hline & 0.573^{+0.016}_{-0.020} \\ & 49.2^{+0.9}_{-1.2} \\ \hline & 0.02219^{+0.00062}_{-0.00063} \\ & 8.57^{+0.12}_{-0.12} \\ \hline & 197^{+27}_{-24} \\ \hline & 7.42^{+0.21}_{-0.20} \\ \hline \end{tabular}$	$\frac{\text{dering (best fit)}}{3\sigma \text{ range}} \\ \hline 0.269 \rightarrow 0.343 \\ 31.27 \rightarrow 35.86 \\ 0.415 \rightarrow 0.616 \\ 40.1 \rightarrow 51.7 \\ 0.02032 \rightarrow 0.02410 \\ 8.20 \rightarrow 8.93 \\ 120 \rightarrow 369 \\ 6.82 \rightarrow 8.04 \\ \hline \end{cases}$	$\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$	$\begin{array}{c} \text{ering } (\Delta\chi^2 = 7.1) \\ \hline 3\sigma \text{ range} \\ \hline 0.269 \rightarrow 0.343 \\ 31.27 \rightarrow 35.87 \\ \hline 0.419 \rightarrow 0.617 \\ 40.3 \rightarrow 51.8 \\ \hline 0.02052 \rightarrow 0.02428 \\ 8.24 \rightarrow 8.96 \\ \hline 193 \rightarrow 352 \\ \hline 6.82 \rightarrow 8.04 \end{array}$

NuFIT 4.1 (2019)

		Normal Ore	dering (best fit)	Inverted Orde	ering $(\Delta \chi^2 = 6.2)$
		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range
	$\sin^2 \theta_{12}$	$0.310^{+0.013}_{-0.012}$	0.275 ightarrow 0.350	$0.310^{+0.013}_{-0.012}$	$0.275 \rightarrow 0.350$
data	$ heta_{12}/^{\circ}$	$33.82^{+0.78}_{-0.76}$	$31.61 \rightarrow 36.27$	$33.82^{+0.78}_{-0.76}$	$31.61 \rightarrow 36.27$
ıeric	$\sin^2 heta_{23}$	$0.558^{+0.020}_{-0.033}$	$0.427 \rightarrow 0.609$	$0.563^{+0.019}_{-0.026}$	$0.430 \rightarrow 0.612$
lospł	$ heta_{23}/^{\circ}$	$48.3^{+1.1}_{-1.9}$	$40.8 \rightarrow 51.3$	$48.6^{+1.1}_{-1.5}$	$41.0 \rightarrow 51.5$
atm	$\sin^2 heta_{13}$	$0.02241\substack{+0.00066\\-0.00065}$	$0.02046 \rightarrow 0.02440$	$0.02261^{+0.00067}_{-0.00064}$	$0.02066 \rightarrow 0.02461$
t SK	$\theta_{13}/^{\circ}$	$8.61^{+0.13}_{-0.13}$	$8.22 \rightarrow 8.99$	$8.65_{-0.12}^{+0.13}$	$8.26 \rightarrow 9.02$
ithou	$\delta_{ m CP}/^{\circ}$	222^{+38}_{-28}	$141 \rightarrow 370$	285^{+24}_{-26}	$205 \rightarrow 354$
M	$\frac{\Delta m_{21}^2}{10^{-5} \ {\rm eV}^2}$	$7.39_{-0.20}^{+0.21}$	$6.79 \rightarrow 8.01$	$7.39^{+0.21}_{-0.20}$	$6.79 \rightarrow 8.01$
	$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.523^{+0.032}_{-0.030}$	$+2.432 \rightarrow +2.618$	$-2.509^{+0.032}_{-0.030}$	$-2.603 \rightarrow -2.416$
		Normal Ore	dering (best fit)	Inverted Orde	ring $(\Delta \chi^2 = 10.4)$
		Normal Ord bfp $\pm 1\sigma$	$\frac{\text{dering (best fit)}}{3\sigma \text{ range}}$	Inverted Orde bfp $\pm 1\sigma$	ring $(\Delta \chi^2 = 10.4)$ 3σ range
	$\sin^2 \theta_{12}$	Normal Ord bfp $\pm 1\sigma$ $0.310^{+0.013}_{-0.012}$	$\frac{\text{dering (best fit)}}{3\sigma \text{ range}}$ $0.275 \rightarrow 0.350$	Inverted Orde bfp $\pm 1\sigma$ 0.310 ^{+0.013} _{-0.012}	$\frac{\text{ring } (\Delta \chi^2 = 10.4)}{3\sigma \text{ range}}$ $0.275 \to 0.350$
lata	$\frac{\sin^2 \theta_{12}}{\theta_{12}/^\circ}$	Normal Ord bfp $\pm 1\sigma$ $0.310^{+0.013}_{-0.012}$ $33.82^{+0.78}_{-0.76}$	$\frac{\text{dering (best fit)}}{3\sigma \text{ range}}$ $0.275 \rightarrow 0.350$ $31.61 \rightarrow 36.27$	Inverted Orde bfp $\pm 1\sigma$ $0.310^{+0.013}_{-0.012}$ $33.82^{+0.78}_{-0.75}$	$ring (\Delta \chi^2 = 10.4)$ $3\sigma range$ $0.275 \rightarrow 0.350$ $31.61 \rightarrow 36.27$
eric data	$\frac{\sin^2 \theta_{12}}{\theta_{12}/^{\circ}}$ $\sin^2 \theta_{23}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\frac{\text{dering (best fit)}}{3\sigma \text{ range}}$ $0.275 \rightarrow 0.350$ $31.61 \rightarrow 36.27$ $0.433 \rightarrow 0.609$		$ring (\Delta \chi^2 = 10.4)$ $3\sigma range$ $0.275 \rightarrow 0.350$ $31.61 \rightarrow 36.27$ $0.436 \rightarrow 0.610$
spheric data	$\frac{\sin^2 \theta_{12}}{\theta_{12}/^{\circ}}$ $\frac{\sin^2 \theta_{23}}{\theta_{23}/^{\circ}}$	$\begin{tabular}{ c c c c c c c }\hline & Normal Ord \\ \hline & bfp \pm 1\sigma \\ \hline & 0.310^{+0.013}_{-0.012} \\ & 33.82^{+0.78}_{-0.76} \\ \hline & 0.563^{+0.018}_{-0.024} \\ & 48.6^{+1.0}_{-1.4} \\ \hline \end{tabular}$	$\frac{\text{dering (best fit)}}{3\sigma \text{ range}}$ $0.275 \rightarrow 0.350$ $31.61 \rightarrow 36.27$ $0.433 \rightarrow 0.609$ $41.1 \rightarrow 51.3$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	ring $(\Delta \chi^2 = 10.4)$ 3σ range $0.275 \rightarrow 0.350$ $31.61 \rightarrow 36.27$ $0.436 \rightarrow 0.610$ $41.4 \rightarrow 51.3$
atmospheric data	$\frac{\sin^2 \theta_{12}}{\theta_{12}/^{\circ}}$ $\frac{\sin^2 \theta_{23}}{\theta_{23}/^{\circ}}$ $\sin^2 \theta_{13}$	$\begin{tabular}{ c c c c c c c }\hline & Normal Ord \\ \hline & bfp \pm 1\sigma \\ \hline & 0.310^{+0.013}_{-0.012} \\ & 33.82^{+0.78}_{-0.76} \\ \hline & 0.563^{+0.018}_{-0.024} \\ & 48.6^{+1.0}_{-1.4} \\ \hline & 0.02237^{+0.00066}_{-0.00065} \\ \hline \end{tabular}$	$\frac{\text{dering (best fit)}}{3\sigma \text{ range}}$ $0.275 \rightarrow 0.350$ $31.61 \rightarrow 36.27$ $0.433 \rightarrow 0.609$ $41.1 \rightarrow 51.3$ $0.02044 \rightarrow 0.02435$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\frac{\text{ring } (\Delta \chi^2 = 10.4)}{3\sigma \text{ range}}$ $0.275 \to 0.350$ $31.61 \to 36.27$ $0.436 \to 0.610$ $41.4 \to 51.3$ $0.02064 \to 0.02457$
SK atmospheric data	$\frac{\sin^2 \theta_{12}}{\theta_{12}/^{\circ}}$ $\frac{\sin^2 \theta_{23}}{\theta_{23}/^{\circ}}$ $\frac{\sin^2 \theta_{13}}{\theta_{13}/^{\circ}}$	$\begin{tabular}{ c c c c c c c }\hline & Normal Ord \\ \hline & bfp \pm 1\sigma \\ \hline & 0.310^{+0.013}_{-0.012} \\ & 33.82^{+0.78}_{-0.76} \\ \hline & 0.563^{+0.018}_{-0.024} \\ & 48.6^{+1.0}_{-1.4} \\ \hline & 0.02237^{+0.00066}_{-0.00065} \\ & 8.60^{+0.13}_{-0.13} \\ \hline \end{tabular}$	$\frac{\text{dering (best fit)}}{3\sigma \text{ range}} \\ 0.275 \to 0.350 \\ 31.61 \to 36.27 \\ 0.433 \to 0.609 \\ 41.1 \to 51.3 \\ 0.02044 \to 0.02435 \\ 8.22 \to 8.98 \\ \end{cases}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\frac{\text{ring } (\Delta \chi^2 = 10.4)}{3\sigma \text{ range}}$ $0.275 \to 0.350$ $31.61 \to 36.27$ $0.436 \to 0.610$ $41.4 \to 51.3$ $0.02064 \to 0.02457$ $8.26 \to 9.02$
with SK atmospheric data	$\frac{\sin^2 \theta_{12}}{\theta_{12}/^{\circ}}$ $\frac{\sin^2 \theta_{23}}{\theta_{23}/^{\circ}}$ $\frac{\sin^2 \theta_{13}}{\theta_{13}/^{\circ}}$ $\delta_{\rm CP}/^{\circ}$	$\begin{tabular}{ c c c c c }\hline & Normal Ord \\ \hline & bfp \pm 1\sigma \\ \hline & 0.310^{+0.013}_{-0.012} \\ & 33.82^{+0.78}_{-0.76} \\ \hline & 0.563^{+0.018}_{-0.024} \\ & 48.6^{+1.0}_{-1.4} \\ \hline & 0.02237^{+0.00066}_{-0.00065} \\ & 8.60^{+0.13}_{-0.13} \\ & 221^{+39}_{-28} \\ \hline \end{tabular}$	$\frac{\text{dering (best fit)}}{3\sigma \text{ range}} \\ \hline 0.275 \rightarrow 0.350 \\ 31.61 \rightarrow 36.27 \\ 0.433 \rightarrow 0.609 \\ 41.1 \rightarrow 51.3 \\ 0.02044 \rightarrow 0.02435 \\ 8.22 \rightarrow 8.98 \\ 144 \rightarrow 357 \\ \hline \end{array}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$ \frac{\text{ring } (\Delta \chi^2 = 10.4)}{3\sigma \text{ range}} \\ 0.275 \rightarrow 0.350 \\ 31.61 \rightarrow 36.27 \\ 0.436 \rightarrow 0.610 \\ 41.4 \rightarrow 51.3 \\ 0.02064 \rightarrow 0.02457 \\ 8.26 \rightarrow 9.02 \\ 205 \rightarrow 348 $
with SK atmospheric data	$\frac{\sin^2 \theta_{12}}{\theta_{12}/^{\circ}}$ $\frac{\sin^2 \theta_{23}}{\theta_{23}/^{\circ}}$ $\frac{\sin^2 \theta_{13}}{\theta_{13}/^{\circ}}$ $\delta_{\rm CP}/^{\circ}$ $\frac{\Delta m_{21}^2}{10^{-5} \ {\rm eV}^2}$	$\begin{tabular}{ c c c c c }\hline & Normal Ord \\ \hline & bfp \pm 1\sigma \\ \hline & 0.310^{+0.013}_{-0.012} \\ & 33.82^{+0.78}_{-0.76} \\ \hline & 0.563^{+0.018}_{-0.024} \\ & 48.6^{+1.0}_{-1.4} \\ \hline & 0.02237^{+0.00066}_{-0.00065} \\ \hline & 8.60^{+0.13}_{-0.13} \\ \hline & 221^{+39}_{-28} \\ \hline & 7.39^{+0.21}_{-0.20} \\ \hline \end{tabular}$	dering (best fit) 3σ range $0.275 \rightarrow 0.350$ $31.61 \rightarrow 36.27$ $0.433 \rightarrow 0.609$ $41.1 \rightarrow 51.3$ $0.02044 \rightarrow 0.02435$ $8.22 \rightarrow 8.98$ $144 \rightarrow 357$ $6.79 \rightarrow 8.01$	$\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$	$ \frac{\text{ring } (\Delta \chi^2 = 10.4)}{3\sigma \text{ range}} \\ 0.275 \rightarrow 0.350 \\ 31.61 \rightarrow 36.27 \\ 0.436 \rightarrow 0.610 \\ 41.4 \rightarrow 51.3 \\ 0.02064 \rightarrow 0.02457 \\ 8.26 \rightarrow 9.02 \\ 205 \rightarrow 348 \\ 6.79 \rightarrow 8.01 $

