Flavor symmetry and New physics

Kei Yamamoto (Hiroshima U.)

IITB-Hiroshima workshop on Neutrino Physics (2020/10/26-30) 2020/10/30

Based on
Javier Fuentes-Martín, Gino Isidorii, Julie Pagès, KY [1909.02519]
Darius A. Faroughy, Gino Isidori, Felix Wilsch, KY [2005.05366]

The Flavor Problem

- Theoretical arguments based on the hierarchy problem $\rightarrow \mathrm{TeV}$ scale NP
- The measurements of quark flavor-violating observables show a remarkable overall success of the SM

- New flavor-breaking sources of $\mathrm{O}(1)$ at the TeV scale are definitely excluded

$$
\begin{aligned}
& \mathscr{L}_{\text {eff }}=\mathscr{L}_{S M}+\sum_{i} \frac{C_{i}}{\Lambda^{2}} \mathcal{O}_{i}^{d=6}(\mathrm{NP}) \\
& \left|C_{N P}\right| \sim 1 \rightarrow \Lambda_{N P} \sim\left\{\begin{array}{ccc}
500 \mathrm{TeV} & : & B_{s} \\
2000 \mathrm{TeV} & : & B_{d} \\
10^{4}-10^{5} \mathrm{TeV} & : & K^{0}
\end{array}\right.
\end{aligned}
$$

- if we insist with the theoretical prejudice that NP has to emerge in the TeV region, we have to conclude that NP have a highly non-generic flavor structure

Flavor symmetry in SM

$\mathscr{L}_{S M}^{\text {fermion }}=\mathscr{L}_{\text {gauge }}+\mathscr{L}_{\text {Yukawa }}$
fermion sector $\sum_{i=1}^{3} \sum_{\psi_{i}} \overline{\bar{T}}_{i} \bar{D} \psi_{i}$

- in gauge sector $\mathscr{L}_{\text {gauge }}$, there is 3 identical replica of the basic fermion family $\left[\psi=Q_{L}, u_{R}, d_{R}, L_{L}, e_{R}\right]$
\Rightarrow big flavor symmetry is found in gauge sector

$$
\begin{aligned}
U(3)^{5} & =U(3)_{Q_{L}} \times U(3)_{u_{R}} \times U(3)_{d_{R}} \times U(3)_{L_{L}} \times U(3)_{e_{R}} \\
& =S U(3)^{5} \times U(1)^{5}
\end{aligned}
$$

controll flavor dynamics 4 can be identified with B, L and hypercharge

Flavor symmetry in SM

$$
\begin{aligned}
& \mathscr{L}_{S M}^{\text {fermion }}=\mathscr{L}_{\text {gauge }}+\mathscr{L}_{\text {Yukawa }} \\
& \text { fermion sector } \sum_{i=1}^{3} \sum_{y_{i}} \bar{\psi}_{i} i D \psi_{i} \quad \mathscr{L}_{Y}=\bar{Q}_{L}^{i} \sum_{D}^{i j} d_{R}^{j} H+\bar{Q}_{L}^{i} Y_{U}^{i j} u_{R}^{j} \tilde{H}+\bar{L}_{L}^{i} Y_{E}^{i j} e_{R}^{j} H+(h . c .)
\end{aligned}
$$

- in gauge sector $\mathscr{L}_{\text {gauge }}$, there is 3 identical replica of the basic fermion family

$$
\begin{aligned}
& {\left[\psi=Q_{L}, u_{R}, d_{R}, L_{L}, e_{R}\right]} \\
& \Rightarrow \quad \text { big flavor symmetry is found in gauge sector } \\
& \quad \begin{aligned}
U(3)^{5} & =U(3)_{Q_{L}} \times U(3)_{u_{R}} \times U(3)_{d_{R}} \times U(3)_{L_{L}} \times U(3)_{e_{R}} \\
& =S U(3)^{5} \times U(1)^{5}
\end{aligned}
\end{aligned}
$$

controll flavor dynamics \quad can be identified with B, L and hypercharge

- $U(3)^{5}$ flavor symmetry is broken only by the Yukawa couplings $Y_{D, U, E}$

Flavor symmetry in SM + NP

$$
\mathscr{L}_{S M+N P}^{\text {fermion }}=\mathscr{L}_{\text {gauge }}+\mathscr{L}_{\text {Yukawa }}+\mathscr{L}_{N P}
$$

$$
\text { fermion sector } \sum_{i=1}^{3} \sum_{\psi_{i}} \bar{\psi}_{i} i X_{Y_{i}} \quad \mathscr{L}_{Y}=\bar{Q}_{L}^{i} Y_{D}^{i j} d_{R}^{j} H+\bar{Q}_{L}^{i} Y_{U}^{i j} u_{R}^{j} \tilde{H}+\bar{L}_{L}^{i} Y_{E}^{i j} e_{R}^{j} H+(h . c .)
$$

- in gauge sector $\mathscr{L}_{\text {gauge }}$, there is 3 identical replica of the basic fermion family $\left[\psi=Q_{L}, u_{R}, d_{R}, L_{L}, e_{R}\right]$
\Rightarrow big flavor symmetry is found in gauge sector

$$
\begin{aligned}
U(3)^{5} & =U(3)_{Q_{L}} \times U(3)_{u_{R}} \times U(3)_{d_{R}} \times U(3)_{L_{L}} \times U(3)_{e_{R}} \\
& =S U(3)^{5} \times U(1)^{5}
\end{aligned}
$$

controll flavor dynamics - can be identified with B, L and hypercharge

- $U(3)^{5}$ flavor symmetry is broken only by the Yukawa couplings $Y_{D, U, E}$
- Assumption that flavor structure in NP is also controlled by Yukawa is the most reasonable solution to the flavor problem
\Rightarrow Minimal Flavor Violation paradigm

Minimal Flavor Violation (MFV)

$$
\mathscr{L}_{Y}=\bar{Q}_{L}^{i} Y_{D}^{i j} d_{R}^{j} H+\bar{Q}_{L}^{i} Y_{U}^{i j} u_{R}^{j} \tilde{H}+\bar{L}_{L}^{i} Y_{E}^{i j} e_{R}^{j} H+(h . c .)
$$

- assume that $G_{F} \equiv S U(3)^{5}$ is a good symmetry, promoting the $Y_{U, D, E}$ to be dynamical fields with non-trivial transformation properties under G_{F} :

$$
\begin{aligned}
& \text { under } G_{F}=\operatorname{SU}(3)_{Q_{L}} \times \operatorname{SU}(3)_{u_{R}} \times \operatorname{SU}(3)_{d_{R}} \times \operatorname{SU}(3)_{L_{L}} \times \operatorname{SU}(3)_{e_{R}} \\
& Y_{U} \sim(3, \overline{3}, 1,1,1), Y_{D} \sim(3,1, \overline{3}, 1,1), Y_{E} \sim(1,1,1,3, \overline{3}) \\
& Q_{L} \sim(3,1,1,1,1), u_{R} \sim(1,3,1,1,1), d_{R} \sim(1,1,3,1,1), \\
& L_{L} \sim(1,1,1,3,1), e_{R} \sim(1,1,1,1,3)
\end{aligned}
$$

Minimal Flavor Violation (MFV)

$$
\begin{gathered}
\mathscr{L}_{Y}=\bar{Q}_{L}^{i} Y_{D}^{i j} d_{R}^{j} H+\bar{Q}_{L}^{i} Y_{U}^{i j} u_{R}^{j} \tilde{H}+\bar{L}_{L}^{i} Y_{E}^{i j} e_{R}^{j} H+(\text { h.c. }) \\
\overline{3}_{Q_{L}}^{\lambda}{ }_{Q_{Q_{L}} \times \overline{3}_{u_{R}}}{ }^{3_{u_{R}}} \longrightarrow G_{F} \text { invariant }
\end{gathered}
$$

- assume that $G_{F} \equiv S U(3)^{5}$ is a good symmetry, promoting the $Y_{U, D, E}$ to be dynamical fields with non-trivial transformation properties under G_{F} :

$$
\begin{aligned}
& \text { under } G_{F}=\operatorname{SU}(3)_{Q_{L}} \times \operatorname{SU}(3)_{u_{R}} \times \operatorname{SU}(3)_{d_{R}} \times \operatorname{SU}(3)_{L_{L}} \times \operatorname{SU}(3)_{e_{R}} \\
& Y_{U} \sim(3, \overline{3}, 1,1,1), Y_{D} \sim(3,1, \overline{3}, 1,1), Y_{E} \sim(1,1,1,3, \overline{3}) \\
& Q_{L} \sim(3,1,1,1,1), u_{R} \sim(1,3,1,1,1), d_{R} \sim(1,1,3,1,1), \\
& L_{L} \sim(1,1,1,3,1), e_{R} \sim(1,1,1,1,3)
\end{aligned}
$$

Minimal Flavor Violation (MFV)

$$
\begin{gathered}
\mathscr{L}_{Y}=\bar{Q}_{L}^{i} Y_{D}^{i j} d_{R}^{j} H+\bar{Q}_{L}^{i} Y_{U}^{i j} u_{R}^{j} \tilde{H}+\bar{L}_{L}^{i} Y_{E}^{i j} e_{R}^{j} H+(h . c .) \\
\overline{3}_{Q_{L}} 3_{Q_{L} \times \overline{3}_{u_{R}}} 3_{u_{u_{R}}}
\end{gathered}
$$

G_{F} invariant

- assume that $G_{F} \equiv S U(3)^{5}$ is a good symmetry, promoting the $Y_{U, D, E}$ to be dynamical fields with non-trivial transformation properties under G_{F} :

$$
\begin{aligned}
& \text { under } G_{F}=\operatorname{SU}(3)_{Q_{L}} \times \operatorname{SU}(3)_{u_{R}} \times \operatorname{SU}(3)_{d_{R}} \times \operatorname{SU}(3)_{L_{L}} \times \operatorname{SU}(3)_{e_{R}} \\
& Y_{U} \sim(3, \overline{3}, 1,1,1), Y_{D} \sim(3,1, \overline{3}, 1,1), Y_{E} \sim(1,1,1,3, \overline{3}) \\
& Q_{L} \sim(3,1,1,1,1), u_{R} \sim(1,3,1,1,1), d_{R} \sim(1,1,3,1,1), \\
& L_{L} \sim(1,1,1,3,1), e_{R} \sim(1,1,1,1,3)
\end{aligned}
$$

We then define that an effective theory satisfies the criterion of MFV if all higher-dimensional operators, constructed from SM and $Y_{U, D, E}$ (spurion) fields

$$
\mathscr{L}_{N P i n M F V}=\sum_{i} \frac{C_{i}}{\Lambda^{2}} \mathscr{O}_{i}^{d=6}\left(\mathrm{SM} \text { fields }+Y_{U, D, E}\right)
$$

Minimal Flavor Violation (MFV)

- By introducing $Y_{U, D, E}$ fields, we can write higher-dimensional operators in G_{F} invariant way

$$
G_{F}=S U(3)_{Q_{L}} \times S U(3)_{u_{R}} \times S U(3)_{d_{R}}
$$

$$
\left(\bar{Q}_{L}^{i} \quad \gamma_{\mu} Q_{L}^{j}\right)
$$

Minimal Flavor Violation (MFV)

- By introducing $Y_{U, D, E}$ fields, we can write higher-dimensional operators in G_{F} invariant way

$$
G_{F}=S U(3)_{Q_{L}} \times S U(3)_{u_{R}} \times S U(3)_{d_{R}}
$$

$$
\left(\bar{Q}_{L}^{i} Y_{U} Y_{U}^{\dagger} \gamma_{\mu} Q_{L}^{j}\right)
$$

G_{F} invariant
$Y_{U} Y_{U}^{\dagger}$ is transforming as $(8,1,1)$

Minimal Flavor Violation (MFV)

- By introducing $Y_{U, D, E}$ fields, we can write higher-dimensional operators in G_{F} invariant way

$$
G_{F}=S U(3)_{Q_{L}} \times S U(3)_{u_{R}} \times S U(3)_{d_{R}}
$$

$$
\left(\bar{Q}_{L}^{i} Y_{U} Y_{U}^{\dagger} \gamma_{\mu} Q_{L}^{j}\right)
$$

G_{F} invariant
$Y_{U} \sim(3, \overline{3}, 1)$

$$
Y_{U} Y_{U}^{\dagger} \text { is transforming as }(8,1,1)
$$

e.g.) $b_{i} \rightarrow b_{j}$ FCNC transition

$$
\text { int basis }\left(\bar{b}_{L}^{i} Y_{U} Y_{U}^{\dagger} \gamma_{\mu} b_{L}^{j}\right)
$$

$$
\begin{array}{rlrl}
Y_{D} & =\lambda_{d} & \lambda_{d} & =\operatorname{diag}\left(m_{d}, m_{s}, m_{b}\right) / v \\
Y_{U}=V_{C K M}^{\dagger} \lambda_{u} & \text { where } & \lambda_{u}=\operatorname{diag}\left(m_{u}, m_{c}, m_{t}\right) / v \sim \operatorname{diag}(0,0,1) \\
Y_{E}=\lambda_{e} & & \lambda_{e}=\operatorname{diag}\left(m_{e}, m_{\mu}, m_{\tau}\right) / v \\
\hline
\end{array}
$$

$$
\left(Y_{U} Y_{U}^{\dagger}\right)^{i j}=\left(V^{\dagger} \lambda_{u}^{2} V\right)^{i j} \simeq \lambda_{t}^{2} V_{t i}^{*} V_{t j}
$$

mass basis $\lambda_{t}^{2} V_{t i}^{*} V_{t j}\left(\bar{b}_{L}^{i} \gamma_{\mu} b_{L}^{j}\right) \quad \propto\left(\frac{m_{t}}{v}\right)^{2}$ most big effect

