Explanation of neutrino mass and muon (g-2)anomaly in an $U(1)_{L_{\mu}-L_{\tau}}$ extended left-right theory

Supriya Senapati Theoretical High Energy Physics Division Indian Institute of Technology,Bombay

IITB-Hiroshima University Workshop on Neutrino Physics October 27, 2020

< (20) > (3) ≥ >

- Introduction
- Motivation
- The model and Neutrino mass Generation
- Model prediction on muon (g-2) anomaly
- Summary

ъ

ヘロト ヘアト ヘビト ヘビト

Introduction: Left-Right Symmetric Model (LRSM)

 In the framework of LRSM (Pati et al.'74, Mohapatra et al.'75), these questions receive a satisfactory answer pointing to unification,

(a) The origin of parity violation in low-energy weak-interaction processes.

(b) The origin of neutrino masses, for which now there is evidence from neutrino oscillation searches.

The LRSMs are based on the gauge group,

$$G_{LR} \equiv SU(2)_L \times SU(2)_R \times U(1)_{B-L} \times SU(3)_C \tag{1}$$

• The right-handed massive neutrino is the natural outcome of LRSM.

ヘロン 人間 とくほ とくほ とう

Introduction: Generation of Neutrino mass

 In manifest LRSM neutrino mass can be explained by seesaw mechanism.

Figure: Three types of see-saw mechanism (Picture Credit: Wikipedia).

イロン 不良 とくほう 不良 とうほ

- The usual seesaw mechanism provides a very high right-handed breaking scale (>10¹⁴ GeV).
- The inverse seesaw(ISS) mechanism (Mohapatra et al.'86) is another way of generation of neutrino mass at low scale.
- This offers right-handed breaking scale at around some TeV scale and also allows large light-heavy neutrino mixing.
- ISS scenario requires the addition of three extra sterile neutrinos *S_j*.
- The neutrino mass formula for this mechanism is given by

$$m_{\nu} = M_D M^{-1} \mu M_D^T (M^{-1})^T.$$
(2)

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ →

- The muon anomalous magnetic moment (g 2) is a prime example of the success of theoretical advancements in quantum field theory.
- There lies a wide gap between Standard model(SM)'s prediction of muon anomalous magnetic moment, a_μ and its measurement.
- This indicates the existence of new physics beyond Standard Model (BSM).
- The corrections are parametrized in terms of $a_{\mu} = (g_{\mu} 2)/2$ where *g* is the gyromagnetic ratio.

<ロ> (四) (四) (三) (三) (三)

Continued: SM prediction of a_{μ}

• In principle the a_{μ} predicted by SM is given by

$$a^{ ext{SM}}_{\mu} = a^{ ext{QED}}_{\mu} + a^{ ext{electroweak}}_{\mu} + a^{ ext{hadronic}}_{\mu}$$

Figure: Lowest-order SM corrections to Δa_{μ} .

• The theoretical prediction of a_{μ} (PDG'18) is

$$a^{
m SM}_{\mu} = (11659183.0 \pm 4.8) imes 10^{-10}.$$
 (3)

Continued: Experimental frontier of a_{μ}

 The most recent measurement by BNL (2006) data (G. W. Bennett et al.'06) with a 3.3σ deviation,

$$a_{\mu}^{\mathsf{exp}} = (11659209.1 \pm 6.3) imes 10^{-10}$$
 (4)

with $\Delta a_{\mu} = (26.1 \pm 7.9) \times 10^{-10}$ (Bhupal Dev et al.'20).

- The Muon g 2 Experiment at Fermilab (FNAL) (J. Grange et al.'15) aims to improve the statistical error by a factor of four, reaching a similar precision by J-PARC (M. Abe et al.'19).
- A proposed experiment, namely MUonE (G. Abbiendi et al.'16) aspires to reduce this theoretical uncertainty by determining the hadronic vacuum polarization more precisely.