- Deference of mixing matrices
 - Lepton mixing: PMNS mixing matrix

 $|U_{\rm PMNS}| \simeq \begin{pmatrix} 0.825 & 0.545 & 0.148 \\ 0.462 & 0.587 & 0.665 \\ 0.326 & 0.598 & 0.732 \end{pmatrix}$

The lepton mixing is large except for reactor angle β_{13}

 $\sin\theta_{13}\simeq 0.148$

Quark mixing: CKM mixing matrix (PDG)

 $|V_{\rm CKM}| \simeq \begin{pmatrix} 0.974 & 0.225 & 0.00355 \\ 0.225 & 0.973 & 0.0414 \\ 0.00886 & 0.0405 & 0.999 \end{pmatrix}$

The quark mixing is small except for Cabibbo angle λ_C $\lambda_C \simeq 0.225$

I want to solve difference of lepton and quark flavor mixing

2. Non-Abelian discrete symmetry - Before reactor experiments were reported θ_{13} , tri-bimaximal mixing (TBM) was good scheme

P. F. Harrison, D. H. Perkins and W. G. Scott, Phys. Lett. B 530 (2002) 167

$$U_{\rm PMNS} = V_{\rm TBM} = \begin{pmatrix} \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \mathbf{0} \\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{pmatrix},$$
$$|U_{e2}| = \frac{1}{\sqrt{3}}, \quad |U_{\mu3}| = \frac{1}{\sqrt{2}}, \quad |U_{e3}| = \mathbf{0}$$

The left-handed Majorana neutrino mass matrix

 $M_{\nu}^{\text{TBM}} = \frac{m_1 + m_3}{2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + \frac{m_2 - m_1}{3} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} + \frac{m_1 - m_3}{2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$

TBM is realized by non-Abelian discrete group

H. Ishimori, T. Kobayashi, H. Ohki, H. Okada, Y. S., and M. Tanimoto, Prog. Theor. Phys. Suppl. 183 (2010) 1; Lect. Notes Phys. 858 (2012) 1, Springer

- Flavor Symmetry
 - Abelian or non-Abelian

Abelian: discriminate between generations non-Abelian: connect different generations

continuous or discrete

continuous: free rotation between generations discrete: definite meaning of generations

• We introduce non-Abelian discrete symmetry as flavor symmetry c.f. gauge symmetry: $SU(3)_Q \times SU(2)_L \times U(1)_Y$

- Typical non-Abelian discrete group
- Symmetry group S_n (# of group elements is n!)

	Number of elements	Geometry	Irreducible representations
S_3	6	Regular triangle	$1_S, 1_A, 2$
S_4	24	Octahedron	$1,1^{\prime},2,3,3^{\prime}$

• Even permutation group A_n (# of group elements is n!/2)

	Number of elements	Geometry	Irreducible representations
A_4	12	Tetrahedron	$1,1^{\prime},1^{\prime\prime},3$

T' group

	Number of elements	Geometry	Irreducible representations
T'	24	Double tetrahedron	$1,1^{\prime},1^{\prime\prime},2,2^{\prime},2^{\prime\prime},3$

- A_4 group

the symmetry group of tetrahedron or even permutation of four elements. Number of elements is 12.