Minimal Flavor Violation (MFV)

$$
\begin{aligned}
A\left(d_{i} \rightarrow d_{j}\right)= & A_{S M}+A_{N P} \\
\frac{C_{S M}}{16 \pi^{2} v^{2}} \lambda_{t}^{2} V_{t i}^{*} V_{t j} & \frac{C_{N P} \lambda_{t}^{2} V_{t i}^{*} V_{t j}}{\Lambda^{2}} \\
& \propto(\text { CKM factor })\left[\frac{C_{S M}}{16 \pi^{2} v^{2}}+\frac{C_{N P}}{\Lambda^{2}}\right]
\end{aligned}
$$

In MFV, flavor violation is completely determined by Yukawa couplings and all CP violation originates from the CKM phase

- Different flavor transitions are correlated, differences are only CKM

$$
\begin{aligned}
& A(b \rightarrow s)=\left(V_{t b} V_{t s}^{*}\right)\left[\frac{C_{S M}}{16 \pi^{2} v^{2}}+\frac{C_{N P}}{\Lambda^{2}}\right] \\
& A(s \rightarrow d)=\left(V_{t s} V_{t d}^{*}\right)\left[\begin{array}{c}
\|
\end{array}\right]
\end{aligned}
$$

Minimal Flavor Violation (MFV)

- $b_{i} \rightarrow b_{j}$ FCNC transitions in MFV
$(\bar{L} L)$ type $\quad\left(\bar{b}_{L}^{i} Y_{U} Y_{U}^{\dagger} b_{L}^{j}\right)$
$(\bar{L} R)$ type $\quad\left(\bar{b}_{L}^{i} Y_{U} Y_{U}^{\dagger} Y_{D} b_{R}^{j}\right)$
$(\bar{R} R)$ type $\quad\left(\bar{b}_{R}^{i} Y_{D}^{\dagger} Y_{U} Y_{U}^{\dagger} Y_{D} b_{R}^{j}\right)$

From MFV to $U(2)^{5}$

$$
U(3)^{5}=U(3)_{Q_{L}} \times U(3)_{u_{R}} \times U(3)_{d_{R}} \times U(3)_{L_{L}} \times U(3)_{e_{R}} \text { flavor symmetry }
$$

- Largest flavor symmetry group compatible with the SM gauge symmetry
- MFV = minimal breaking of $U(3)^{5}$ by SM Yukawa couplings

MFV virtue

Naturally small effects in FCNC observables assuming TeV-scale NP

MFV main problem
No explanation for Yukawa hierarchies (masses and mixing angles)

From MFV to $U(2)^{5}$

$$
U(3)^{5}=U(3)_{Q_{L}} \times U(3)_{u_{R}} \times U(3)_{d_{R}} \times U(3)_{L_{L}} \times U(3)_{e_{R}} \text { flavor symmetry }
$$

- Largest flavor symmetry group compatible with the SM gauge symmetry
- MFV = minimal breaking of $U(3)^{5}$ by SM Yukawa couplings

MFV virtue

Naturally small effects in FCNC observables assuming TeV-scale NP

MFV main problem
No explanation for Yukawa hierarchies (masses and mixing angles)

$$
U(2)^{5}=U(2)_{Q_{L}} \times U(2)_{u_{R}} \times U(2)_{d_{R}} \times U(2)_{L_{L}} \times U(2)_{e_{R}} \text { flavor symmetry }
$$

$U(2)^{5}$ flavor symmetry

SM flavor puzzle

SM flavor sector contains a large number of free parameters
[3 lepton masses +6 quark masses $+3+1$ CKM parameters] \leftarrow fixed by data
Striking hierarchy

$$
\text { Mass : } 3 \mathrm{rd}>2 \mathrm{nd}>1 \mathrm{st}
$$

- $U(2)^{5}$ symmetry gives "natural" explanation of why 3rd Yukawa couplings are large (being allowed by the symmetry)
distinguish the first two generations of fermions from the 3rd

$$
\psi=\left(\psi_{1}, \psi_{2}, \psi_{3}\right)
$$

- The symmetry is a good approximation in the SM Yukawa
exact symmetry for $m_{u}, m_{d}, m_{c}, m_{s}=0 \& V_{C K M}=1$
\Rightarrow we only need small breaking terms

$U(2)^{5}$ flavor symmetry

-The set of breaking terms necessary to reproduce the quark spectrum, while keeping small FCNCs beyond the SM

Under $U(2)^{3}=U(2)^{q} \times U(2)^{u} \times U(2)^{d}$ symmetry

$$
\begin{array}{rlr}
Q^{(2)}=\left(Q^{1}, Q^{2}\right) \sim(2,1,1) & Q^{3} \sim(1,1,1) \\
u^{(2)}=\left(u^{1}, u^{2}\right) \sim(1,2,1) & t \sim(1,1,1) \\
d^{(2)}=\left(d^{1}, d^{2}\right) \sim(1,1,2) & b \sim(1,1,1)
\end{array}
$$

quark

Spurion
(U(2) breaking term)

$$
V_{q} \sim(2,1,1), \Delta_{u} \sim(2, \overline{2}, 1), \Delta_{d} \sim(2,1, \overline{2})
$$

Unbroken symmetry

$$
Y_{u}=y_{t}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)^{U(2)_{u}}
$$

After breaking

$\mathrm{U}(2)$ breaking term

$$
\begin{gathered}
|V| \sim\left|V_{t s}\right| \\
\left|\Delta_{u}\right| \sim y_{c}
\end{gathered}
$$

$U(2)$ flavour symmetry provides natural link to the Yukawa couplings

From MFV to $U(2)^{5}$

$$
U(3)^{5}=U(3)_{Q_{L}} \times U(3)_{u_{R}} \times U(3)_{d_{R}} \times U(3)_{L_{L}} \times U(3)_{e_{R}} \text { flavor symmetry }
$$

- Largest flavor symmetry group compatible with the SM gauge symmetry
- MFV = minimal breaking of $U(3)^{5}$ by SM Yukawa couplings

MFV virtue

Naturally small effects in FCNC observables assuming TeV-scale NP

MFV main problem
No explanation for Yukawa hierarchies (masses and mixing angles)

$$
U(2)^{5}=U(2)_{Q_{L}} \times U(2)_{u_{R}} \times U(2)_{d_{R}} \times U(2)_{L_{L}} \times U(2)_{e_{R}} \text { flavor symmetry }
$$

- acting on 1st \& 2nd generations only
- The exact symmetry limit is good starting point for the SM quark spectrum $\left(m_{u}, m_{d}, m_{c}, m_{s}=0 \& V_{C K M}=1\right) \Rightarrow$ we only need small breaking terms
- B-anomalies are compatible with $\mathbf{U}(2)$ flavor symmetry cf [1909.02519]

What we did

part I. SMEFT and $U(2)^{5}$ flavor symmetry

Darius A. Faroughy, Gino Isidori, Felix Wilsch, KY [2005.05366]
part II. B anomalies and $U(2)^{5}$ flavor symmetry

Javier Fuentes-Martín, Gino Isidori, Julie Pagès, KY [1909.02519]

What we did

part I. SMEFT and $U(2)^{5}$ flavor symmetry

Darius A. Faroughy, Gino Isidori, Felix Wilsch, KY [2005.05366]

Javier Fuentes-Martín, Gino Isidori, Julie Pagès, KY [1909.02519]

SM Effective Field Theory (SMEFT)

- SMEFT is a effective theory based on $S U(3)_{c} \times S U(2)_{L} \times U(1)_{Y}$ at scale $\mu_{\mathrm{EW}}<\mu<\mu_{\mathrm{NP}}$

full theory

SMEFT $\quad \mathscr{L}_{\text {eff }} \sim \sum_{i} \frac{C_{i}}{\Lambda^{2}} \sigma_{i}^{d=6}$

SM Effective Field Theory (SMEFT)

Complete non-redundant classification of baryon- and lepton-number conserving dimension-six operators in the SMEFT has been presented (Warsaw basis)
w/o flavor index 59 dim six operators in SMEFT

SM Effective Field Theory (SMEFT)

- Complete non-redundant classification of baryon- and lepton-number conserving dimension-six operators in the SMEFT has been presented (Warsaw basis)
w/o flavor index 59 dim six operators in SMEFT

w/ flavor index 2499 dim six operators in SMEFT

$$
\left(n_{g}=3\right) \quad 1350 \text { CP-even and } 1149 \text { CP-odd }
$$

huge number of flavor symmetry free parameters

Our work

- We analyse how $U(3)^{5}$ and $U(2)^{5}$ flavor symmetries act on SMEFT, providing an organising principle to classify the large number of dim6 operators involving fermion fields

Class	Operators	No symmetry				$U(3)^{5}$	$U(2)^{5}$
1-4	$X^{3}, H^{6}, H^{4} D^{2}, X^{2} H^{2}$	9	6	9	6	?	?
5	$\psi^{2} H^{3}$	27	27	3	3		
6	ψ^{2} X H	72	72	8	8		
7	$\psi^{2} H^{2} D$	51	30	8	1		
8	$(\bar{L} L)(\bar{L} L)$	171	126	5	-		
	$(\bar{R} R)(\bar{R} R)$		195	7	-		
	$(\bar{L} L)(\bar{R} R)$		288	8	-		
	$(\bar{L} R)(\bar{R} L)$		81		1		
	$(\bar{L} R)(\bar{L} R)$	324	324	4	4		
total:		1350	1149		23		

1) Case for $U(3)^{5}$ and MFV
2) Case for $U(2)^{5}$
[3) Case for beyond $U(3)^{5}$ and $U(2)^{5}$]

Operator classification

59 dim six operators in SMEFT
class 1-4: w/o fermion ope.
0 class 5-7 : w/ 2-fermion ope.

$1: X^{3}$		$2: H^{6}$		$3: H^{4} D^{2}$		5: $\psi^{2} H^{3}+$ h.c.	
Q_{G}	$f^{A B C} G_{\mu}^{A \nu} G_{\nu}^{B \rho} G_{\rho}^{C \mu}$	Q_{H}	$\left(H^{\dagger} H\right)^{3}$	$Q_{H \square}$	$\left(H^{\dagger} H\right) \square\left(H^{\dagger} H\right)$	$Q_{e H}$	$\left(H^{\dagger} H\right)\left(\bar{l}_{p} e_{r} H\right.$
$Q_{\widetilde{G}}$	$f^{A B C} \widetilde{G}_{\mu}^{A \nu} G_{\nu}^{B \rho} G_{\rho}^{C \mu}$			$Q_{H D}$	$\left(H^{\dagger} D_{\mu} H\right)^{*}\left(H^{\dagger} D_{\mu} H\right)$	$Q_{u H}$	$\left(H^{\dagger} H\right)\left(\bar{q}_{p} u_{r} \widetilde{H}\right.$
Q_{W}	$\epsilon^{I J K} W_{\mu}^{I \nu} W_{\nu}^{J \rho} W_{\rho}^{K \mu}$					$Q_{\text {dH }}$	$\left(H^{\dagger} H\right)\left(\bar{q}_{p} d_{r} H\right.$
$Q_{\widetilde{W}}$	$\epsilon^{I J K} \widetilde{W}_{\mu}^{I \nu} W_{\nu}^{J \rho} W_{\rho}^{K \mu}$						