ヘロン 人間 とくほ とくほ とう

Neutrino masses, mixing and muon (g - 2) anomaly in $U(1)_{L_{\mu}-L_{\tau}}$ extension of left-right theories [JHEP09(2020)010] (CM, SP, PP, SS and UAY)

ヘロト ヘアト ヘビト ヘビト

- The U(1)_{Lµ-L_τ} extension of SM has been extensively studied but same extension of LRSM has been less studied.
- Also LRSM offers wider possibilities of explaining different phenomenological aspects.
- Thus with the motivation of explaining neutrino mass and muon (g-2) anomaly within a single framework we reach for the LRSM and augment it with the $U(1)_{L_{\mu}-L_{\tau}}$ symmetry.

ヘロン 人間 とくほ とくほ とう

The model is governed by the gauge group,

 $G_{LR}^{\mu au}\equiv SU(2)_L imes SU(2)_R imes U(1)_{B-L} imes SU(3)_C imes U(1)_{L_{\mu}-L_{ au}}.$

- Let us begin with the usual particle content of LRSM i.e. quarks $(q_{L,R})$, leptons $(\ell_{L,R})$, Higgs bidoublet Φ and triplets $\Delta_{L,R}$.
- In this scenario the light neutrino mass can be generated via type-I+II seesaw formula.
- The obtained degenerate eigenvalues imply disagreement with the neutrino oscillation experiment data.
- This degeneracy can be avoided by introducing another pair of triplet scalars with non-zero L_μ – L_τ charge.
- The model no more remains minimal !!

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - つへの

- So we have replaced the triplets $\Delta_{L,R}$ with doublet scalars $H_{L,R}$.
- To break the $U(1)_{L_{\mu}-L_{\tau}}$ symmetry we have added another scalar χ which has non-zero $L_{\mu} L_{\tau}$ charge.
- For implementing LRSM inverse seesaw(LISS) mechanism to generate neutrino masses in this model we need to add left handed sterile neutrinos(S_L), one per each generation to the usual particle contents of LRSM.
- This also allows large light-heavy neutrino mixing which will be an important feature for explaining muon anomaly (will see later).
- The model is minimal and the degeneracy eigenvalues problems are no more in this model.

イロン 不良 とくほう 不良 とうほ

In our model, the contributions to muon (g - 2) anomaly arise from the interactions of;

- singly charged gauge bosons with heavy neutral fermions,
- neutral vector boson with singly charged fermions,
- singly charged scalars with neutral fermion,
- neutral scalars with muons,
- light new gauge boson $Z_{\mu\tau}$ with muons.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Singly charged gauge bosons contributions: Theoretical Estimation:

Figure: Feynman diagrams for the interaction of singly charged vector bosons.

$$(a) \Delta a_{\mu}(W_R) \simeq \frac{1}{4\pi^2} \frac{m_{\mu}^2}{m_{W_R}^2} \left[|g_{\nu}^{\mu}|^2 \left(\frac{5}{6}\right) + |g_{a}^{\mu}|^2 \left(\frac{5}{6}\right) \right].$$
(5)
(b) $\Delta a_{\mu}(W_L) \simeq 9.06 \times 10^{-9} g_L^2 \sum_{i=1,..,6} |V_{\mu i}^{\nu\xi}|^2$ (6)

Numerical Results for W_R

Figure: Plot showing the contribution of charged vector boson W_R to Δa_μ for the cases $g_L = g_R$ and $g_L \neq g_R$.

W_R is not a good candidate !

э

・ 同 ト ・ ヨ ト ・ ヨ ト

Numerical Results for W_L

Figure: Plot showing the variation of Δa_{μ} coming from purely left-handed currents via W_{L} mediation vs. the light-heavy mixing parameter $V^{\nu\xi}$.

For $V^{\nu\xi} \sim \mathcal{O}(0.3-1), W_L$ is a good candidate to explain muon anomaly.

< 🗇 🕨

Neutral vector boson contribution: Theoretical Estimation:

Figure: Feynman diagrams for the interaction of neutral vector boson.