- Irreducible representations of A_4 are $\mathbf{1}, \mathbf{1}', \mathbf{1}'', \mathbf{3}_{\mathbf{S}}, \mathbf{3}_{\mathbf{A}}$
- Multiplication rules are

 $(a_{1}, a_{2}, a_{3})_{\mathbf{3}} \otimes (b_{1}, b_{2}, b_{3})_{\mathbf{3}} = (a_{1}b_{1} + a_{2}b_{3} + a_{3}b_{2})_{\mathbf{1}} \oplus (a_{3}b_{3} + a_{1}b_{2} + a_{2}b_{1})_{\mathbf{1}'}$ $\oplus (a_{2}b_{2} + a_{1}b_{3} + a_{3}b_{1})_{\mathbf{1}''} \oplus \frac{1}{3} \begin{pmatrix} 2a_{1}b_{1} - a_{2}b_{3} - a_{3}b_{3}\\ 2a_{3}b_{3} - a_{1}b_{2} - a_{2}b_{1}\\ 2a_{2}b_{2} - a_{1}b_{3} - a_{3}b_{1} \end{pmatrix}_{\mathbf{3}_{\mathbf{8}}} \oplus \frac{1}{2} \begin{pmatrix} a_{2}b_{3} - a_{3}b_{2}\\ a_{1}b_{2} - a_{2}b_{1}\\ a_{1}b_{3} - a_{3}b_{1} \end{pmatrix}_{\mathbf{3}_{\mathbf{A}}}$

• A_4 invariant representation is $\mathbf{1}$

3. Flavor model in lepton sector

- A_4 neutrino model
 - Tri-bimaximal mixing can be derived by A₄ symmetry
 G. Altarelli and F. Feruglio, Nucl. Phys. B 720 (2005) 64

• Charge assignments of $SU(2), A_4, Z_3$: $(\omega = e^{\frac{2\pi i}{3}})$

	$\mid (l_e, l_\mu, l_ au)$	e^{c}	μ^c	τ^c	$\mid h_{u,d} \mid$	ϕ_l	$\phi_{m u}$	ξ
$\overline{SU(2)}$	2	1	1	1	2	1	1	1
A_4	3	1	1″	1'	1	3	3	1
Z_3	ω	ω^2	ω^2	ω^2	1	1	ω	ω

• $A_4 \times Z_3$ invariant Lagrangian for the Yukawa interaction $\mathcal{L}_{\ell} = y^e e^c l \phi_l h_d / \Lambda + y^{\mu} \mu^c l \phi_l h_d / \Lambda + y^{\tau} \tau^c l \phi_l h_d / \Lambda$ $+ (y^{\nu}_{\phi_{\nu}} \phi_{\nu} + y^{\nu}_{\xi} \xi) l l h_u h_u / \Lambda^2$ Taking VEVs:

 $\langle h_{u,d} \rangle = v_{u,d}, \quad \langle \xi \rangle = \alpha_{\xi} \Lambda$

• VEV alignments: $\langle \phi_l \rangle = \alpha_l \Lambda(1,0,0), \quad \langle \phi_\nu \rangle = \alpha_\nu \Lambda(1,1,1)$

Charged lepton mass matrix: (diagonal)

$$M_{l} = \alpha_{l} v_{d} \begin{pmatrix} y^{e} & 0 & 0 \\ 0 & y^{\mu} & 0 \\ 0 & 0 & y^{\tau} \end{pmatrix}$$

Mass matrix of the left-handed Majorana neutrino (a = -3b)

$$M_{\nu} = a \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + b \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} + c \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix},$$
$$a = \frac{y_{\phi_{\nu}}^{\nu} \alpha_{\nu} v_{u}^{2}}{\Lambda}, \qquad b = -\frac{y_{\phi_{\nu}}^{\nu} \alpha_{\nu} v_{u}^{2}}{3\Lambda}, \qquad c = \frac{y_{\xi}^{\nu} \alpha_{\xi} v_{u}^{2}}{\Lambda}$$

• Altarelli et al introduce only $\mathbf{1}$ in A_4 model

$$M_{\nu} = a \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + b \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} + c \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

• The reactor experiments reported $\theta_{13} \neq 0$

• We introduce not only the trivial singlet 1 but also 1' or 1'', then we discuss the deviation from the tri-bimaximal mixing

$$\mathbf{1}: \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \quad \mathbf{1}': \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \quad \mathbf{1}'': \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$\mathbf{1}'': \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} - \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} - \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

The left-handed Majorana neutrino mass matrix (1')

$$M_{\nu} = a \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + b \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} + c \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} + d \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

By rotating tri-bimaximal mixing

$$M_{\nu} = V_{\text{tri-bi}} \begin{pmatrix} a + c - \frac{d}{2} & 0 & \frac{\sqrt{3}}{2}d \\ 0 & a + 3b + c + d & 0 \\ \frac{\sqrt{3}}{2}d & 0 & a - c + \frac{d}{2} \end{pmatrix} V_{\text{tri-bi}}^{T}$$

Neutrino mass squared differences

$$\Delta m_{31}^2 = -4a\sqrt{c^2 + d^2 - cd} ,$$

$$\Delta m_{21}^2 = (a + 3b + c + d)^2 - (a + \sqrt{c^2 + d^2 - cd})^2$$

The lepton mixing matrix

$$U_{\rm PMNS} = V_{\rm tri-bi} \begin{pmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{pmatrix},$$
$$\tan 2\theta = \frac{\sqrt{3}d}{-2c+d}$$

The relevant lepton mixing matrix elements

$$|U_{e2}| = \frac{1}{\sqrt{3}}, \ |U_{e3}| = \frac{2}{\sqrt{6}} |\sin\theta|, \ |U_{\mu3}| = \left| -\frac{1}{\sqrt{6}} \sin\theta - \frac{1}{\sqrt{2}} \cos\theta \right|$$

• We obtain the non-zero θ_{13}

- Numerical results

We have predicted the magnitude of the θ_{13} before neutrino reactor experiments were reported

Y.S., M. Tanimoto and A. Watanabe, Prog. Theor. Phys. 126 (2011) 81

20th Outstanding Paper Award of the Physical Society of Japan (2015)

- Modified Altarelli model

Y.S., M. Tanimoto and A. Watanabe, Prog. Theor. Phys. 126 (2011) 81

• $A_4 \times Z_3$ invariant Lagrangian for the Yukawa interaction

 $\begin{aligned} \mathcal{L}_{Y} &\equiv \mathcal{L}_{\ell} + \mathcal{L}_{D} + \mathcal{L}_{N}, \\ \mathcal{L}_{\ell} &= y_{e} \phi_{T} l e_{R}^{c} h_{d} / \Lambda + y_{\mu} \phi_{T} l \mu_{R}^{c} h_{d} / \Lambda + y_{\tau} \phi_{T} l \tau_{R}^{c} h_{d} / \Lambda, \\ \mathcal{L}_{D} &= y_{D} l \nu_{R}^{c} h_{u}, \\ \mathcal{L}_{N} &= y_{\phi_{S}} \phi_{S} \nu_{R}^{c} \nu_{R}^{c} + y_{\xi} \xi \nu_{R}^{c} \nu_{R}^{c} + y_{\xi'} \xi' \nu_{R}^{c} \nu_{R}^{c} \end{aligned}$

Charged lepton and Dirac neutrino mass matrices

$$M_{\ell} = \frac{v_d v_T}{\Lambda} \begin{pmatrix} y_e & 0 & 0\\ 0 & y_{\mu} & 0\\ 0 & 0 & y_{\tau} \end{pmatrix}, \quad M_D = y_D v_u \begin{pmatrix} 1 & 0 & 0\\ 0 & 0 & 1\\ 0 & 1 & 0 \end{pmatrix}$$

- Modified Altarelli model

Y.S., M. Tanimoto and A. Watanabe, Prog. Theor. Phys. 126 (2011) 81

Right-handed Majorana neutrino mass matrix

$$M_N = y_{\phi_S} v_S \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} + y_{\xi} u \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} + y_{\xi'} u' \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

 By using seesaw mechanism, the left-handed Majorana Neutrino mass matrix is obtained

$$M_{\nu} = a \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + b \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} + c \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} + d \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

• We obtain the non-zero θ_{13}

- Numerical results

28

- Toward the minimal model

- As we shown, we use non-Abelian discrete symmetry as flavor symmetry to naturally explain mass hierarchy and flavor mixing for elementary particles.
- We introduce non-Abelian discrete symmetry and the scalar fields (so-called "flavons").
- We derive large mixing for lepton sector by using VEV of flavon and its alignment.
- Altarelli and Feruglio introduced two A4 triplet flavons (φT, φS) in non-SUSY framework. However they derived misalignment for their potential analysis.