4: $X^{2} H^{2}$		6: $\psi^{2} X H+$ h.c.		$7: \psi^{2} H^{2} D$	
$Q_{H G}$	$H^{\dagger} H G_{\mu \nu}^{A} G^{A \mu \nu}$	$Q_{\text {eW }}$	$\left(\bar{l}_{p} \sigma^{\mu \nu} e_{r}\right) \tau^{I} H W_{\mu \nu}^{I}$	$Q_{H l}^{(1)}$	$\left(H^{\dagger} i \overleftrightarrow{D}_{\mu} H\right)\left(\bar{l}_{p} \gamma^{\mu} l_{r}\right)$
$Q_{H \widetilde{G}}$	$H^{\dagger} H \widetilde{G}_{\mu \nu}^{A} G^{A \mu \nu}$	$Q_{e B}$	$\left(\bar{l}_{p} \sigma^{\mu \nu} e_{r}\right) H B_{\mu \nu}$	$Q_{H l}^{(3)}$	$\left(H^{\dagger} i \overleftrightarrow{D_{\mu}^{\prime}} H\right)\left(\bar{l}_{p} \tau^{I} \gamma^{\mu} l_{r}\right)$
$Q_{H W}$	$H^{\dagger} H W_{\mu \nu}^{I} W^{I \mu \nu}$	$Q_{u G}$	$\left(\bar{q}_{p} \sigma^{\mu \nu} T^{A} u_{r}\right) \widetilde{H} G_{\mu \nu}^{A}$	$Q_{\text {He }}$	$\left(H^{\dagger} i \overleftrightarrow{D}_{\mu} H\right)\left(\bar{e}_{p} \gamma^{\mu} e_{r}\right)$
$Q_{H \widetilde{W}}$	$H^{\dagger} H \widetilde{W}_{\mu \nu}^{I} W^{I \mu \nu}$	$Q_{u W}$	$\left(\bar{q}_{p} \sigma^{\mu \nu} u_{r}\right) \tau^{I} \widetilde{H} W_{\mu \nu}^{I}$	$Q_{H q}^{(1)}$	$\left(H^{\dagger} i \overleftrightarrow{D}_{\mu} H\right)\left(\bar{q}_{p} \gamma^{\mu} q_{r}\right)$
$Q_{H B}$	$H^{\dagger} H B_{\mu \nu} B^{\mu \nu}$	$Q_{u B}$	$\left(\bar{q}_{p} \sigma^{\mu \nu} u_{r}\right) \widetilde{H} B_{\mu \nu}$	$Q_{H q}^{(3)}$	$\left(H^{\dagger} i \overleftrightarrow{D}_{\mu}^{I} H\right)\left(\bar{q}_{p} \tau^{I} \gamma^{\mu} q_{r}\right)$
$Q_{H \widetilde{B}}$	$H^{\dagger} H \widetilde{B}_{\mu \nu} B^{\mu \nu}$	$Q_{d G}$	$\left(\bar{q}_{p} \sigma^{\mu \nu} T^{A} d_{r}\right) H G_{\mu \nu}^{A}$	$Q_{H u}$	$\left(H^{\dagger} i \overleftrightarrow{D}_{\mu} H\right)\left(\bar{u}_{p} \gamma^{\mu} u_{r}\right)$
$Q_{H W B}$	$H^{\dagger} \tau^{I} H W_{\mu \nu}^{I} B^{\mu \nu}$	$Q_{d W}$	$\left(\bar{q}_{p} \sigma^{\mu \nu} d_{r}\right) \tau^{I} H W_{\mu \nu}^{I}$	Q_{H}	$\left(H^{\dagger} i \overleftrightarrow{D}_{\mu} H\right)\left(\bar{d}_{p} \gamma^{\mu} d_{r}\right)$
$Q_{H \widetilde{W} B}$	$H^{\dagger} \tau^{I} H \widetilde{W}_{\mu \nu}^{I} B^{\mu \nu}$	$Q_{d B}$	$\left(\bar{q}_{p} \sigma^{\mu \nu} d_{r}\right) H B_{\mu \nu}$	$Q_{H u d}+$ h.c.	$i\left(\widetilde{H}^{\dagger} D_{\mu} H\right)\left(\bar{u}_{p} \gamma^{\mu} d_{r}\right)$

Operator classification

class 8: w/ 4-fermion ope.

59 dim six operators in SMEFT

	$8:(\bar{L} L)(\bar{L} L)$	$8:(\bar{R} R)(\bar{R} R)$	$8:\left(\bar{L}^{2} L\right)(\bar{R} R)$		
$Q_{l l}$	$\left(\bar{l}_{p} \gamma_{\mu} l_{r}\right)\left(\bar{l}_{s} \gamma^{\mu} l_{t}\right)$	$Q_{e e}$	$\left(\bar{e}_{p} \gamma_{\mu} e_{r}\right)\left(\bar{e}_{s} \gamma^{\mu} e_{t}\right)$	$Q_{l e}$	$\left(\bar{l}_{p} \gamma_{\mu} l_{r}\right)\left(\bar{e}_{s} \gamma^{\mu} e_{t}\right)$
$Q_{q q}^{(1)}$	$\left(\bar{q}_{p} \gamma_{\mu} q_{r}\right)\left(\bar{q}_{s} \gamma^{\mu} q_{t}\right)$	$Q_{u u}$	$\left(\bar{u}_{p} \gamma_{\mu} u_{r}\right)\left(\bar{u}_{s} \gamma^{\mu} u_{t}\right)$	$Q_{l u}$	$\left(\bar{l}_{p} \gamma_{\mu} l_{r}\right)\left(\bar{u}_{s} \gamma^{\mu} u_{t}\right)$
$Q_{q q}^{(3)}$	$\left(\bar{q}_{p} \gamma_{\mu} \tau^{I} q_{r}\right)\left(\bar{q}_{s} \gamma^{\mu} \tau^{I} q_{t}\right)$	$Q_{d d}$	$\left(\bar{d}_{p} \gamma_{\mu} d_{r}\right)\left(\bar{d}_{s} \gamma^{\mu} d_{t}\right)$	$Q_{l d}$	$\left(\bar{l}_{p} \gamma_{\mu} l_{r}\right)\left(\bar{d}_{s} \gamma^{\mu} d_{t}\right)$
$Q_{l q}^{(1)}$	$\left(\bar{l}_{p} \gamma_{\mu} l_{r}\right)\left(\bar{q}_{s} \gamma^{\mu} q_{t}\right)$	$Q_{e u}$	$\left(\bar{e}_{p} \gamma_{\mu} e_{r}\right)\left(\bar{u}_{s} \gamma^{\mu} u_{t}\right)$	$Q_{q e}$	$\left(\bar{q}_{p} \gamma_{\mu} q_{r}\right)\left(\bar{e}_{s} \gamma^{\mu} e_{t}\right)$
$Q_{l q}^{(3)}$	$\left(\bar{l}_{p} \gamma_{\mu} \tau^{I} l_{r}\right)\left(\bar{q}_{s} \gamma^{\mu} \tau^{I} q_{t}\right)$	$Q_{e d}$	$\left(\bar{e}_{p} \gamma_{\mu} e_{r}\right)\left(\bar{d}_{s} \gamma^{\mu} d_{t}\right)$	$Q_{q u}^{(1)}$	$\left(\bar{q}_{p} \gamma_{\mu} q_{r}\right)\left(\bar{u}_{s} \gamma^{\mu} u_{t}\right)$
	$Q_{u d}^{(1)}$	$\left(\bar{u}_{p} \gamma_{\mu} u_{r}\right)\left(\bar{d}_{s} \gamma^{\mu} d_{t}\right)$	$Q_{q u}^{(8)}$	$\left(\bar{q}_{p} \gamma_{\mu} T^{A} q_{r}\right)\left(\bar{u}_{s} \gamma^{\mu} T^{A} u_{t}\right)$	
	$Q_{u d}^{(8)}$	$\left(\bar{u}_{p} \gamma_{\mu} T^{A} u_{r}\right)\left(\bar{d}_{s} \gamma^{\mu} T^{A} d_{t}\right)$	$Q_{q d}^{(1)}$	$\left(\bar{q}_{p} \gamma_{\mu} q_{r}\right)\left(\bar{d}_{s} \gamma^{\mu} d_{t}\right)$	
			$Q_{q d}^{(8)}$	$\left(\bar{q}_{p} \gamma_{\mu} T^{A} q_{r}\right)\left(\bar{d}_{s} \gamma^{\mu} T^{A} d_{t}\right)$	

$8:(\bar{L} R)(\bar{R} L)+$ h.c.		$8:(\bar{L} R)(\bar{L} R)+$ h.c.	
$Q_{l e d q}$	$\left(\bar{l}_{p}^{j} e_{r}\right)\left(\bar{d}_{s} q_{t j}\right)$	$Q_{\text {quqd }}^{(1)}$	$\left(\bar{q}_{p}^{j} u_{r}\right) \epsilon_{j k}\left(\bar{q}_{s}^{k} d_{t}\right)$
		$Q_{\text {quqd }}^{(8)}$	$\left(\bar{q}_{p}^{j} T^{A} u_{r}\right) \epsilon_{j k}\left(\bar{q}_{s}^{k} T^{A} d_{t}\right)$
		$Q_{\text {lequ }}^{(1)}$	$\left(\bar{l}_{p}^{j} e_{r}\right) \epsilon_{j k}\left(\bar{q}_{s}^{k} u_{t}\right)$
		$Q_{\text {lequ }}^{(3)}$	$\left(\bar{l}_{p}^{j} \sigma_{\mu \nu} e_{r}\right) \epsilon_{j k}\left(\bar{q}_{s}^{k} \sigma^{\mu \nu} u_{t}\right)$

I) $U(3)^{5}$ and MFV

e.g. class 5 : $(\bar{L} R)$ bilinear

No symmetry \rightarrow (\# parameters) $=($ flavor index)^2
non-hermitian ope. $\rightarrow \mathrm{Re}+\mathrm{Im}$
$(\bar{L} R)$ type ope. \rightarrow Х $(\bar{q} u),(\bar{q} d):$ not allowed in exact $U(3)^{5}$
$\rightarrow\left(\bar{q} Y_{u} u\right),\left(\bar{q} Y_{d} d\right)$: allowed w / Y_{u}
$\rightarrow\left(\bar{q}^{i}\left(Y_{u} Y_{u}^{\dagger}\right) Y_{d} d^{j}\right)$: allowed w/ more $Y_{u, e, d} \quad:$

5: $\psi^{2} H^{3}+$ h.c.	No sym. CP-ev CP-odd	exact $U(3)^{5}$	$\sim \mathcal{O}\left(Y_{u, d, e}\right)$	$\sim \mathcal{O}\left(Y_{d} Y_{u}^{2}\right)$
$Q_{e H} \quad\left(H^{\dagger} H\right)\left(\bar{\ell}_{p} e_{r} H\right)$	99	0	11	11
$Q_{u H} \quad\left(H^{\dagger} H\right)\left(\bar{q}_{p} u_{r} \tilde{H}\right)$	99	0	11	11
$Q_{d H} \quad\left(H^{\dagger} H\right)\left(\bar{q}_{p} d_{r} H\right)$	99	0	11	22
	2727	0	33	44

I) $U(3)^{5}$ and MFV

Class	Operators	No symmetry				$U(3)^{5}$					
			Gen.		Gen.	Ex			$\left.Y_{e . d . u}^{1}\right)$	$\mathcal{O}\left(Y_{e}^{1}, Y_{d}^{1} Y_{u}^{2}\right)$	
1-4	$X^{3}, H^{6}, H^{4} D^{2}, X^{2} H^{2}$	9	6		6	9	6		6	9	6
5	$\psi^{2} H^{3}$	27	27	3	3	-	-	3	3	4	4
6	$\psi^{2} X H$	72	72	8	8	-	-	8	8	11	11
7	$\psi^{2} H^{2} D$	51	30	8		7		7		11	
	$(\bar{L} L)(\bar{L} L)$	171	126	5		8		8		1	
	$(\bar{R} R)(\bar{R} R)$	255	195	7		9				14	
8	$(\bar{L} L)(\bar{R} R)$	360	288	8		8		8		18	
	$(\bar{L} R)(\bar{R} L)$	81	81								
	$(\bar{L} R)(\bar{L} R)$	324			4					4	
	total:	1350	01149	53	23	41	6	52	17	85	26

I) $U(3)^{5}$ and MFV

II) $U(2)^{5}$

Yukawa in $\mathrm{U}(2)$

$$
\begin{array}{cc}
Y_{e}=y_{\tau}\left(\begin{array}{cc}
\Delta_{e} & x_{\tau} V_{\ell} \\
0 & 1
\end{array}\right), & Y_{u}=y_{t}\left(\begin{array}{cc}
\Delta_{u} & x_{t} V_{q} \\
0 & 1
\end{array}\right), \quad Y_{d}=y_{b}\left(\begin{array}{cc}
\Delta_{d} & x_{b} V_{q} \\
0 & 1
\end{array}\right) \\
V_{q} \sim(2,1,1), \Delta_{u} \sim(2, \overline{2}, 1), \Delta_{d} \sim(2,1, \overline{2}) \quad y_{\tau, t, b} \text { and } x_{\tau, t, b}: \mathcal{O}(1) \text { free complex parameters }
\end{array}
$$

Transformation for spurions

$$
V_{q(\ell)}=e^{i \bar{\phi}_{q(\ell)}}\binom{0}{\epsilon_{q(\ell)}}, \quad \Delta_{e}=O_{e}^{\top}\left(\begin{array}{cc}
\delta_{e}^{\prime} & 0 \\
0 & \delta_{e}
\end{array}\right), \quad \Delta_{u}=U_{u}^{\dagger}\left(\begin{array}{cc}
\delta_{u}^{\prime} & 0 \\
0 & \delta_{u}
\end{array}\right), \quad \Delta_{d}=U_{d}^{\dagger}\left(\begin{array}{cc}
\delta_{d}^{\prime} & 0 \\
0 & \delta_{d}
\end{array}\right)
$$

$$
\begin{aligned}
& \epsilon_{i}=\mathcal{O}\left(y_{t}\left|V_{t s}\right|\right)=\mathcal{O}\left(10^{-1}\right) \\
& \delta_{i}=\mathcal{O}\left(\frac{y_{c}}{y_{t}}, \frac{y_{s}}{y_{b}}, \frac{y_{\mu}}{y_{\tau}}\right)=\mathcal{O}\left(10^{-2}\right) \\
& \delta_{i}^{\prime}=\mathcal{O}\left(\frac{y_{u}}{y_{t}}, \frac{y_{d}}{y_{b}}, \frac{y_{e}}{y_{\tau}}\right)=\mathcal{O}\left(10^{-3}\right)
\end{aligned}
$$