•
$$\Delta a_{\mu}(Z_R) \simeq -\frac{1}{4\pi^2} \frac{m_{\mu}^2}{m_{Z_R}^2} \left[\left(-\frac{1}{3} \right) |g_{\nu}^{\mu}|^2 + \left(\frac{5}{3} \right) |g_{a}^{\mu}|^2 \right].$$
 (7)

Numerical Estimation for Z_R

Figure: Plot showing the contribution of charged vector boson Z_R to Δa_μ for the cases $g_L = g_R$ and $g_L \neq g_R$.

Z_R is also not a good candidate !

Singly charged scalars contributions: Theoretical Estimation:

Figure: Feynman diagrams for the interaction of singly charged scalars.

•
$$\Delta a_{\mu}(h_{i}^{+}) \simeq -\frac{1}{4\pi^{2}} \frac{m_{\mu}^{2}}{m_{h_{i}^{+}}^{2}} \left[|g_{s}^{\mu}|^{2} \left(\frac{1}{12}\right) + |g_{\rho}^{\mu}|^{2} \left(\frac{1}{12}\right) \right].$$
 (8)

Numerical estimation for charged scalars

Figure: Plot showing the contribution of charged scalars to Δa_{μ} .

Singly charged scalars are not good candidates !

< 🗇

Neutral scalars contributions: Theoretical Estimation of CP-even scalars:

Figure: Feynman diagrams for the interaction of CP-even neutral scalars.

•
$$\Delta a_{\mu}(h_{i}^{0}) \simeq \frac{1}{4\pi^{2}} \frac{m_{\mu}^{2}}{m_{h_{i}^{0}}^{2}} \left[|g_{s}^{\mu}|^{2} \left(-\frac{7}{12} - \log \frac{m_{\mu}}{m_{h_{i}^{0}}} \right) + |g_{\rho}^{\mu}|^{2} \left(\frac{11}{12} + \log \frac{m_{\mu}}{m_{h_{i}^{0}}} \right) \right]$$
(9)

Continued...: Theoretical Estimation of CP-odd scalars:

Figure: Feynman diagrams for the interaction of CP-odd neutral scalars.

•
$$\Delta a_{\mu}(\phi_{i}^{0}) \simeq \frac{1}{4\pi^{2}} \frac{m_{\mu}^{2}}{m_{\phi_{i}^{0}}^{2}} \left[|g_{s}^{\mu}|^{2} \left(-\frac{7}{12} - \log \frac{m_{\mu}}{m_{\phi_{i}^{0}}} \right) + |g_{\rho}^{\mu}|^{2} \left(\frac{11}{12} + \log \frac{m_{\mu}}{m_{\phi_{i}^{0}}} \right) \right]$$
(10)

Numerical Estimation for Neutral Scalars

Figure: Plot showing the contribution of neutral scalars to Δa_{μ} .

CP-even scalars are good candidates for explaining muon (g - 2) anomaly.

< 🗇 🕨

New gauge boson $Z_{\mu\tau}$ contribution: Theoretical Estimation:

Figure: Feynman diagrams for the interaction of gauge boson $Z_{\mu\tau}$.

•
$$\Delta a_{\mu}(Z_{\mu\tau}) = \frac{g_{\mu\tau}^2}{12\pi^2} \frac{m_{\mu}^2}{m_{Z_{\mu\tau}}^2}.$$
 (11)

Numerical estimation for $Z_{\mu\tau}$

Figure: Plot showing the contribution of $Z_{\mu\tau}$ to Δa_{μ} .

$Z_{\mu\tau}$ with mass around 150 MeV is a good candidate to explain the muon anomaly.

- We have constructed an extended left-right model which can explain non-zero neutrino mass and muon anomalous magnetic moment within a single framework.
- Neutrino mass is generated in the model through inverse seesaw mechanism that allows large light-heavy neutrino mixing.
- Within this scenario we have three potential candidates (CP-even scalars, W_L , $Z_{\mu\tau}$) which can explain the entire anomaly.
- Overall we have found that inverse seesaw mechanism influences the results on muon anomaly to a large extent.
- For more details one can refer to JHEP09(2020)010.

く 同 と く ヨ と く ヨ と

Ξ.

ヘロト 人間 とくほとくほとう