- Toward the minimal model
- They applied the A4 model to the SUSY. They obtained correct alignments for flavons by introducing so-called "driving fields" such as (ϕ OT, ϕ OS). G. Altarelli, F. Feruglio, 2006

 $\langle \phi_T \rangle \sim (1,0,0), \quad \langle \phi_S \rangle \sim (1,1,1)$ $\langle \phi_T^0 \rangle \sim (0,0,0), \quad \langle \phi_S^0 \rangle \sim (0,0,0)$

 We consider minimal model beyond the SM i.e. non-SUSY model, because there are no signals for new particles e.g. SUSY particles in the LHC experiment.

$\phi(A4, Z3) \rightarrow \phi(3, \omega)$

SMODE Y. Kawamura, Y. Matsuo, Y.S., and S. Takahashi, arXiv:20XX.XXXX

Potential of flavon ϕ

$$V_{\phi} = -M_{\phi}^2 \phi^* \phi + \mu_{\phi} (\phi^3 + \mathbf{h} \cdot \mathbf{c}.) + \lambda_{\phi} (\phi^* \phi)^2$$

- Alignment of flavon ϕ
 - $\langle \phi \rangle \sim (v_a, v_b, v_b)$

ϕ (A4, Z3) $\rightarrow \phi$ (3, ω)

SMODE Y. Kawamura, Y. Matsuo, Y.S., and S. Takahashi, arXiv:20XX.XXXX

Lagrangian for lepton sector : H (1,1)

$$\mathscr{L}_{e}^{Y} = -\frac{y_{e}}{\Lambda} (\bar{l}_{L}\phi)_{1} H e_{R} - \frac{y_{\mu}}{\Lambda} (\bar{l}_{L}\phi)_{1} H \mu_{R} - \frac{y_{\tau}}{\Lambda} (\bar{l}_{L}\phi)_{1} H \tau_{R}$$
$$\mathscr{L}_{\nu}^{D} = -\frac{y_{\nu S}}{\Lambda} (\bar{l}_{L}\nu_{R})_{3S} \tilde{H}\phi - \frac{y_{\nu A}}{\Lambda} (\bar{l}_{L}\nu_{R})_{3A} \tilde{H}\phi$$

$$\mathscr{L}_{\nu}^{M} = -M_{R}(\overline{(\nu_{R})^{c}}\nu_{R})_{1}$$

$\phi(A4, Z3) \rightarrow \phi(3, \omega)$

 $\begin{aligned} \mathscr{L}_{e}^{Y} &= -\frac{y_{e}}{\Lambda} (\bar{l}_{L}\phi)_{1} H e_{R} - \frac{y_{\mu}}{\Lambda} (\bar{l}_{L}\phi)_{1} H \mu_{R} - \frac{y_{\tau}}{\Lambda} (\bar{l}_{L}\phi)_{1} H \tau_{R} \\ \mathscr{L}_{\nu}^{D} &= -\frac{y_{\nu S}}{\Lambda} (\bar{l}_{L}\nu_{R})_{3S} \tilde{H}\phi - \frac{y_{\nu A}}{\Lambda} (\bar{l}_{L}\nu_{R})_{3A} \tilde{H}\phi \\ \mathscr{L}_{\nu}^{M} &= -M_{R} (\overline{(\nu_{R})^{c}}\nu_{R})_{1} \end{aligned}$

,

Mass matrix for lepton sector:
$$\langle \phi \rangle \sim (v_a, v_b, v_b)$$

$$\begin{split} M_{l} &= \frac{v_{H}}{\Lambda} \begin{pmatrix} y_{e}v_{a} & y_{\mu}v_{b} & y_{\tau}v_{b} \\ y_{e}v_{b} & y_{\mu}v_{a} & y_{\tau}v_{b} \\ y_{e}v_{b} & y_{\mu}v_{b} & y_{\tau}v_{a} \end{pmatrix} , \\ M_{D} &= \frac{v_{H}}{\Lambda} \begin{pmatrix} \frac{2}{3}y_{\nu}sv_{a} & -\frac{1}{3}y_{\nu}sv_{b} + \frac{1}{2}y_{\nu}Av_{b} & -\frac{1}{3}y_{\nu}sv_{b} - \frac{1}{2}y_{\nu}Av_{b} \\ -\frac{1}{3}y_{\nu}sv_{b} - \frac{1}{2}y_{\nu}Av_{b} & \frac{2}{3}y_{\nu}sv_{b} & -\frac{1}{3}y_{\nu}sv_{a} + \frac{1}{2}y_{\nu}Av_{a} \\ -\frac{1}{3}y_{\nu}sv_{b} + \frac{1}{2}y_{\nu}Av_{b} & -\frac{1}{3}y_{\nu}sv_{a} - \frac{1}{2}y_{\nu}Av_{a} & \frac{2}{3}y_{\nu}sv_{b} \end{pmatrix} \\ M_{N} &= M_{R} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} , \end{split}$$

ϕ (A4, Z3) $\rightarrow \phi$ (3, ω)

Seesaw mechanism:
$$m_{eff}^{\nu} = -M_D M_N^{-1} M_D^T$$

$$\begin{split} \left\langle \phi \right\rangle &\sim \left(v_{a}, v_{b}, v_{b} \right) \\ M_{l} &= \frac{v_{H}}{\Lambda} \begin{pmatrix} y_{e}v_{a} & y_{\mu}v_{b} & y_{\tau}v_{b} \\ y_{e}v_{b} & y_{\mu}v_{a} & y_{\tau}v_{b} \\ y_{e}v_{b} & y_{\mu}v_{b} & y_{\tau}v_{a} \end{pmatrix} , \\ M_{D} &= \frac{v_{H}}{\Lambda} \begin{pmatrix} \frac{2}{3}y_{\nu S}v_{a} & -\frac{1}{3}y_{\nu S}v_{b} + \frac{1}{2}y_{\nu A}v_{b} & -\frac{1}{3}y_{\nu S}v_{b} - \frac{1}{2}y_{\nu A}v_{b} \\ -\frac{1}{3}y_{\nu S}v_{b} - \frac{1}{2}y_{\nu A}v_{b} & \frac{2}{3}y_{\nu S}v_{b} & -\frac{1}{3}y_{\nu S}v_{a} + \frac{1}{2}y_{\nu A}v_{a} \\ -\frac{1}{3}y_{\nu S}v_{b} + \frac{1}{2}y_{\nu A}v_{b} & -\frac{1}{3}y_{\nu S}v_{a} - \frac{1}{2}y_{\nu A}v_{a} & \frac{2}{3}y_{\nu S}v_{b} \end{pmatrix} \\ M_{N} &= M_{R} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} , \end{split}$$

P. Minkowski (1977); T. Yanagida (1979); M. Gell-Mann, P. Ramond and R. Slansky (1979); R. N. Mohapatra and G. Sen- janovic, (1980)

0

$$\begin{split} m_{\text{TBM}}^{\nu} &= V_{\text{TBM}}^{T} m_{eff}^{\nu} V_{\text{TBM}} \\ &= -\frac{v_{H}^{2}}{M_{R} \Lambda^{2}} \begin{pmatrix} \mathcal{V}_{11} & \frac{(v_{a} - v_{b})(v_{a} + 2v_{b})(4y_{\nu S}^{2} + 3y_{\nu A}^{2})}{18\sqrt{2}} & \frac{y_{\nu S} y_{\nu A} v_{b}(2v_{a} + v_{b})}{\sqrt{3}} \\ \frac{(v_{a} - v_{b})(v_{a} + 2v_{b})(4y_{\nu S}^{2} + 3y_{\nu A}^{2})}{18\sqrt{2}} & \mathcal{V}_{22} & 0 \\ \frac{y_{\nu S} y_{\nu A} v_{b}(2v_{a} + v_{b})}{\sqrt{3}} & 0 & \mathcal{V}_{33} \end{pmatrix} \\ & V_{\text{TBM}} = \begin{pmatrix} \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & 0 \\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{pmatrix} \end{pmatrix} \end{split}$$

• Free parameters: $\frac{v_{H}^{2}}{M_{R}\Lambda^{2}}$ • V_{M} V_{M} V_{M} V_{M}

$$U_{\nu}^{\dagger} \left(m_{\text{TBM}}^{\nu} m_{\text{TBM}}^{\nu \dagger} \right) U_{\nu} = \begin{pmatrix} m_1^2 & 0 & 0\\ 0 & m_2^2 & 0\\ 0 & 0 & m_3^2 \end{pmatrix}$$

$$\overline{l_L} = \begin{pmatrix} \overline{e_L} \\ \overline{\mu_L} \\ \overline{\tau_L} \end{pmatrix} \qquad e_R \qquad \mu_R \qquad \tau_R \qquad \nu_R = \begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix}$$
$$A_4 \qquad 3 \qquad 1 \qquad 1'' \qquad 1' \qquad 3$$
$$Z_3 \qquad \omega^2 \qquad 1 \qquad 1 \qquad 1 \qquad 1$$