$1 \gg \epsilon_{i} \gg \delta_{i} \gg \delta_{i}^{\prime}>0$

$$
O_{e}=\left(\begin{array}{cc}
c_{e} & s_{e} \\
-s_{e} & c_{e}
\end{array}\right), \quad U_{q}=\left(\begin{array}{cc}
c_{q} & s_{q} e^{i \alpha_{q}} \\
-s_{q} e^{-i \alpha_{q}} & c_{q}
\end{array}\right)
$$

II) $U(2)^{5}$

e.g.) leptonic ($\bar{L} L$) bilinear

$$
\psi=\left(\psi_{1}, \psi_{2}, \psi_{3}\right)
$$

$$
\bar{\ell}_{p} \Gamma \Lambda_{L L}^{p r} \ell_{r}, \quad \Lambda_{L L}=\left(\begin{array}{ccc}
a_{1} & 0 & 0 \\
0 & a_{1}+c_{1} \epsilon_{\ell}^{2} & \beta_{1} \epsilon_{\ell} \\
0 & \beta_{1}^{1} \epsilon \ell & a_{2}
\end{array}\right)+\mathcal{O}\left(\delta_{e}^{2}\right) \quad \begin{aligned}
& a: \mathcal{O}\left(V^{0}\right) \\
& \\
& \beta: \mathcal{O}(V) \\
& c: \mathcal{O}\left(V^{2}\right)
\end{aligned}
$$

* Iaten $(a, b, c,,$,$) : real, greek (\alpha, \beta, \gamma,,$,$) : complex$

Spurions	Operator	Explicit expression in flavour components
V^{0}	$a_{1} \bar{L} L+a_{2} \bar{\ell}_{3} \ell_{3}$	$a_{1}\left(\bar{\ell}_{1} \ell_{1}+\bar{\ell}_{2} \ell_{2}\right)+a_{2}\left(\bar{\ell}_{3} \ell_{3}\right)$
V^{1}	$\beta_{1} \bar{L} V_{\ell} \ell_{3}+$ h.c.	$\beta_{1} \epsilon_{\ell}\left(\bar{\ell}_{2} \ell_{3}\right)+$ h.c.
V^{2}	$c_{1} \bar{L} V_{\ell} V_{\ell}^{\dagger} L$	$c_{1} \epsilon_{\ell}^{2}\left(\bar{\ell}_{2} \ell_{2}\right)$
$\Delta^{1}, \Delta^{1} V^{1}$	-	-
Δ^{2}	$h_{1} \bar{L} \Delta_{e} \Delta_{e}^{\dagger} L$	$\approx h_{1}\left[\delta_{e}^{2}\left(\bar{\ell}_{2} \ell_{2}\right)-s_{e} \delta_{e}^{2}\left(\bar{\ell}_{1} \ell_{2}+\bar{\ell}_{2} \ell_{1}\right)+\left(s_{e}^{2} \delta_{e}^{2}+\delta_{e}^{\prime 2}\right)\left(\bar{\ell}_{1} \ell_{1}\right)\right]$
$\Delta^{2} V^{1}$	$\lambda_{1} \bar{L} \Delta_{e} \Delta_{e}^{\dagger} V_{\ell} \ell_{3}+$ h.c.	$\approx \lambda_{1} \epsilon_{\ell} \delta_{e}^{2}\left(\bar{\ell}_{2} \ell_{3}-s_{e} \bar{\ell}_{1} \ell_{3}\right)+$ h.c.
$\Delta^{2} V^{2}$	$\mu_{1} \bar{L} \Delta_{e} \Delta_{e}^{\dagger} V_{\ell} V_{\ell}^{\dagger} L+$ h.c.	$\approx \mu_{1} \epsilon_{\ell}^{2} \delta_{e}^{2}\left(\bar{\ell}_{2} \ell_{2}-s_{e} \bar{\ell}_{1} \ell_{2}\right)+$ h.c.

II) $U(2)^{5}$

e.g.) leptonic ($\bar{R} R$) bilinear

$$
\bar{e}_{p} \Gamma \Lambda_{R R}^{p r} e_{r}, \quad \Lambda_{R R}=\left(\begin{array}{ccc}
a_{1} & 0 & \sigma_{1}^{*} \epsilon_{\ell} s_{e} \delta_{e}^{\prime} \\
0 & a_{1} & \sigma_{1}^{*} \epsilon_{\ell} \delta_{e} \\
\sigma_{1} \epsilon_{\ell} s_{e} \delta_{e}^{\prime} & \sigma_{1} \epsilon_{\ell} \delta_{e} & a_{2}
\end{array}\right)+\mathcal{O}\left(\delta_{e}^{2}\right) \quad \begin{gathered}
\boldsymbol{O}\left(V^{0}\right) \\
\overline{\mathcal{O}}: \mathcal{O}(V) \\
c: \mathcal{O}\left(V^{2}\right)
\end{gathered}
$$

Spurions	Operator ($\bar{e} e$ type $)$	Explicit expression in flavour components
V^{0}	$a_{1} \bar{E} E+a_{2} \bar{e}_{3} e_{3}$	$a_{1}\left(\bar{e}_{1} e_{1}+\bar{e}_{2} e_{2}\right)+a_{2}\left(\bar{e}_{3} e_{3}\right)$
V^{1}, V^{2}, Δ^{1}	-	
$\Delta^{1} V^{1}$	$\sigma_{1} \bar{e}_{3} V_{\ell}^{\dagger} \Delta_{e} E+$ h.c.	$\approx \sigma_{1} \epsilon_{\ell}\left[\delta_{e}\left(\bar{e}_{3} e_{2}\right)+s_{e} \delta_{e}^{\prime}\left(\bar{e}_{3} e_{1}\right)\right]+$ h.c.
Δ^{2}	$h_{1} \bar{E} \Delta_{e}^{\dagger} \Delta_{e} E$	$h_{1}\left[\delta_{e}^{2}\left(\bar{e}_{2} e_{2}\right)+\delta_{e}^{\prime 2}\left(\bar{e}_{1} e_{1}\right)\right]$
$\Delta^{2} V^{1}$	-	
$\Delta^{2} V^{2}$	$m_{1} \bar{E} \Delta_{e}^{\dagger} V_{\ell} V_{\ell}^{\dagger} \Delta_{e} E$	$\approx m_{1} \epsilon_{\ell}^{2}\left[\delta_{e}^{2}\left(\bar{e}_{2} e_{2}\right)+s_{e} \delta_{e}^{\prime} \delta_{e}\left(\bar{e}_{1} e_{2}+\bar{e}_{2} e_{1}\right)+s_{e}^{2} \delta_{e}^{\prime 2}\left(\bar{e}_{1} e_{1}\right)\right]$

II) $U(2)^{5}$

Results for bilinear structure

Class	N. indep. structures	$U(2)^{5}$ breaking terms				
		V^{0}	V^{1}	V^{2}	Δ^{1}	$\Delta^{1} V^{1}$
5 \& 6: $(\bar{L} R)$	11	$11 \quad 11$	$11 \quad 11$	- -	$11 \quad 11$	1111
7: ($\bar{L} L$)	4		4		- -	- -
7: $(\bar{R} R)$	3		- -	- -	- -	33
7: $Q_{\text {Hud }}$	1	1	- -	- -	- -	$2 \quad 2$
total:	19	$26 \quad 12$	$15 \quad 15$	4 -	1111	1616

II) $U(2)^{5}$

4 fermion operator $(\bar{L} L)(\bar{L} L)$

$$
\psi=\frac{\left(\psi_{1}, \psi_{2}, \psi_{3}\right)}{L} \ell_{3}
$$

$$
\mathcal{O}_{\ell q}^{(1)}=\left(\bar{\ell}^{i} \gamma_{\mu} \ell^{j}\right)\left(\bar{q}^{n} \gamma^{\mu} q^{m}\right) \text { and } \mathcal{O}_{\ell q}^{(3)}=\left(\bar{\ell}^{i} \gamma_{\mu} \tau^{I} \ell^{j}\right)\left(\bar{q}^{n} \gamma^{\mu} \tau^{I} q^{m}\right) \text { case }
$$

$$
\begin{aligned}
& V^{0}: \quad\left[a_{1}(\bar{L} L)(\bar{Q} Q)+a_{2}(\bar{L} L)\left(\bar{q}_{3} q_{3}\right)+a_{3}\left(\bar{\ell}_{3} \ell_{3}\right)(\bar{Q} Q)+a_{4}\left(\bar{\ell}_{3} \ell_{3}\right)\left(\bar{q}_{3} q_{3}\right)\right], \\
& V^{1}: \quad\left[\beta_{1}\left(\bar{L} V_{\ell} \ell_{3}\right)(\bar{Q} Q)+\beta_{2}\left(\bar{L} V_{\ell} \ell_{3}\right)\left(\bar{q}_{3} q_{3}\right)+\beta_{3}(\bar{L} L)\left(\bar{Q} V_{q} q_{3}\right)+\beta_{4}\left(\bar{\varphi}_{3} \ell_{3}\right)\left(\bar{Q} V_{q} q_{3}\right)+\text { h.c. }\right], \\
& V^{2}: \quad\left[c_{1}\left(\bar{L}^{p} V_{\ell}^{p} V_{\ell}^{\dagger r} L^{r}\right)(\bar{Q} Q)+c_{2}\left(\bar{L}^{p} V_{\ell}^{p} V_{\ell}^{\dagger r} L^{r}\right)\left(\bar{q}_{3} q_{3}\right)+c_{3}(\bar{L} L)\left(\bar{Q}^{p} V_{q}^{p} V_{q}^{\dagger r} Q^{r}\right)\right. \\
& \left.+c_{4}\left(\bar{e}_{3} \ell_{3}\right)\left(\bar{Q}^{p} V_{q}^{p} V_{q}^{\dagger r} Q^{r}\right)+\left(\gamma_{1}\left(\bar{L} V_{\ell} \ell_{3}\right)\left(\bar{Q} V_{q} q_{3}\right)+\gamma_{2}\left(\bar{L} V_{\ell} \ell_{3}\right)\left(\bar{q}_{3} V_{q}^{\dagger} Q\right)+\text { h.c. }\right)\right], \\
& V^{3}: \quad\left[\xi_{1}\left(\bar{L}^{p} V_{\ell}^{p} V_{\ell}^{\dagger r} L^{r}\right)\left(\bar{Q} V_{q} q_{3}\right)+\xi_{2}\left(\bar{L} V_{\ell} \ell_{3}\right)\left(\bar{Q}^{p} V_{q}^{p} V_{q}^{\dagger r} Q^{r}\right)+\text { h.c. }\right] .
\end{aligned}
$$

II) $U(2)^{5}$

4 fermion operator $(\bar{L} L)(\bar{L} L)$

$$
\mathcal{O}_{\ell q}^{(1)}=\left(\bar{\ell}^{i} \gamma_{\mu} \ell^{j}\right)\left(\bar{q}^{n} \gamma^{\mu} q^{m}\right) \text { and } \mathcal{O}_{\ell q}^{(3)}=\left(\bar{\ell}^{i} \gamma_{\mu} \tau^{I} \ell^{j}\right)\left(\bar{q}^{n} \gamma^{\mu} \tau^{I} q^{m}\right) \text { case }
$$

$$
\begin{aligned}
& a: \mathcal{O}\left(V^{0}\right) \\
& \quad i=j, n=m
\end{aligned}
$$

: quark \& lepton conserving

$$
\beta: \mathcal{O}(V)
$$

$i \neq j$ or $n \neq m$
:quark or lepton
c: $\mathcal{O}\left(V^{2}\right)$
$i \neq j, n \neq m$
:quark \& lepton

II) $U(2)^{5}$

	$U(2)^{5}$												$\mathcal{O}\left(V^{3}, \Delta^{1} V^{1}\right)$	
Operators	Exact		$\mathcal{O}\left(V^{1}\right)$		$\mathcal{O}\left(V^{2}\right)$		$\mathcal{O}\left(V^{1}, \Delta^{1}\right)$		$\mathcal{O}\left(V^{2}, \Delta^{1}\right)$		$\mathcal{O}\left(V^{2}, \Delta^{1} V^{1}\right)$			
Class 1-4	9	6	9	6	9	6	9	6	9	6	9	6	9	6
$\psi^{2} H^{3}$	3	3	6	6	6	6	9	9	9	9	12	12	12	12
$\psi^{2} X H$	8	8	16	16	16	16	24	24	24	24	32	32	32	32
$\psi^{2} H^{2} D$	15	1	19	5	23	5	19	5	23	5	28	10	28	10
$(\bar{L} L)(\bar{L} L)$	23	-	40	17	67	24	40	17	67	24	67	24	74	31
$(\bar{R} R)(\bar{R} R)$	29	-	29	-	29	-	29	-	29	-	53	24	53	24
$(\bar{L} L)(\bar{R} R)$	32	-	48	16	64	16	53	21	69	21	90	42	90	42
$(\bar{L} R)(\bar{R} L)$	1	1	3	3	4	4	5	5		6	10	10	10	10
$(\bar{L} R)(\bar{L} R)$	4	4	12	12	16	16	24	24	28	28	48	48	48	48
total:	124	23	182			93	212	111	264	123	349	208		215
					~30									