• Charged lepton: $H_l = M_l M_l^{\dagger}$ $h_i \equiv y_i^2$

$$\begin{split} \langle \varphi \rangle &\sim (V_{\mathcal{A}}, V_{\mathcal{B}}, V_{\mathcal{B}}) \\ M_{l} &= \frac{v_{H}}{\Lambda} \begin{pmatrix} y_{e}v_{a} & y_{\mu}v_{b} & y_{\tau}v_{b} \\ y_{e}v_{b} & y_{\mu}v_{a} & y_{\tau}v_{b} \\ y_{e}v_{b} & y_{\mu}v_{b} & y_{\tau}v_{a} \end{pmatrix} , \\ M_{D} &= \frac{v_{H}}{\Lambda} \begin{pmatrix} \frac{2}{3}y_{\nu}sv_{a} & -\frac{1}{3}y_{\nu}sv_{b} + \frac{1}{2}y_{\nu}Av_{b} & -\frac{1}{3}y_{\nu}sv_{b} - \frac{1}{2}y_{\nu}Av_{b} \\ -\frac{1}{3}y_{\nu}sv_{b} - \frac{1}{2}y_{\nu}Av_{b} & \frac{2}{3}y_{\nu}sv_{b} & -\frac{1}{3}y_{\nu}sv_{a} + \frac{1}{2}y_{\nu}Av_{a} \\ -\frac{1}{3}y_{\nu}sv_{b} + \frac{1}{2}y_{\nu}Av_{b} & -\frac{1}{3}y_{\nu}sv_{a} - \frac{1}{2}y_{\nu}Av_{a} & \frac{2}{3}y_{\nu}sv_{b} \end{pmatrix} , \\ M_{N} &= M_{R} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} , \end{split}$$

$$\begin{split} H_l &= \frac{v_H^2}{\Lambda^2} \begin{pmatrix} X & b & c \\ b & Y & d \\ c & d & Z \end{pmatrix} \\ U_l^{\dagger} H_l U_l &= \begin{pmatrix} m_e^2 & 0 & 0 \\ 0 & m_{\mu}^2 & 0 \\ 0 & 0 & m_{\tau}^2 \end{pmatrix} \\ \end{split} \qquad \begin{split} X &= v_a^2 h_e + v_b^2 (h_{\mu} + h_{\tau}) \ , \quad Y = v_a^2 h_{\mu} + v_b^2 (h_t - h_e) \ , \\ Z &= v_a^2 h_{\tau} + v_b^2 (h_e + h_{\mu}) \ , \quad b = v_a v_b (h_e + h_{\mu}) + v_b^2 h_{\tau} \ , \\ c &= v_a v_b (h_{\tau} + h_e) + v_b^2 h_{\mu} \ , \quad d = v_a v_b (h_{\mu} + h_{\tau}) + v_b^2 h_e \ . \end{split}$$

 $i=e,\mu, au$

 ϕ (A4, Z3) $\rightarrow \phi$ (3, ω)

$$\overline{l_L} = \begin{pmatrix} \overline{e_L} \\ \overline{\mu_L} \\ \overline{\tau_L} \end{pmatrix} \qquad e_R \qquad \mu_R \qquad \tau_R \qquad \nu_R = \begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix}$$
$$\frac{A_4 \qquad \mathbf{3} \qquad \mathbf{1} \qquad \mathbf{1}'' \qquad \mathbf{1}' \qquad \mathbf{3}$$
$$\frac{Z_3 \qquad \omega^2 \qquad \mathbf{1} \qquad \mathbf{1} \qquad \mathbf{1} \qquad \mathbf{1} \qquad \mathbf{1}$$

Lepton mixing matrix:

$$\begin{aligned}
\nu_{\text{TBM}} &= \begin{pmatrix} \frac{2}{\sqrt{4}} & \frac{1}{\sqrt{3}} & 0 \\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{pmatrix} \\
&\downarrow_{\text{TBM}} &= \begin{pmatrix} m_{1}^{2} & 0 & 0 \\ 0 & m_{2}^{2} & 0 \\ 0 & 0 & m_{3}^{2} \end{pmatrix} \\
&\downarrow_{\text{Free parameters:}} &= \begin{pmatrix} m_{e}^{2} & 0 & 0 \\ 0 & m_{\mu}^{2} & 0 \\ 0 & 0 & m_{\tau}^{2} \end{pmatrix} \\
&\downarrow_{\text{Free parameters:}} &= \begin{pmatrix} \frac{w_{\mu}^{2}}{W_{RA^{2}}} & \Psi_{A} & \Psi_{A} & \Psi_{A} & \Psi_{A} & \Psi_{A} \end{pmatrix} \\
&\downarrow_{\text{Free parameters:}} &= \begin{pmatrix} \frac{w_{\mu}^{2}}{W_{RA^{2}}} & \Psi_{A} & \Psi_{A} & \Psi_{A} & \Psi_{A} & \Psi_{A} \end{pmatrix} \\
&\downarrow_{\text{Free parameters:}} &= \begin{pmatrix} w_{\mu}^{2} & 0 & 0 \\ 0 & m_{\mu}^{2} & 0 \\ 0 & 0 & m_{\tau}^{2} \end{pmatrix} \\
&\downarrow_{\text{Free parameters:}} &= \begin{pmatrix} \frac{w_{\mu}^{2}}{W_{RA^{2}}} & \Psi_{A} & \Psi_{A} & \Psi_{A} & \Psi_{A} & \Psi_{A} & \Psi_{A} \end{pmatrix} \\
&\downarrow_{\text{Free parameters:}} &= \begin{pmatrix} w_{\mu}^{2} & 0 & 0 \\ 0 & 0 & m_{\tau}^{2} & 0 \\ 0 & 0 & m_{\tau}^{2} \end{pmatrix} \\
&\downarrow_{\text{Free parameters:}} &= \begin{pmatrix} w_{\mu}^{2} & 0 & 0 \\ 0 & 0 & m_{\tau}^{2} \end{pmatrix} \\
&\downarrow_{\text{Free parameters:}} &= \begin{pmatrix} w_{\mu}^{2} & 0 & 0 \\ 0 & 0 & m_{\tau}^{2} \end{pmatrix} \\
&\downarrow_{\text{Free parameters:}} &= \begin{pmatrix} w_{\mu}^{2} & \psi_{\mu} & \Psi_{A} & \Psi_{A} & \Psi_{A} & \Psi_{A} \end{pmatrix} \\
&\downarrow_{\text{Free parameters:}} &= \begin{pmatrix} w_{\mu}^{2} & \psi_{\mu} & \Psi_{A} & \Psi_{A} & \Psi_{A} & \Psi_{A} & \Psi_{A} & \Psi_{A} \end{pmatrix} \\
&\downarrow_{\text{Free parameters:}} &= \begin{pmatrix} w_{\mu}^{2} & \psi_{\mu} & \Psi_{A} &$$

$$\overline{l_L} = \begin{pmatrix} \overline{e_L} \\ \overline{\mu_L} \\ \overline{\tau_L} \end{pmatrix} \qquad e_R \qquad \mu_R \qquad \tau_R \qquad \nu_R = \begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix}$$
$$A_4 \qquad \mathbf{3} \qquad \mathbf{1} \qquad \mathbf{1''} \qquad \mathbf{1'} \qquad \mathbf{3}$$
$$Z_3 \qquad \omega^2 \qquad \mathbf{1} \qquad \mathbf{1} \qquad \mathbf{1} \qquad \mathbf{1}$$

§Global fit of the neutrino oscillation

NuFIT 5.0 (2020)

		Normal Ore	lering (best fit)	Inverted Orde	ering $(\Delta \chi^2 = 2.7)$
		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range
م	$\sin^2 \theta_{12}$	$0.304^{+0.013}_{-0.012}$	$0.269 \rightarrow 0.343$	$0.304^{+0.013}_{-0.012}$	$0.269 \rightarrow 0.343$
date	$\theta_{12}/^{\circ}$	$33.44_{-0.75}^{+0.78}$	$31.27 \rightarrow 35.86$	$33.45_{-0.75}^{+0.78}$	$31.27 \rightarrow 35.87$
heric	$\sin^2 \theta_{23}$	$0.570\substack{+0.018\\-0.024}$	$0.407 \rightarrow 0.618$	$0.575\substack{+0.017\\-0.021}$	$0.411 \rightarrow 0.621$
dsou	$\theta_{23}/^{\circ}$	$49.0^{+1.1}_{-1.4}$	$39.6 \rightarrow 51.8$	$49.3^{+1.0}_{-1.2}$	$39.9 \rightarrow 52.0$
ć atr	$\sin^2 heta_{13}$	$0.02221\substack{+0.00068\\-0.00062}$	$0.02034 \to 0.02430$	$0.02240\substack{+0.00062\\-0.00062}$	$0.02053 \to 0.02436$
at SF	$\theta_{13}/^{\circ}$	$8.57^{+0.13}_{-0.12}$	$8.20 \rightarrow 8.97$	$8.61^{+0.12}_{-0.12}$	$8.24 \rightarrow 8.98$
ithou	$\delta_{ m CP}/^{\circ}$	195^{+51}_{-25}	$107 \rightarrow 403$	286^{+27}_{-32}	$192 \rightarrow 360$
M	$\frac{\Delta m_{21}^2}{10^{-5} \ {\rm eV}^2}$	$7.42_{-0.20}^{+0.21}$	$6.82 \rightarrow 8.04$	$7.42^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.04$
	$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.514^{+0.028}_{-0.027}$	$+2.431 \rightarrow +2.598$	$-2.497^{+0.028}_{-0.028}$	$-2.583 \rightarrow -2.412$
		Normal Ore	lering (best fit)	Inverted Orde	ering $(\Delta \chi^2 = 7.1)$
		Normal Ord bfp $\pm 1\sigma$	$\frac{\text{lering (best fit)}}{3\sigma \text{ range}}$	Inverted Orde bfp $\pm 1\sigma$	ering $(\Delta \chi^2 = 7.1)$ 3σ range
	$\sin^2 \theta_{12}$	Normal Ord bfp $\pm 1\sigma$ 0.304 ^{+0.012} _{-0.012}	$\frac{\text{dering (best fit)}}{3\sigma \text{ range}}$ $0.269 \rightarrow 0.343$	Inverted Orde bfp $\pm 1\sigma$ 0.304^{+0.013}_{-0.012}	ering $(\Delta \chi^2 = 7.1)$ 3σ range $0.269 \rightarrow 0.343$
data	$\frac{\sin^2 \theta_{12}}{\theta_{12}/^{\circ}}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\frac{\text{dering (best fit)}}{3\sigma \text{ range}}$ $0.269 \rightarrow 0.343$ $31.27 \rightarrow 35.86$	Inverted Orde bfp $\pm 1\sigma$ $0.304^{+0.013}_{-0.012}$ $33.45^{+0.78}_{-0.75}$	ering $(\Delta \chi^2 = 7.1)$ 3σ range $0.269 \rightarrow 0.343$ $31.27 \rightarrow 35.87$
ric data	$\frac{\sin^2 \theta_{12}}{\theta_{12}/^{\circ}}$ $\sin^2 \theta_{23}$	$\begin{tabular}{ c c c c c c c }\hline Normal Ord \\ \hline bfp \pm 1 \sigma \\ \hline 0.304^{+0.012}_{-0.012} \\ \hline 33.44^{+0.77}_{-0.74} \\ \hline 0.573^{+0.016}_{-0.020} \end{tabular}$	$\frac{\text{dering (best fit)}}{3\sigma \text{ range}}$ $0.269 \rightarrow 0.343$ $31.27 \rightarrow 35.86$ $0.415 \rightarrow 0.616$	Inverted Orde bfp $\pm 1\sigma$ $0.304^{+0.013}_{-0.012}$ $33.45^{+0.78}_{-0.75}$ $0.575^{+0.016}_{-0.019}$	$\frac{\text{ering } (\Delta \chi^2 = 7.1)}{3\sigma \text{ range}}$ $0.269 \rightarrow 0.343$ $31.27 \rightarrow 35.87$ $0.419 \rightarrow 0.617$
spheric data	$\frac{\sin^2 \theta_{12}}{\theta_{12}/^{\circ}}$ $\frac{\sin^2 \theta_{23}}{\theta_{23}/^{\circ}}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\frac{\text{dering (best fit)}}{3\sigma \text{ range}}$ $0.269 \rightarrow 0.343$ $31.27 \rightarrow 35.86$ $0.415 \rightarrow 0.616$ $40.1 \rightarrow 51.7$		$\frac{1}{3\sigma \text{ range}}$ $0.269 \rightarrow 0.343$ $31.27 \rightarrow 35.87$ $0.419 \rightarrow 0.617$ $40.3 \rightarrow 51.8$
atmospheric data	$\frac{\sin^2 \theta_{12}}{\theta_{12}/^{\circ}}$ $\frac{\sin^2 \theta_{23}}{\theta_{23}/^{\circ}}$ $\sin^2 \theta_{13}$	$\begin{tabular}{ c c c c c c c }\hline & Normal Ord \\ \hline & bfp \pm 1\sigma \\ \hline & 0.304^{+0.012}_{-0.012} \\ & 33.44^{+0.77}_{-0.74} \\ \hline & 0.573^{+0.016}_{-0.020} \\ & 49.2^{+0.9}_{-1.2} \\ \hline & 0.02219^{+0.00062}_{-0.00063} \\ \hline \end{tabular}$	$\frac{\text{dering (best fit)}}{3\sigma \text{ range}}$ $0.269 \rightarrow 0.343$ $31.27 \rightarrow 35.86$ $0.415 \rightarrow 0.616$ $40.1 \rightarrow 51.7$ $0.02032 \rightarrow 0.02410$		$\frac{1}{3\sigma \text{ range}} \frac{(\Delta\chi^2 = 7.1)}{3\sigma \text{ range}} \frac{1}{0.269 \rightarrow 0.343} \frac{1}{31.27 \rightarrow 35.87} \frac{1}{0.419 \rightarrow 0.617} \frac{1}{40.3 \rightarrow 51.8} \frac{1}{0.02052 \rightarrow 0.02428} \frac{1}{10000000000000000000000000000000000$
SK atmospheric data	$\frac{\sin^2 \theta_{12}}{\theta_{12}/^{\circ}}$ $\frac{\sin^2 \theta_{23}}{\theta_{23}/^{\circ}}$ $\frac{\sin^2 \theta_{13}}{\theta_{13}/^{\circ}}$	$\begin{tabular}{ c c c c c c }\hline Normal Ord \\ \hline bfp \pm 1 \sigma \\\hline 0.304^{+0.012}_{-0.012} \\\hline 33.44^{+0.77}_{-0.74} \\\hline 0.573^{+0.016}_{-0.020} \\\hline 49.2^{+0.9}_{-1.2} \\\hline 0.02219^{+0.00062}_{-0.00063} \\\hline 8.57^{+0.12}_{-0.12} \\\hline \end{tabular}$	$\frac{\text{dering (best fit)}}{3\sigma \text{ range}} \\ 0.269 \to 0.343 \\ 31.27 \to 35.86 \\ 0.415 \to 0.616 \\ 40.1 \to 51.7 \\ 0.02032 \to 0.02410 \\ 8.20 \to 8.93 \\ \end{cases}$		$\frac{1}{3\sigma \text{ range}} \frac{(\Delta\chi^2 = 7.1)}{3\sigma \text{ range}} \frac{1}{0.269 \rightarrow 0.343} \frac{1}{31.27 \rightarrow 35.87} \frac{1}{0.419 \rightarrow 0.617} \frac{1}{40.3 \rightarrow 51.8} \frac{1}{0.02052 \rightarrow 0.02428} \frac{1}{8.24 \rightarrow 8.96} \frac{1}{8.24 \rightarrow 8.96} \frac{1}{10000000000000000000000000000000000$
with SK atmospheric data	$\frac{\sin^2 \theta_{12}}{\theta_{12}/^{\circ}}$ $\frac{\sin^2 \theta_{23}}{\theta_{23}/^{\circ}}$ $\frac{\sin^2 \theta_{13}}{\theta_{13}/^{\circ}}$ $\delta_{CP}/^{\circ}$	$\begin{tabular}{ c c c c c c c }\hline & Normal Ord \\ \hline & bfp \pm 1\sigma \\ \hline & 0.304^{+0.012}_{-0.012} \\ & 33.44^{+0.77}_{-0.74} \\ \hline & 0.573^{+0.016}_{-0.020} \\ & 49.2^{+0.9}_{-1.2} \\ \hline & 0.02219^{+0.00062}_{-0.00063} \\ & 8.57^{+0.12}_{-0.12} \\ \hline & 197^{+27}_{-24} \\ \hline \end{tabular}$	$\frac{\text{dering (best fit)}}{3\sigma \text{ range}} \\ 0.269 \to 0.343 \\ 31.27 \to 35.86 \\ 0.415 \to 0.616 \\ 40.1 \to 51.7 \\ 0.02032 \to 0.02410 \\ 8.20 \to 8.93 \\ 120 \to 369 \\ \end{cases}$	$\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$	$\overline{\frac{3\sigma \text{ range}}{0.269 \rightarrow 0.343}}$ $0.269 \rightarrow 0.343$ $31.27 \rightarrow 35.87$ $0.419 \rightarrow 0.617$ $40.3 \rightarrow 51.8$ $0.02052 \rightarrow 0.02428$ $8.24 \rightarrow 8.96$ $193 \rightarrow 352$
with SK atmospheric data	$\frac{\sin^2 \theta_{12}}{\theta_{12}/^{\circ}}$ $\frac{\sin^2 \theta_{23}}{\theta_{23}/^{\circ}}$ $\frac{\sin^2 \theta_{13}}{\theta_{13}/^{\circ}}$ $\delta_{\rm CP}/^{\circ}$ $\frac{\Delta m_{21}^2}{10^{-5} \ {\rm eV}^2}$	$\begin{tabular}{ c c c c c c c }\hline & Normal Ord \\ \hline & bfp \pm 1\sigma \\ \hline & 0.304^{+0.012}_{-0.012} \\ & 33.44^{+0.77}_{-0.74} \\ \hline & 0.573^{+0.016}_{-0.020} \\ & 49.2^{+0.9}_{-1.2} \\ \hline & 0.02219^{+0.00062}_{-0.00063} \\ & 8.57^{+0.12}_{-0.12} \\ \hline & 197^{+27}_{-24} \\ \hline & 7.42^{+0.21}_{-0.20} \\ \hline \end{tabular}$	$\frac{\text{dering (best fit)}}{3\sigma \text{ range}} \\ \hline 0.269 \rightarrow 0.343 \\ 31.27 \rightarrow 35.86 \\ \hline 0.415 \rightarrow 0.616 \\ 40.1 \rightarrow 51.7 \\ \hline 0.02032 \rightarrow 0.02410 \\ 8.20 \rightarrow 8.93 \\ \hline 120 \rightarrow 369 \\ \hline 6.82 \rightarrow 8.04 \\ \hline \end{cases}$	$ \begin{array}{c} \mbox{Inverted Orde} \\ \mbox{bfp} \pm 1 \sigma \\ \mbox{0.304}^{+0.013}_{-0.012} \\ \mbox{33.45}^{+0.78}_{-0.75} \\ \mbox{0.575}^{+0.016}_{-0.019} \\ \mbox{49.3}^{+0.9}_{-1.1} \\ \mbox{0.02238}^{+0.00063}_{-0.00062} \\ \mbox{8.60}^{+0.12}_{-0.12} \\ \mbox{282}^{+26}_{-30} \\ \mbox{7.42}^{+0.21}_{-0.20} \end{array} $	$\overline{\frac{3\sigma \text{ range}}{0.269 \rightarrow 0.343}}$ $\overline{\begin{array}{c}0.269 \rightarrow 0.343\\31.27 \rightarrow 35.87\\0.419 \rightarrow 0.617\\40.3 \rightarrow 51.8\\0.02052 \rightarrow 0.02428\\8.24 \rightarrow 8.96\\193 \rightarrow 352\\6.82 \rightarrow 8.04\end{array}}$