Normal
-2500 $U(2)^{\wedge} 5$

II) $U(2)^{5}$

e.g. relevant operators for semileptonic B decays

$$
\begin{aligned}
\mathcal{O}_{\ell q}^{(1)} & =\left(\bar{\ell}_{L}^{\alpha} \gamma^{\mu} \ell_{L}^{\beta}\right)\left(\bar{q}_{L}^{i} \gamma_{\mu} q_{L}^{j}\right) \\
\mathcal{O}_{\ell q}^{(3)} & =\left(\bar{\ell}_{L}^{\alpha} \gamma^{\mu} \tau^{I} \ell_{L}^{\beta}\right)\left(\bar{q}_{L}^{i} \gamma_{\mu} \tau^{I} q_{L}^{j}\right) \\
\mathcal{O}_{\ell d} & =\left(\bar{\ell}_{L}^{\alpha} \gamma^{\mu} \ell_{L}^{\beta}\right)\left(\bar{d}_{R}^{i} \gamma_{\mu} d_{R}^{j}\right) \\
\mathcal{O}_{q e} & =\left(\bar{q}_{L}^{i} \gamma^{\mu} q_{L}^{j}\right)\left(\bar{e}_{R}^{\alpha} \gamma_{\mu} e_{R}^{\beta}\right)
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{O}_{e d} & =\left(\bar{e}_{R}^{\alpha} \gamma^{\mu} e_{R}^{\beta}\right)\left(\bar{d}_{R}^{i} \gamma_{\mu} d_{R}^{j}\right), \\
\mathcal{O}_{\ell e d q} & =\left(\bar{\ell}_{L}^{\alpha} e_{R}^{\beta}\right)\left(\bar{d}_{R}^{i} q_{L}^{j}\right), \\
\mathcal{O}_{\ell e q u}^{(1)} & =\left(\bar{\ell}_{L}^{a, \alpha} e_{R}^{\beta}\right) \epsilon_{a b}\left(\bar{q}_{L}^{a, i} u_{R}^{j}\right), \\
\mathcal{O}_{\ell e q u}^{(3)} & =\left(\bar{\ell}_{L}^{a, \alpha} \sigma_{\mu \nu} e_{R}^{\beta}\right) \epsilon_{a b}\left(\bar{q}_{L}^{b, i} \sigma^{\mu \nu} u_{R}^{j}\right)
\end{aligned}
$$

II) $U(2)^{5}$

e.g. relevant operators for semileptonic B decays
only few yield sizable effects if we impose a minimally broken $U(2)^{5}$ symmetry
$\sim \mathcal{O}\left(V^{2}\right)$

$$
\begin{aligned}
\mathcal{O}_{\ell q}^{(1)} & =\left(\bar{\ell}_{L}^{\alpha} \gamma^{\mu} \ell_{L}^{\beta}\right)\left(\bar{q}_{L}^{i} \gamma_{\mu} q_{L}^{j}\right), \\
\mathcal{O}_{\ell q}^{(3)} & =\left(\bar{\ell}_{L}^{\alpha} \gamma^{\mu} \tau^{I} \ell_{L}^{\beta}\right)\left(\bar{q}_{L}^{i} \gamma_{\mu} \tau^{I} q_{L}^{j}\right), \\
\mathcal{O}_{\ell d} & =\left(\bar{\ell}_{L}^{\alpha} \gamma^{\mu} \ell_{L}^{\beta}\right)\left(\bar{d}_{R}^{i} \gamma_{\mu} d_{R}^{j}\right), \\
\mathcal{O}_{q e} & =\left(\bar{q}_{L}^{i} \gamma^{\mu} q_{L}^{j}\right)\left(\bar{e}_{R}^{\alpha} \gamma_{\mu} e_{R}^{\beta}\right),
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{O}_{\ell d} & =\left(\bar{e}_{R}^{\alpha} \gamma^{\mu} e_{R}^{\beta}\right)\left(\bar{d}_{R}^{i} \gamma_{\mu} d_{R}^{j}\right), \\
\mathcal{O}_{\ell e d q} & =\left(\bar{\ell}_{L}^{\alpha} e_{R}^{\beta}\right)\left(\bar{d}_{R}^{i} q_{L}^{j}\right), \\
\text { O}_{L}^{(1)} & =\left(\bar{\ell}_{L}^{a, \alpha} e_{R}^{\beta}\right) \epsilon_{a b}\left(\bar{q}_{L}^{a, i} u_{R}^{j}\right), \\
\text { O}^{(3)} & =\left(\bar{\ell}_{L}^{a, \alpha} \sigma_{\mu \nu} e_{R}^{\beta}\right) \epsilon_{a b}\left(\bar{q}_{L}^{, i} \sigma^{\mu \nu} u_{R}^{j}\right)
\end{aligned}
$$

LFV at the LHC

Lepton Flavor Violating (LFV) Drell-Yan process $p p \rightarrow \tau \bar{\ell}(\ell=e, \mu)$

$$
\begin{aligned}
\sigma(p p \rightarrow \tau \bar{\ell})= & \frac{s}{144 \pi \Lambda^{4}} \operatorname{Tr}\left(F_{q}^{\ell \tau}\left(\left\{C_{i}\right\}\right) \cdot K_{q}\right) \\
& \text { SMEFT tensor } \uparrow
\end{aligned}
$$

semi-leptonic 4 fermion operators $\mathcal{O}_{\ell q}^{(1,3)}$

$$
\begin{aligned}
F_{u}^{\ell \tau n m}= & \left|V_{\mathrm{CKM}}^{n r} V_{\mathrm{CKM}}^{m s}\left(\Sigma_{\ell q}^{(1) \ell \tau, r s}-\Sigma_{\ell q}^{(3) \ell \tau, r s}\right)\right|^{2}, \\
F_{d}^{\ell \tau n m}= & \left|\Sigma_{\ell q}^{(1) \ell \tau, n m}+\Sigma_{\ell q}^{(3) \ell \tau, n m}\right|^{2}, \\
& \Sigma_{\ell q}: \mathrm{U}(2) \text { spurion parameters } \quad \Sigma_{\ell q}^{i j, n m}\left(\bar{\ell}_{i} \Gamma \ell_{j}\right)\left(\bar{q}_{n} \Gamma q_{m}\right)
\end{aligned}
$$

- Correlations with low-energy process
quark \& Lepton contributions \leftarrow bound from $B_{s} \rightarrow \tau \ell$
\Rightarrow their impact in CS is negligible

part I. Summary

- NP may have a highly non-generic flavor structure
\rightarrow Flavor symmetry MFV and $U(2)$ flavor symmetry
- We analyze how $U(3)^{5}$ and $U(2)^{5}$ flavor symmetries act on SMEFT
2499 in SMEFT

huge number of
free parameters
:---
independent parameters

$U(3)^{5}$ and MFV drastic reduction : ~ 25 times smaller
$U(2)^{5}$ drastic reduction: ~ one order smaller

- This classification can be a useful first step toward a systematic analysis in motivated flavor versions of the SMEFT

What we did

part I. SMEFT and $U(2)^{5}$ flavor symmetry
 Darius A. Faroughy, Gino Isidori, Fellx WVIlsch, KYY [2005.05366]

part II. B anomalies and $U(2)^{5}$ flavor symmetry

Javier Fuentes-Martín, Gino Isidori, Julie Pagès, KY [1909.02519]

B anomalies

Lepton Flavour Universality Violation in semileptonic B decays

$$
\begin{gathered}
b \rightarrow c \tau \nu \quad R_{D^{(*)}}^{\exp }>R_{D^{(*)}}^{S M} \\
R_{D^{(*)}}=\frac{\mathcal{B}\left(B \rightarrow D^{(*)} \tau \nu\right)}{\mathcal{B}\left(B \rightarrow D^{(*)} \ell \nu\right)}
\end{gathered}
$$

Tree-level in SM
LFUV in τ vs μ / e

$$
\begin{aligned}
& b \rightarrow \text { sll } \quad R_{K^{\left({ }^{(1)}\right.}}^{\exp }<R_{K^{\left({ }^{(2)}\right.}}^{S M} \\
& R_{K^{(*)}}=\frac{\mathcal{B}\left(B \rightarrow K^{(*)} \mu^{+} \mu^{-}\right)}{\mathcal{B}\left(B \rightarrow K^{(*)} e^{+} e^{-}\right)}
\end{aligned}
$$

loop-level in SM
LFUV in μ vs e

$$
\text { B anomalies } \quad R_{D^{(*)}}=\frac{\mathscr{B}\left(B \rightarrow D^{(*)} \tau \nu\right)}{\mathscr{B}\left(B \rightarrow D^{(*)} \ell \nu\right)}
$$

What is $\bar{B} \rightarrow D^{(*)} \tau \bar{\nu}$ decay ?

$$
\begin{aligned}
& \bar{B}=B^{-}(b \bar{u}) \text { or } \bar{B}^{0}(b \bar{d}) \\
& D=D^{0}(c \bar{u}) \text { or } D^{+}(c \bar{d}) \\
& D^{(*)}\left\{\begin{array}{l}
D: \text { pseudo scalar meson } \\
D^{*}: \text { vector meson }
\end{array}\right.
\end{aligned}
$$

Tree-level decay ($b \rightarrow u$ charged current) in SM
Test of lepton flavour universality $\tau / \mu, \mathrm{e}$ in semi-leptonic B decays

$$
R_{D^{(*)}}=\frac{\mathcal{B}\left(B \rightarrow D^{(*)} \tau \nu\right)}{\mathcal{B}\left(B \rightarrow D^{(*)} \ell \nu\right)} \quad(\ell=e, \mu)
$$

Theoretically clean, as hadronic uncertainties (form factors, Vub) largely cancel in ratio

B anomalies $R_{D \circ}=\frac{\mathscr{S}\left(B \rightarrow D^{(1)} \tau\right)}{\mathscr{F}_{(B)}\left(B \rightarrow D^{\circ} \epsilon_{\nu}\right)}$

3.1σ deviation

3 anomalies $\quad R_{D^{* *}}=\frac{\mathscr{B}\left(B \rightarrow D^{(*)} \tau \nu\right)}{\mathscr{B}\left(B \rightarrow D^{(*)} \ell \nu\right)}$

Related observables \rightarrow NP model discrimination

* Polarisation

Longitudinal
D^{*} polarisation $\quad F_{L}^{D^{*}}=\frac{\Gamma\left(\bar{B} \rightarrow D^{*} \tau \bar{\nu}\right)}{\Gamma\left(\bar{B} \rightarrow D_{L}^{*} \tau \bar{\nu}\right)+\Gamma\left(\bar{B} \rightarrow D_{T}^{*} \tau \bar{\nu}\right)}$
$\begin{gathered}\tau \text { polarisation } \\ \text { asymmetries }\end{gathered} \quad P_{\tau}\left(D^{(*)}\right)=\frac{\Gamma\left(B \rightarrow D^{(*)} \tau^{\lambda=+1 / 2} \nu\right)-\Gamma\left(B \rightarrow D^{(*)} \tau^{\lambda=-1 / 2} \nu\right)}{\Gamma\left(B \rightarrow D^{(*)} \tau \nu\right)}$

	$F_{L}\left(D^{*}\right)$	$P_{\tau}(D)$	$P_{\tau}\left(D^{*}\right)$
SM	$0.46(4)$	$0.325(9)$	$-0.497(13)$
data	$0.60(9)$ [Belle '18]	-	$-0.38(55)$ [Belle '17]
Belle II	0.04	3%	0.07

\uparrow Recent Belle result is slightly above the SM

* Other LFUV ratios : $R_{J / \psi}, R_{\Lambda_{c}}, R_{D_{s}}$, ,
* q^{2} distribution $\leftarrow 5 \mathrm{ab}^{\wedge}-1$ Belle II

B anomalies $R_{K^{(*)}}=\frac{\mathscr{B}\left(B \rightarrow K^{(*)} \mu^{+} \mu^{-}\right)}{\mathscr{B}\left(B \rightarrow K^{(*)} e^{+} e^{-}\right)}$

What is $B \rightarrow K^{(*)} \mu^{+} \mu^{-}$decay?

Loop-level decay ($b \rightarrow$ s neutral current) in SM

Test of lepton flavour universality $\mu /$ e in semi-leptonic B decays

$$
R_{K^{(*)}}=\frac{\mathscr{B}\left(B \rightarrow K^{(*)} \mu^{+} \mu^{-}\right)}{\mathscr{B}\left(B \rightarrow K^{(*)} e^{+} e^{-}\right)} \stackrel{\text { SM }}{\approx} 1
$$

Theoretically clean, hadronic uncertainties cancel to large extent in the ratio

What is $B \rightarrow K^{(*)} \mu^{+} \mu^{-}$decay ?

Differential BR and angular distributions

B anomalies

Lepton Flavour Universality Violation in semileptonic B decays

$$
\begin{gathered}
b \rightarrow c \tau \nu \quad R_{D^{(*)}}^{\exp }>R_{D^{(*)}}^{S M} \\
R_{D^{(*)}}=\frac{\mathcal{B}\left(B \rightarrow D^{(*)} \tau \nu\right)}{\mathcal{B}\left(B \rightarrow D^{(*)} \ell \nu\right)}
\end{gathered}
$$

$$
\begin{aligned}
& b \rightarrow \text { sll } \quad R_{K^{(*)}}^{\exp }<R_{K^{(*)}}^{S M} \\
& R_{K^{(*)}}=\frac{\mathcal{B}\left(B \rightarrow K^{(*)} \mu^{+} \mu^{-}\right)}{\mathcal{B}\left(B \rightarrow K^{(*)} e^{+} e^{-}\right)}
\end{aligned}
$$

Tree-level in SM
LFUV in τ vs μ / e

loop-level in SM
LFUV in μ vs e

Model independent consideration for B anomalies

* Anomalies are seen in only semi-leptonic (quark \times lepton) operators
* left-handed current current operators are favored
* Hierarchical NP is needed

$$
\underset{\sim 15 \% \text { of a SM tree-level effect }}{\text { NP in } b \rightarrow c \tau \nu_{\tau}} \gg \underset{\sim 20 \% \text { of a SM loop effect }}{\text { NP in } b \rightarrow s \mu \mu}
$$

Similar hierarchy in Yukawa... Are these anomalies connected to them?

What we did

Yukawa (SM flavor hierarchies)

B-physics anomaly

Focus on non-standard flavor and helicity structures in semileptonic B decays

$$
\begin{gathered}
b \rightarrow c \tau \nu_{\tau} \\
\text { B anomaly } \\
R_{\left.D^{*}\right)}=\frac{B \rightarrow D^{(*)} \tau \nu_{\tau}}{B \rightarrow D^{(*)} \ell \nu_{\ell}} \\
B_{c} \rightarrow \tau \nu_{\tau} \\
\text { polarizations }
\end{gathered}
$$

$$
\begin{aligned}
& b \rightarrow s \mathscr{C} \bar{\ell} \\
& \text { naly } \\
& R_{K^{* *}}=\frac{B \rightarrow K^{(*)} \mu \bar{\mu}}{B \rightarrow K^{(*)} e \bar{e}} \\
& B_{s} \rightarrow \tau \bar{\tau}, \mu \bar{\mu}, \tau \bar{\mu}
\end{aligned}
$$

B anomaly

$$
\begin{gathered}
b \rightarrow u \tau \nu_{\tau} \\
R_{\pi}=\frac{B \rightarrow \pi \tau \nu_{\tau}}{B \rightarrow \pi \ell \nu_{\ell}} \\
B^{+} \rightarrow \tau \bar{\nu}_{\tau}, \mu \bar{\nu}
\end{gathered}
$$

$$
U(2)^{5}
$$

$$
\begin{gathered}
b \rightarrow d \ell \bar{l} \\
B_{d} \rightarrow \pi \mu \bar{\mu} \\
B_{d} \rightarrow \mu \bar{\mu}
\end{gathered}
$$

$U(2)^{5}$ flavor symmetry

Yukawa after removing unphysical parameters

$$
\begin{array}{ll}
Y_{u} & =\left|y_{t}\right|\left(\begin{array}{cc}
U_{q}^{\dagger} O_{u}^{\top} \hat{\Delta}_{u} & \left|V_{q}\right|\left|x_{t}\right| e^{i \phi_{q}} \vec{n} \\
0 & 1
\end{array}\right) \\
Y_{d}=\left|y_{b}\right|\left(\begin{array}{cc}
U_{q}^{\dagger} \hat{\Delta}_{d} & \left|V_{q}\right|\left|x_{b}\right| e^{i \phi_{q}} \vec{n} \\
0 & 1
\end{array}\right) & \left.\begin{array}{l}
\hat{\Delta}_{u, d, e}: 2 \times 2 \text { diagonal positive matrix } \\
O_{u, e}: 2 \times 2 \text { orthogonal matrix } \\
Y_{e}
\end{array}\right) \\
U_{q}=\left(\begin{array}{cc}
c_{d} & s_{d} e^{i \alpha_{d}} \\
-s_{d} e^{-i \alpha_{d}} & c_{d}
\end{array}\right), \vec{n}=\binom{0}{1}
\end{array}
$$

Structure of Yukawa is fixed under $U(2)$ symmetry
\rightarrow elements in diagonal matrixes are described by CKM elements \& fermions masses

$$
Y_{f} \frac{Q_{L} \rightarrow L_{d}^{\dagger} Q_{L} \quad d_{R} \rightarrow R_{d} \dagger d_{R}}{} \Rightarrow \quad \operatorname{diag}\left(Y_{f}\right)=L_{f}^{\dagger} Y_{f} R_{f} \quad(f=u, d)
$$

where

$$
\begin{aligned}
& L_{d} \approx\left(\begin{array}{ccc}
c_{d} & -s_{d} e^{i \alpha_{d}} & 0 \\
s_{d} e^{-i \alpha_{d}} & c_{d} & s_{b} \\
-s_{d} s_{b} e^{-i\left(\alpha_{d}+\phi_{q}\right)} & -c_{d} s_{b} e^{-i \phi_{q}} & e^{-i \phi_{q}}
\end{array}\right) \quad R_{d} \approx\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & \frac{m_{s}}{m_{b}} s_{b} \\
0 & -\frac{m_{s}}{m_{b}} s_{b} e^{-i \phi_{q}} & e^{-i \phi_{q}}
\end{array}\right) \\
& s_{d} / c_{d}=\left|V_{t d} / V_{t s}\right|, \alpha_{d}=-\operatorname{Arg}\left(V_{t d} / V_{t s}\right), s_{t}=s_{b}-V_{c b}, s_{u}
\end{aligned}
$$

$U(2)^{5}$ flavor symmetry

Yukawa after removing unphysical parameters

$$
\begin{array}{ll}
Y_{u} & =\left|y_{t}\right|\left(\begin{array}{cc}
U_{q}^{\dagger} O_{u}^{\top} \hat{\Delta}_{u} & \left|V_{q}\right|\left|x_{t}\right| e^{i \phi_{q}} \vec{n} \\
0 & 1
\end{array}\right) \\
Y_{d}=\left|y_{b}\right|\left(\begin{array}{cc}
U_{q}^{\dagger} \hat{\Delta}_{d} & \left|V_{q}\right|\left|x_{b}\right| e^{i \phi_{q}} \vec{n} \\
0 & 1
\end{array}\right) & \left.\begin{array}{l}
O_{u, d, e}: 2 \times 2 \text { diagonal positive matrix } \\
Y_{e}
\end{array}\right) \\
Y_{q}=\left|y_{\tau}\right|\left(\begin{array}{cc}
O_{e}^{\top} \hat{\Delta}_{e} & \left|V_{e}\right|\left|x_{\tau}\right| \vec{n} \\
0 & 1
\end{array}\right) & U_{q}=\left(\begin{array}{cc}
c_{d} & s_{d} e^{i \alpha_{d}} \\
-s_{d} e^{-i \alpha_{d}} & c_{d}
\end{array}\right), \vec{n}=\binom{0}{1}
\end{array}
$$

Structure of Yukawa is fixed under $U(2)$ symmetry
\rightarrow elements in diagonal matrixes are described by CKM elements \& fermions masses

Parameters
constrained
quark

$$
\begin{array}{ll}
\text { quark } & s_{d} / c_{d}=\left|V_{t d} / V_{t s}\right|, \alpha_{d}=-\operatorname{Arg}\left(V_{t d} / V_{t s}\right), s_{t}=s_{b}-V_{c b}, s_{u} \quad s_{b} / c_{b}=\left|x_{b}\right|\left|V_{q}\right|, \phi_{q} \\
\text { lepton } & s_{\tau} / c_{\tau}=\left|x_{\tau}\right|\left|V_{\ell}\right|, s_{e}
\end{array}
$$

Effective field theory $+U(2)^{5}$ for semileptonic decay

Relevant semileptonic operators in SMEFT ($\mu_{\mathrm{EW}}<\mu<\mu_{\mathrm{NP}}$)

$$
\begin{array}{cc}
\mathscr{L}_{\mathrm{EFT}}=-\frac{1}{v^{2}} \sum_{k,[i j \alpha \beta]} C_{k}^{[i j \alpha \beta]} \mathcal{O}_{k}^{[i j \alpha \beta]}+\mathrm{h} . \mathrm{c} . \\
\mathcal{O}_{\ell q}^{(1)}=\left(\bar{\ell}_{L}^{\alpha} \gamma^{\mu} \ell_{L}^{\beta}\right)\left(\bar{q}_{L}^{i} \gamma_{\mu} q_{L}^{j}\right), & \mathcal{O}_{e d}=\left(\bar{e}_{R}^{\alpha} \gamma^{\mu} e_{R}^{\beta}\right)\left(\bar{d}_{R}^{i} \gamma_{\mu} d_{R}^{j}\right), \\
\mathcal{O}_{\ell q}^{(3)}=\left(\bar{\ell}_{L}^{\alpha} \gamma^{\mu} \tau^{I} \ell_{L}^{\beta}\right)\left(\bar{q}_{L}^{i} \gamma_{\mu} \tau^{I} q_{L}^{j}\right), & \mathcal{O}_{\ell e d q}=\left(\bar{\ell}_{L}^{\alpha} e_{R}^{\beta}\right)\left(\bar{d}_{R}^{i} q_{L}^{j}\right), \\
\mathcal{O}_{\ell d}=\left(\bar{\ell}_{L}^{\alpha} \gamma^{\mu} \ell_{L}^{\beta}\right)\left(\bar{d}_{R}^{i} \gamma_{\mu} d_{R}^{j}\right), & \mathcal{O}_{\ell e q u}^{(1)}=\left(\bar{\ell}_{L}^{a, \alpha} e_{R}^{\beta}\right) \epsilon_{a b}\left(\bar{q}_{L}^{a, i} u_{R}^{j}\right), \\
\mathcal{O}_{q e}=\left(\bar{q}_{L}^{i} \gamma^{\mu} q_{L}^{j}\right)\left(\bar{e}_{R}^{\alpha} \gamma_{\mu} e_{R}^{\beta}\right), & \mathcal{O}_{\ell e q u}^{(3)}=\left(\bar{\ell}_{L}^{a, \alpha} \sigma_{\mu \nu} e_{R}^{\beta}\right) \epsilon_{a b}\left(\bar{q}_{L}^{b, i} \sigma^{\mu \nu} u_{R}^{j}\right)
\end{array}
$$

Effective field theory $+U(2)^{5}$ for semileptonic decay

Relevant semileptonic operators in SMEFT ($\mu_{\mathrm{EW}}<\mu<\mu_{\mathrm{NP}}$)

$$
\begin{aligned}
& \mathscr{L}_{\mathrm{EFT}}=-\frac{1}{v^{2}} \sum_{k,[j \alpha \beta]} C_{k}^{[i j \alpha \beta]} \mathscr{O}_{k}^{[i j \alpha \beta]}+\mathrm{h} . \mathrm{c} . \\
& \mathcal{O}_{\ell q}^{(1)}=\left(\bar{\ell}_{L}^{\alpha} \gamma^{\mu} \ell_{L}^{\beta}\right)\left(\bar{q}_{L}^{i} \gamma_{\mu} q_{L}^{j}\right), \\
& O_{e d}=\left(\bar{e}_{R}^{\alpha} \gamma^{\mu} e_{R}^{\beta}\right)\left(\bar{d}_{R}^{i} \gamma_{\mu} d_{R}^{3}\right), \\
& \mathcal{O}_{\ell q}^{(3)}=\left(\bar{\ell}_{L}^{\alpha} \gamma^{\mu} \tau^{I} \ell_{L}^{\beta}\right)\left(\bar{q}_{L}^{i} \gamma_{\mu} \tau^{I} q_{L}^{j}\right), \\
& \mathcal{O}_{\ell e d q}=\left(\bar{\ell}_{L}^{\alpha} e_{R}^{\beta}\right)\left(\bar{d}_{R}^{i} q_{L}^{j}\right), \\
& \partial_{\ell d}=\left(\bar{\ell}_{L}^{\alpha} \gamma^{\mu} \ell_{L}^{\beta}\right)\left(\bar{d}_{R}^{i} \gamma_{\mu} d_{R}^{j}\right), \\
& \partial_{q e}=\left(\bar{q}_{L}^{i} \gamma^{\mu} q_{L}^{j}\right)\left(\bar{e}_{R}^{\alpha} \gamma_{\mu} e_{R}^{\beta}\right) \text {, } \\
& \text { contribute at tree-level only to } b \rightarrow s \tau \bar{\tau} \\
& \text { which is currently poorly constrained } \\
& \mathcal{O}_{\text {lequ }}^{(1)}=\left(\bar{\ell}_{L}^{a, \alpha} e_{R}^{\beta}\right) \epsilon_{a b}\left(\bar{q}_{L}^{\alpha, i} u_{R}^{j}\right) \text {, } \\
& \mathcal{O}_{\text {dequ }}^{(3)}=\left(\bar{\ell}_{L}^{a, \alpha} \sigma_{\mu \nu} e_{R}^{\beta}\right) \epsilon_{a b}\left(\bar{q}_{L}^{b, i} \sigma^{\mu \nu} u_{R}^{j}\right) \\
& \text { Right handed light fermion operators are } \\
& \text { suppressed under U(2) }
\end{aligned}
$$

only few yield sizable effects if we impose a minimally broken $U(2)^{5}$ symmetry