NuFIT 4.1 (2019)

		Normal Ore	lering (best fit)	Inverted Orde	ering $(\Delta \chi^2 = 6.2)$
		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range
-	$\sin^2 \theta_{12}$	$0.310\substack{+0.013\\-0.012}$	$0.275 \rightarrow 0.350$	$0.310\substack{+0.013\\-0.012}$	$0.275 \rightarrow 0.350$
data	$ heta_{12}/^{\circ}$	$33.82^{+0.78}_{-0.76}$	$31.61 \rightarrow 36.27$	$33.82_{-0.76}^{+0.78}$	$31.61 \rightarrow 36.27$
heric	$\sin^2 heta_{23}$	$0.558\substack{+0.020\\-0.033}$	$0.427 \rightarrow 0.609$	$0.563\substack{+0.019\\-0.026}$	$0.430 \rightarrow 0.612$
dsot	$ heta_{23}/^{\circ}$	$48.3^{+1.1}_{-1.9}$	$40.8 \rightarrow 51.3$	$48.6^{+1.1}_{-1.5}$	$41.0 \rightarrow 51.5$
t atm	$\sin^2 heta_{13}$	$0.02241^{+0.00066}_{-0.00065}$	$0.02046 \rightarrow 0.02440$	$0.02261^{+0.00067}_{-0.00064}$	$0.02066 \rightarrow 0.02461$
t SK	$\theta_{13}/^{\circ}$	$8.61_{-0.13}^{+0.13}$	$8.22 \rightarrow 8.99$	$8.65_{-0.12}^{+0.13}$	$8.26 \rightarrow 9.02$
ithou	$\delta_{ m CP}/^{\circ}$	222^{+38}_{-28}	$141 \rightarrow 370$	285^{+24}_{-26}	$205 \rightarrow 354$
M	$\frac{\Delta m_{21}^2}{10^{-5} \ {\rm eV}^2}$	$7.39^{+0.21}_{-0.20}$	$6.79 \rightarrow 8.01$	$7.39^{+0.21}_{-0.20}$	$6.79 \rightarrow 8.01$
	$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.523^{+0.032}_{-0.030}$	$+2.432 \rightarrow +2.618$	$-2.509^{+0.032}_{-0.030}$	-2.603 ightarrow -2.416
		Normal Ore	lering (best fit)	Inverted Orde	ring $(\Delta \chi^2 = 10.4)$
		Normal Orc bfp $\pm 1\sigma$	lering (best fit) 3σ range	Inverted Orde bfp $\pm 1\sigma$	ring $(\Delta \chi^2 = 10.4)$ 3σ range
	$\sin^2 \theta_{12}$	Normal Ord bfp $\pm 1\sigma$ 0.310 ^{+0.013} _{-0.012}	$\frac{\text{dering (best fit)}}{3\sigma \text{ range}}$ $0.275 \rightarrow 0.350$	Inverted Orde bfp $\pm 1\sigma$ 0.310 ^{+0.013} _{-0.012}	$\frac{\text{ring } (\Delta \chi^2 = 10.4)}{3\sigma \text{ range}}$ $0.275 \to 0.350$
lata	$\frac{\sin^2 \theta_{12}}{\theta_{12}/^{\circ}}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\frac{\text{dering (best fit)}}{3\sigma \text{ range}}$ $0.275 \rightarrow 0.350$ $31.61 \rightarrow 36.27$	Inverted Orde bfp $\pm 1\sigma$ $0.310^{+0.013}_{-0.012}$ $33.82^{+0.78}_{-0.75}$	$ring (\Delta \chi^2 = 10.4)$ $3\sigma range$ $0.275 \rightarrow 0.350$ $31.61 \rightarrow 36.27$
ric data	$\frac{\sin^2 \theta_{12}}{\theta_{12}/^{\circ}}$ $\sin^2 \theta_{23}$	$\begin{tabular}{ c c c c c c c }\hline Normal Ord \\\hline bfp \pm 1\sigma \\\hline 0.310^{+0.013}_{-0.012} \\\hline 33.82^{+0.78}_{-0.76} \\\hline 0.563^{+0.018}_{-0.024} \end{tabular}$	$\frac{\text{dering (best fit)}}{3\sigma \text{ range}}$ $0.275 \rightarrow 0.350$ $31.61 \rightarrow 36.27$ $0.433 \rightarrow 0.609$		$ring (\Delta \chi^2 = 10.4)$ $3\sigma range$ $0.275 \rightarrow 0.350$ $31.61 \rightarrow 36.27$ $0.436 \rightarrow 0.610$
spheric data	$\frac{\sin^2 \theta_{12}}{\theta_{12}/^{\circ}}$ $\frac{\sin^2 \theta_{23}}{\theta_{23}/^{\circ}}$	$\begin{tabular}{ c c c c c c c }\hline Normal Ord \\ \hline bfp \pm 1\sigma \\ \hline 0.310^{+0.013}_{-0.012} \\ \hline 33.82^{+0.78}_{-0.76} \\ \hline 0.563^{+0.018}_{-0.024} \\ \hline 48.6^{+1.0}_{-1.4} \end{tabular}$	$\frac{\text{dering (best fit)}}{3\sigma \text{ range}}$ $0.275 \rightarrow 0.350$ $31.61 \rightarrow 36.27$ $0.433 \rightarrow 0.609$ $41.1 \rightarrow 51.3$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\frac{\text{ring } (\Delta \chi^2 = 10.4)}{3\sigma \text{ range}}$ $0.275 \to 0.350$ $31.61 \to 36.27$ $0.436 \to 0.610$ $41.4 \to 51.3$
tmospheric data	$\frac{\sin^2 \theta_{12}}{\theta_{12}/^{\circ}}$ $\frac{\sin^2 \theta_{23}}{\theta_{23}/^{\circ}}$ $\sin^2 \theta_{13}$	$\begin{tabular}{ c c c c c c c }\hline & Normal Ord \\ \hline & bfp \pm 1\sigma \\ \hline & 0.310^{+0.013}_{-0.012} \\ & 33.82^{+0.78}_{-0.76} \\ \hline & 0.563^{+0.018}_{-0.024} \\ & 48.6^{+1.0}_{-1.4} \\ \hline & 0.02237^{+0.00066}_{-0.00065} \\ \hline \end{tabular}$	$\frac{\text{dering (best fit)}}{3\sigma \text{ range}}$ $0.275 \rightarrow 0.350$ $31.61 \rightarrow 36.27$ $0.433 \rightarrow 0.609$ $41.1 \rightarrow 51.3$ $0.02044 \rightarrow 0.02435$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\frac{\text{ring } (\Delta \chi^2 = 10.4)}{3\sigma \text{ range}}$ $0.275 \to 0.350$ $31.61 \to 36.27$ $0.436 \to 0.610$ $41.4 \to 51.3$ $0.02064 \to 0.02457$