Effective field theory $+U(2)^{5}$ for semileptonic decay

$$
\mathscr{L}_{\mathrm{EFT}} \supset \mathscr{L}_{\mathrm{SM}}-\frac{1}{v^{2}}\left[C_{V_{1}} \Lambda_{V_{1}}^{[i j \alpha \beta]} \mathcal{O}_{\ell q}^{(1)}+C_{V_{3}} \Lambda_{V_{3}}^{[i j \alpha \beta]} \mathcal{O}_{\ell q}^{(3)}+\left(2 C_{S} \Lambda_{S}^{[i j \alpha \beta]} \mathcal{O}_{\ell e d q}+\mathrm{h} . \mathrm{c} .\right)\right]
$$

$($ NP contribution $)=\left(\right.$ NP strength $\left.C_{V_{i}}, C_{S}\right) \times\left(\right.$ Flavor structure $\left.\Lambda_{V_{i}}, \Lambda_{S}\right)$

Need relation $C_{\ell q}^{(1)} \approx C_{\ell q}^{(3)}$ to avoid constraint from $B \rightarrow K^{(*)} \nu \bar{\nu} \quad$ 3rd

$$
B R\left(B \rightarrow K^{(*)} \nu \bar{\nu}\right)=B R\left(B \rightarrow K^{(*)} \nu_{e} \bar{\nu}_{e}\right)+B R\left(B \rightarrow K^{(*)} \nu_{\mu} \bar{\nu}_{\mu}\right)+B R\left(B \rightarrow K^{(*)} \nu_{\tau} \bar{\nu}_{\tau}\right)
$$

$\mathscr{L}_{\mathrm{EFT}} \supset \mathscr{L}_{\mathrm{SM}}-\frac{1}{v^{2}}\left[C_{V} \Lambda_{V}^{[i j \alpha \beta]}\left(\mathcal{O}_{\ell q}^{(1)}+\mathcal{O}_{\ell q}^{(3)}\right)+\left(2 C_{S} \Lambda_{S}^{[i j \alpha \beta]} \mathcal{O}_{\ell e d q}+\right.\right.$ h.c. $\left.)\right]$

Effective field theory $+U(2)^{5}$ for semileptonic decay

$$
\begin{aligned}
& \mathscr{L}_{\mathrm{EFT}} \supset \mathscr{L}_{\mathrm{SM}}-\frac{1}{v^{2}}\left[C_{V} \Lambda_{V}^{[j i \alpha \beta]}\left(\mathcal{O}_{\ell q}^{(1)}+\mathcal{O}_{\ell q}^{(3)}\right)+\left(2 C_{S} \Lambda_{S}^{[i j \alpha \beta]} \mathcal{O}_{\ell e d q}+\text { h.c. }\right)\right] \\
& (\mathrm{NP} \text { contribution })=\left(\mathrm{NP} \text { strength } C_{V}, C_{S}\right) \times\left(\text { Flavor structure } \Lambda_{V}, \Lambda_{S}\right)
\end{aligned}
$$

Nicely matches the structure in U_{1} Leptoquark (LQ)

Leptoquark(LQ) solution (scalar and vector) is the best solution for B anomaly so far. Especially, $U_{1}=(3,1,2 / 3)$ vector LQ can access both $R_{D^{(*)}} \& R_{K^{(*)}}$

$$
\begin{array}{ll}
\Lambda_{V_{1}}=\Lambda_{V_{3}}=\Lambda_{V} \\
C_{V_{1}}=C_{V_{3}}=\frac{g_{U}^{2} v^{2}}{4 M_{U}^{2}} \equiv C_{V}>0 \quad \leftarrow \text { arise naturally } \\
\frac{C_{S}}{C_{V}}=-2 \beta_{R} \quad \mathscr{L}_{U_{1}}=\frac{g_{U}}{\sqrt{2}}\left[\beta_{L}^{i \alpha}\left(\bar{q}_{L}^{i} \gamma_{\mu} \ell_{L}^{\alpha}\right)+\beta_{R}^{i \alpha}\left(\bar{d}_{R}^{i} \gamma_{\mu} e_{R}^{\alpha}\right)\right] U_{1}^{\mu}+\text { h.c. }
\end{array}
$$

EFT approach \& U_{1} LQ

Effective field theory $+U(2)^{5}$ for semileptonic decay

$\mathscr{L}_{\mathrm{EFT}} \supset \mathscr{L}_{\mathrm{SM}}-\frac{1}{v^{2}}\left[C_{V} \Lambda_{V}^{[j \mathrm{j} \alpha \beta]}\left(\mathcal{O}_{\ell q}^{(1)}+\mathcal{O}_{\ell q}^{(3)}\right)+\left(2 C_{S} \Lambda_{S}^{[j \alpha \beta]} \mathcal{O}_{\ell e d q}+\right.\right.$ h.c. $\left.)\right]$
$(\mathrm{NP}$ contribution $)=\left(\mathrm{NP}\right.$ strength $\left.C_{V}, C_{S}\right) \times\left(\right.$ Flavor structure $\left.\Lambda_{V}, \Lambda_{S}\right)$
Flavor structure $\Lambda_{V_{i}}, \Lambda_{S} \quad \Lambda_{V}^{[i j \alpha \beta]}=\left(\Gamma_{L}^{V^{\dagger}}\right)^{\alpha j} \times\left(\Gamma_{L}^{V}\right)^{i \beta}, \quad \Lambda_{S}^{[i j \alpha \beta]}=\left(\Gamma_{L}^{\dagger}\right)^{\alpha j} \times \Gamma_{R}^{i \beta}$
in the interaction basis

$$
\Gamma_{L}=\left(\begin{array}{cc}
V_{q} V_{t}^{*} & V_{q} \\
V_{\ell}^{*} & 1
\end{array}\right) \quad \Gamma_{R}=\left(\begin{array}{cc}
0 & 0 \\
0 & 1
\end{array}\right)
$$

In order to explain B anomalies, we need $V_{q} \sim V_{\ell} \sim \mathcal{O}\left(10^{-1}\right)$
\rightarrow same size as spurions in Yukawa
Common explanation makes sense
$U(2)^{5}$ symmetry
Yukawa (SM flavor hierarchies)
B-physics anomaly

Effective field theory $+U(2)^{5}$ for semileptonic decay

$$
\begin{aligned}
& \mathscr{L}_{\mathrm{EFT}} \supset \mathscr{L}_{\mathrm{SM}}-\frac{1}{v^{2}}\left[C_{V} \Lambda_{V}^{[j i \alpha \beta]}\left(\mathcal{O}_{\ell q}^{(1)}+\mathcal{O}_{\ell q}^{(3)}\right)+\left(2 C_{S} \Lambda_{S}^{[i j \alpha \beta]} \mathcal{O}_{\ell e d q}+\text { h.c. }\right)\right] \\
& (\text { NP contribution })=\left(\mathrm{NP} \text { strength } C_{V}, C_{S}\right) \times\left(\text { Flavor structure } \Lambda_{V}, \Lambda_{S}\right)
\end{aligned}
$$

Flavor structure $\Lambda_{V_{i}}, \Lambda_{S} \quad \Lambda_{V}^{[i j \alpha \beta]}=\left(\Gamma_{L}^{V^{\dagger}}\right)^{\alpha j} \times\left(\Gamma_{L}^{V}\right)^{i \beta}, \quad \Lambda_{S}^{[i j \alpha \beta]}=\left(\Gamma_{L}^{\dagger}\right)^{\alpha j} \times \Gamma_{R}^{i \beta}$ in mass basis

$$
Q_{L} \rightarrow L_{d}^{\dagger} Q_{L} \quad d_{R} \rightarrow R_{d} \dagger d_{R}
$$

At lowest order in the spurion $\left(V_{q, t}\right)$ expansion

$U(2)^{5}$ predictions

$$
\begin{aligned}
& \lambda_{q}^{s}, \lambda_{\ell}^{\mu} \sim O\left(\left|V_{q}\right|\right) \sim O\left(10^{-1}\right)
\end{aligned}
$$

NC $\quad b \rightarrow s \mu \mu \lll C C b \rightarrow c \tau \nu$
U(2) Predictions:

* NP in NC $b \rightarrow s \mu \mu \ll N P$ in CC $b \rightarrow c \tau \nu$

$U(2)^{5}$ predictions

$$
\begin{aligned}
& \ell_{1} \quad \ell_{2} \quad \ell_{3} \quad e_{R} \quad \mu_{R} \quad \tau_{R} \quad \lambda_{q}^{s}, \lambda_{\ell}^{\mu} \sim O\left(\left|V_{q}\right|\right) \sim O\left(10^{-1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& b \rightarrow u \tau \nu / b \rightarrow c \tau \nu=\frac{V_{u b}}{V_{c b}}
\end{aligned}
$$

U(2) Predictions:
NP in NC $b \rightarrow s \mu \mu \ll N P$ in CC $b \rightarrow c \tau \nu$
NP strength in $b \rightarrow c(s)=$ NP strength in $b \rightarrow u(d)$

$$
\frac{b \rightarrow c \ell \nu}{b \rightarrow u \ell \nu}=\left.\frac{b \rightarrow c \ell \nu}{b \rightarrow u \ell \nu}\right|_{\mathrm{SM}} \quad \frac{b \rightarrow s \ell \ell}{b \rightarrow d \ell \ell}=\left.\frac{b \rightarrow s \ell \ell}{b \rightarrow d \ell \ell}\right|_{\mathrm{SM}}
$$

$U(2)^{5}$ predictions

$$
\begin{aligned}
& \lambda_{q}^{s}, \lambda_{\ell}^{\mu} \sim O\left(\left|V_{q}\right|\right) \sim O\left(10^{-1}\right)
\end{aligned}
$$

U(2) Predictions:

* NP in NC $b \rightarrow s \mu \mu \ll N P$ in CC $b \rightarrow c \tau \nu$
* NP strength in $b \rightarrow c(s)=$ NP strength in $b \rightarrow u(d)$

$$
\frac{b \rightarrow c \ell \nu}{b \rightarrow u \ell \nu}=\left.\frac{b \rightarrow c \ell \nu}{b \rightarrow u \ell \nu}\right|_{\mathrm{SM}} \quad \frac{b \rightarrow s \ell \ell}{b \rightarrow d \ell \ell}=\left.\frac{b \rightarrow s \ell \ell}{b \rightarrow d \ell \ell}\right|_{\mathrm{SM}}
$$

* Scalar operator with light fermions suppressed by $\frac{m_{s}}{m_{b}}, \frac{m_{\mu}}{m_{\tau}}$

$U(2)^{5}$ Prediction in CC \& NC

$U(2)^{5}$ Prediction in CC \& NC

Prediction in CC $: \mathrm{b} \rightarrow \mathrm{c} \& \mathrm{~b} \rightarrow \mathrm{u}$

For convenience, re-define effective couplings as $\mathscr{A}^{\mathrm{SM}} \rightarrow\left(1+C_{V}^{u, c}\right) \mathscr{A}^{\mathrm{SM}}$
for $b \rightarrow c$

$$
\text { for } b \rightarrow u \quad \quad \text { in mass basis with } q_{L}^{i}=\binom{V_{j i}^{*} u_{j}}{d_{i}}
$$

$$
\begin{aligned}
C_{V(S)}^{c} & \equiv \frac{1}{V_{c b}} C_{V(S)}\left[\left(V_{C K M}\right)_{c i} \Lambda_{V(S)}^{[i b \tau]}\right] & C_{V(S)}^{u} & \equiv \frac{1}{V_{u b}} C_{V(S)}\left[\left(V_{C K M}\right)_{u i} \Lambda_{V(S)}^{[i b \tau \tau]}\right] \\
& =C_{V(S)}\left(1-\lambda_{q}^{s} \frac{V_{t b}^{*}}{V_{t s}^{*}}\right) & & =C_{V(S)}\left(1-\lambda_{q}^{s} \frac{V_{t b}^{*}}{V_{t s}^{*}}\right)=C_{V(S)}^{c}
\end{aligned}
$$

$b \rightarrow c$ vs $b \rightarrow u$

$$
C_{V(S)}^{c}=C_{V(S)}^{u} \quad \text { SM -like CKM scaling }
$$

scalar and vector

$$
\frac{C_{S}^{c}}{C_{V}^{c}}=\frac{C_{S}^{u}}{C_{V}^{u}}=\frac{C_{S}}{C_{V}}
$$

flavor blind \& depend on only NP helicity structure

C_{S} vs C_{V}

$$
R_{D^{*}} 1 \sigma \frac{C_{S}}{C_{V}}=-2 \beta_{R}^{*}
$$

- - : : Chi2 w $R_{D^{(*)}}(\mathrm{b} \rightarrow \mathrm{c})$
- : Chi2 w $R_{\left.D^{*}\right)}(\mathrm{b} \rightarrow \mathrm{c})+B^{-}(\mathrm{b} \rightarrow \mathrm{u})$
~3 σ from SM point
$\mathrm{U}(2)$ prediction for $B^{-} \rightarrow \tau \nu$ is compatible with them

Numerical formula for observables

$$
\begin{aligned}
& \frac{R_{D}}{R_{D}^{S M}} \approx\left|1+C_{V}^{c}\right|^{2}+1.50(1) \operatorname{Re}\left[\left(1+C_{V}^{c}\right) \eta_{S} C_{S}^{c^{*}}\right]+1.03(1)\left|\eta_{S} C_{S}^{c}\right|^{2} \\
& \frac{R_{D^{*}}}{R_{D^{*}}^{S M}} \approx\left|1+C_{V}^{c}\right|^{2}+0.12(1) \operatorname{Re}\left[\left(1+C_{V}^{c}\right) \eta_{S} C_{S}^{c^{*}}\right]+0.04(1)\left|\eta_{S} C_{S}^{c}\right|^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \Delta R_{D}-\Delta R_{D^{*}} \approx 1.4 \eta_{S} \operatorname{Re} C_{S}^{c} \\
& \frac{F_{L}^{D^{*}}}{F_{L, \mathrm{SM}}^{D^{*}}} \approx\left(\frac{R_{D^{*}}}{R_{D^{*}}^{S M}}\right)^{-1}\left(\left|1+C_{V}^{c}\right|^{2}+0.087(4)\left|\eta_{S} C_{S}^{c}\right|^{2}\right. \\
& \left.+0.253(8) \operatorname{Re}\left[\left(1+C_{V}^{c}\right) \eta_{S} C_{S}^{c^{*}}\right]\right) \\
& \frac{P_{\tau}^{D}}{P_{\tau, \mathrm{SM}}^{D}} \approx\left(\frac{R_{D}}{R_{D}^{\mathrm{SM}}}\right)^{-1}\left(\left|1+C_{V}^{c}\right|^{2}+3.24(1)\left|\eta_{S} C_{S}^{c}\right|^{2}\right. \\
& \left.+4.69(2) \operatorname{Re}\left[\left(1+C_{V}^{c}\right) \eta_{S} C_{S}^{c^{*}}\right]\right) \\
& \frac{P_{\tau}^{D^{*}}}{P_{\tau, \mathrm{SM}}^{D^{*}}} \approx\left(\frac{R_{D^{*}}}{R_{D^{*}}^{S M}}\right)^{-1}\left(\left|1+C_{V}^{c}\right|^{2}-0.079(5)\left|\eta_{S} C_{S}^{c}\right|^{2}\right. \\
& \left.-0.23(1) \operatorname{Re}\left[\left(1+C_{V}^{c}\right) \eta_{S} C_{S}^{c^{*}}\right]\right) \\
& \text { vector } C_{V} \text { is just rescaling of SM } \\
& \text { scalar } C_{S} \text { can be NP } \\
& \Rightarrow \Delta R_{D}-\Delta R_{D^{*}} \text { Vs } \Delta P_{X}
\end{aligned}
$$

$\star \eta_{S} \approx 1.7$: running effect of scalar ope. from TeV down to m_{b}

Polarisations

$R_{\pi}, B^{+}, B_{c}^{+}$

$$
\begin{aligned}
& b \rightarrow c \\
& \text { Chiral enhancement factor } \\
& \frac{\mathscr{B}\left(B_{c}^{+} \rightarrow \tau^{+} \nu\right)}{\mathscr{B}\left(B_{c}^{+} \rightarrow \tau^{+} \nu_{\tau}\right)_{\mathrm{SM}}}=\left|1+C_{V}^{c}+\frac{m_{B_{c}}^{2}}{m_{\tau}\left(\overline{m_{b}}+\overline{m_{c}}\right)} C_{S}^{c}\right|^{2} \approx\left|1+C_{V}^{c}+4.33 C_{S}^{c}\right| \\
& b \rightarrow u \\
& \frac{\mathscr{B}\left(B^{+} \rightarrow \tau^{+} \nu\right)}{\mathscr{B}\left(B^{+} \rightarrow \tau^{+} \nu_{\tau}\right)_{\mathrm{SM}}}=\left|1+C_{V}^{u}+\frac{m_{B^{+}}^{2}}{m_{\tau}\left(\overline{m_{b}}+\bar{m}_{u}\right)} C_{S}^{u}\right|^{2} \approx\left|1+C_{V}^{u}+3.75 C_{S}^{u}\right| \\
& R_{\pi}=\frac{B \rightarrow \pi \tau \nu_{\tau}}{B \rightarrow \pi \ell \nu_{\ell}} \\
& \begin{aligned}
\frac{R_{\pi}}{R_{\pi}^{S M}}= & \left|1+C_{V}^{u}\right|^{2}+1.13 \operatorname{Re}\left[\left(1+C_{V}^{u}\right) C_{S}^{u^{*}}\right] \\
& +1.36\left|C_{S}^{u}\right|^{2}
\end{aligned} \\
& \Rightarrow \Delta R_{D}-\Delta R_{D^{*}} \text { vs } \frac{O}{O^{\mathrm{SM}}} \\
& \mathrm{U}(2) \text { Predictions: } \mathrm{b} \rightarrow \mathrm{c}=\mathrm{b} \rightarrow \mathrm{u} \\
& \frac{\mathscr{B}\left(\bar{B}_{u} \rightarrow \tau \bar{\nu}\right)}{\mathscr{B}\left(\bar{B}_{u} \rightarrow \tau \bar{\nu}\right)_{\mathrm{SM}}} \approx \frac{\mathscr{B}\left(\bar{B}_{c} \rightarrow \tau \bar{\nu}\right)}{\mathscr{B}\left(\bar{B}_{c} \rightarrow \tau \bar{\nu}\right)_{\mathrm{SM}}} \\
& \frac{R_{\pi}}{R_{\pi}^{S M}} \approx 0.75 \frac{R_{D}}{R_{D}^{S M}}+0.25 \frac{R_{D^{*}}}{R_{D^{*}}^{S M}}
\end{aligned}
$$

$R_{\pi}, B^{+}, B_{c}^{+}$

- : Chi2 w $R_{\left.D^{*}\right)}, B^{+}$

$$
R_{\pi} / R_{\pi}^{\mathrm{SM}} \lesssim 1.3
$$

$R_{\pi}^{\mathrm{SM}}=0.641 \pm 0.016$
$R_{\pi}^{\exp } \simeq 1.05 \pm 0.51$
\rightarrow Belle II $R_{\pi}^{\text {BelleII }}=0.641 \pm 0.071$
Tanaka and Wtanabe [1608.05207]

$$
\begin{aligned}
& \mathrm{U}(2) \text { Predictions: } \mathrm{b} \rightarrow \mathrm{c}=\mathrm{b} \rightarrow \mathrm{u} \\
& \frac{\mathscr{B}\left(\bar{B}_{u} \rightarrow \tau \bar{\nu}\right)}{\mathscr{B}\left(\bar{B}_{u} \rightarrow \tau \bar{\nu}\right)_{\mathrm{SM}}} \approx \frac{\mathscr{B}\left(\bar{B}_{c} \rightarrow \tau \bar{\nu}\right)}{\mathscr{B}\left(\bar{B}_{c} \rightarrow \tau \bar{\nu}\right)_{\mathrm{SM}}} \\
& \frac{R_{\pi}}{R_{\pi}^{\mathrm{SM}}} \approx 0.75 \frac{R_{D}}{R_{D}^{S M}}+0.25 \frac{R_{D^{*}}}{R_{D^{*}}^{\mathrm{SM}}}
\end{aligned}
$$

$U(2)^{5}$ Prediction in CC \& NC

So far focus on observables with tau lepton What about lepton spurion?

$$
\begin{array}{c|c}
\text { Charged current } & \text { Neutral current } \\
\hline b \rightarrow c(u) \tau \nu & b \rightarrow s \nu \nu \\
R_{D^{(*)},}, R_{\pi}, B_{u, c}^{+} \rightarrow \tau \nu & \text { No tree level }\left(C_{\ell q}^{(1)} \approx C_{\ell q}^{(3)}\right) \\
\text { polarizations } & b \rightarrow s \tau \tau \\
B_{s} \rightarrow \tau \tau \\
\text { poorly constraint }
\end{array} \left\lvert\, \begin{array}{cc}
b \rightarrow c(u) \mu \nu & b \rightarrow s(d) \mu \mu \\
R_{D^{(*)}}^{\mu e} \equiv \frac{\mathscr{B}\left(B \rightarrow D^{(*)} \mu \bar{\nu}\right)}{\mathscr{B}\left(B \rightarrow D^{(*)} e \bar{\nu}\right)} & R_{K^{(*)}, B_{s, d} \rightarrow \mu \mu}^{B^{+} \rightarrow \mu \bar{\nu}} \\
10^{-3} \text { level NP } & \frac{\mathscr{B}(B \rightarrow \pi \mu \bar{\mu})}{\mathscr{B}(B \rightarrow \pi e \bar{e})} \\
\text { beyond future exp reach } & B_{s} \rightarrow \tau \bar{\mu}, \tau \rightarrow \mu \gamma
\end{array}\right.
$$

Prediction in NC : b $\rightarrow \mathbf{s}$

$$
\begin{array}{r}
\mathscr{H}_{\mathrm{WET}}^{b \rightarrow s} \supset-\frac{4 G_{F}}{\sqrt{2}} \frac{\alpha}{4 \pi} V_{t b} V_{t s}^{*} \sum_{i=9,10, S, P} C_{i}^{\ell} \mathcal{O}_{i}^{\ell} \quad \begin{array}{r}
\mathcal{O}_{9}^{\ell}=\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{\ell} \gamma^{\mu} \ell\right), \mathcal{O}_{10}^{\ell}=\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{\ell}^{\mu} \gamma^{\mu} \ell\right) \\
\mathcal{O}_{S}^{\ell}=\left(\bar{s} P_{R} b\right)(\bar{\ell} \ell), \mathscr{O}_{P}^{\ell}=\left(\bar{s} P_{R} b\right)\left(\bar{\ell} \gamma_{5} \ell\right)
\end{array} \\
\Delta C_{9}^{\mu}=-\Delta C_{10}^{\mu}=-\frac{2 \pi}{\alpha V_{t b} V_{t s}^{*}} C_{V} \Delta_{q \ell}^{s \mu} \lambda_{\ell}^{\mu^{*},}, C_{S}^{\mu}=-C_{P}^{\mu}=\frac{2 \pi}{\alpha V_{t b} V_{t s}^{*}} \frac{m_{\mu}}{m_{\tau}} C_{S}^{*} \Delta_{q \ell}^{s \mu} s_{\tau} \\
C_{i}=C_{i}^{S M}+\Delta C_{i}
\end{array}
$$

$R_{K^{(*)}}$

$$
\begin{aligned}
R_{K} \approx R_{K^{*}} & \approx 1+0.47 \Delta C_{9}^{\mu} \\
& \Delta C_{9}^{\mu}=-0.43 \pm 0.11 \longrightarrow C_{V}>0, \Delta_{q \ell}^{s \mu} \lambda_{\ell}^{\mu^{*}}<0
\end{aligned}
$$

$\mathscr{B}\left(B_{s} \rightarrow \mu \bar{\mu}\right)$

$$
\frac{\mathscr{B}\left(B_{s} \rightarrow \mu \bar{\mu}\right)}{\mathscr{B}\left(B_{s} \rightarrow \mu \bar{\mu}\right)_{\mathrm{SM}}}=\left|1-\frac{\Delta R_{K^{(*)}}}{0.47 C_{10}^{\mathrm{SM}}}\left(1-\chi_{s} \eta_{S} \frac{s_{\tau}}{\lambda_{\ell}^{\mu}} \frac{C_{S}}{C_{V}^{*}}\right)\right|^{2}+\left(1-\frac{4 m_{\mu}^{2}}{m_{B_{s}}^{2}}\right)\left|\frac{\Delta R_{K^{(*)}}}{0.47 C_{10}^{\mathrm{SM}}} \chi_{s} \eta_{S} \frac{s_{\tau}}{\lambda_{\ell}^{\mu}} \frac{C_{S}}{C_{V}^{*}}\right|^{2}
$$

$\Delta R_{K^{(*)}}$ vs $\mathscr{B}\left(B_{s} \rightarrow \mu \bar{\mu}\right)$

part II. Summary

Yukawa (SM flavor hierarchies) $U(2)^{5}$ flavor symmetry

B-anomaly hint NP coupled dominantly to 3rd generation

Current data is incompatible with SM and consistent with $U(2)$ flavour symmetry
$U(2)$ is very predictive
$b \rightarrow s \mu \mu<b \rightarrow c \tau \nu$
$\mathrm{b} \rightarrow \mathrm{c}=\mathrm{b} \rightarrow \mathrm{u} \& \mathrm{~b} \rightarrow \mathrm{~s}=\mathrm{b} \rightarrow \mathrm{d}$
Scalar operator with light fermions suppressed

Updated Belle II \& LHCb data will be able test this hypothesis, and point us towards the right $\mathrm{U}(2)$ model (U_{1} leptoquark ?)