SK atmospheric data	$\frac{\sin^2 \theta_{12}}{\theta_{12}/^{\circ}}$ $\frac{\sin^2 \theta_{23}}{\theta_{23}/^{\circ}}$ $\frac{\sin^2 \theta_{13}}{\theta_{13}/^{\circ}}$	$\begin{tabular}{ c c c c c }\hline & Normal Ord \\ \hline & bfp \pm 1\sigma \\ \hline & 0.310^{+0.013}_{-0.012} \\ & 33.82^{+0.78}_{-0.76} \\ \hline & 0.563^{+0.018}_{-0.024} \\ & 48.6^{+1.0}_{-1.4} \\ \hline & 0.02237^{+0.00066}_{-0.00065} \\ & 8.60^{+0.13}_{-0.13} \\ \hline \end{tabular}$	$\frac{\text{dering (best fit)}}{3\sigma \text{ range}} \\ 0.275 \to 0.350 \\ 31.61 \to 36.27 \\ 0.433 \to 0.609 \\ 41.1 \to 51.3 \\ 0.02044 \to 0.02435 \\ 8.22 \to 8.98 \\ \end{cases}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\frac{\text{ring } (\Delta \chi^2 = 10.4)}{3\sigma \text{ range}}$ $0.275 \to 0.350$ $31.61 \to 36.27$ $0.436 \to 0.610$ $41.4 \to 51.3$ $0.02064 \to 0.02457$ $8.26 \to 9.02$
with SK atmospheric data	$\frac{\sin^2 \theta_{12}}{\theta_{12}/^{\circ}}$ $\frac{\sin^2 \theta_{23}}{\theta_{23}/^{\circ}}$ $\frac{\sin^2 \theta_{13}}{\theta_{13}/^{\circ}}$ $\delta_{\rm CP}/^{\circ}$	$\begin{tabular}{ c c c c c c }\hline & Normal Ord \\ \hline & bfp \pm 1\sigma \\ \hline & 0.310^{+0.013}_{-0.012} \\ & 33.82^{+0.78}_{-0.76} \\ \hline & 0.563^{+0.018}_{-0.024} \\ & 48.6^{+1.0}_{-1.4} \\ \hline & 0.02237^{+0.00066}_{-0.00065} \\ & 8.60^{+0.13}_{-0.13} \\ & 221^{+39}_{-28} \\ \hline \end{tabular}$	$\frac{\text{dering (best fit)}}{3\sigma \text{ range}} \\ \hline 0.275 \rightarrow 0.350 \\ 31.61 \rightarrow 36.27 \\ 0.433 \rightarrow 0.609 \\ 41.1 \rightarrow 51.3 \\ 0.02044 \rightarrow 0.02435 \\ 8.22 \rightarrow 8.98 \\ 144 \rightarrow 357 \\ \hline \end{array}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$ \frac{\text{ring } (\Delta \chi^2 = 10.4)}{3\sigma \text{ range}} \\ 0.275 \rightarrow 0.350 \\ 31.61 \rightarrow 36.27 \\ 0.436 \rightarrow 0.610 \\ 41.4 \rightarrow 51.3 \\ 0.02064 \rightarrow 0.02457 \\ 8.26 \rightarrow 9.02 \\ 205 \rightarrow 348 $
with SK atmospheric data	$\frac{\sin^2 \theta_{12}}{\theta_{12}/^{\circ}}$ $\frac{\sin^2 \theta_{23}}{\theta_{23}/^{\circ}}$ $\frac{\sin^2 \theta_{13}}{\theta_{13}/^{\circ}}$ $\delta_{\rm CP}/^{\circ}$ $\frac{\Delta m_{21}^2}{10^{-5} \ {\rm eV}^2}$	$\begin{tabular}{ c c c c c }\hline & Normal Ord \\ \hline & bfp \pm 1\sigma \\ \hline & 0.310^{+0.013}_{-0.012} \\ & 33.82^{+0.78}_{-0.76} \\ \hline & 0.563^{+0.018}_{-0.024} \\ & 48.6^{+1.0}_{-1.4} \\ \hline & 0.02237^{+0.00066}_{-0.00065} \\ & 8.60^{+0.13}_{-0.13} \\ \hline & 221^{+39}_{-28} \\ \hline & 7.39^{+0.21}_{-0.20} \\ \hline \end{tabular}$	$\frac{\text{dering (best fit)}}{3\sigma \text{ range}} \\ \hline 0.275 \rightarrow 0.350 \\ 31.61 \rightarrow 36.27 \\ 0.433 \rightarrow 0.609 \\ 41.1 \rightarrow 51.3 \\ 0.02044 \rightarrow 0.02435 \\ 8.22 \rightarrow 8.98 \\ 144 \rightarrow 357 \\ 6.79 \rightarrow 8.01 \\ \hline \end{cases}$	$\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$	$ \frac{\text{ring } (\Delta \chi^2 = 10.4)}{3\sigma \text{ range}} \\ 0.275 \rightarrow 0.350 \\ 31.61 \rightarrow 36.27 \\ 0.436 \rightarrow 0.610 \\ 41.4 \rightarrow 51.3 \\ 0.02064 \rightarrow 0.02457 \\ 8.26 \rightarrow 9.02 \\ 205 \rightarrow 348 \\ 6.79 \rightarrow 8.01 $

§Numerical analyses (preliminary)

The relation among VEVs

 The relation between ratio of the VEVs and phase

Orange: within 3σ range, **Blue**: only neutrino mass squared differences within 3σ range except for lepton mixing angles

VEVs are opposite sign for each other and the phase is limited.

§Numerical analyses (preliminary)

The elation among
 Yukawa couplings

The relation between θ 23 and δ CP

Orange: within 3σ range, Blue: only neutrino mass squared differences within 3σ range except for lepton mixing angles Symmetric Yukawa coupling is proportional to anti-symmetric one. There is relation between θ 23 and δ CP.

§Numerical analyses (preliminary)

• The relation between $\alpha 21$ and $\alpha 31$

The relation between mlight and [mee]

Orange:within 3σ range, Blue: only neutrino mass squared differences within 3σ range except for lepton mixing angles Majorana phases are limited [mee] is 0.050 eV

4. Summary

- We discussed CP violation and quark mixing matrix (CKM matrix)
- We discussed neutrino oscillation and lepton mixing matrix (PMNS matrix)
- We presented successful model by using non-Abelian discrete symmetry ${\cal A}_4$.
- We will apply non-Abelian discrete symmetry to the quark sector and consider origin of the flavor symmetry.