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1 Introduction

C, P, T are well known fundamental symmetries
in particle physics:  Abelian Discrete Symmetry

On the other hand,
recent experimental data of neutrino flavor mixing
suggest Non-Abelian Discrete Symmetry for flavors.

The discrete symmetries are described by

Finite Groups.



The classification of the finite groups has been completed in 2004,
(Gorenstein announced in 1981 that the finite simple groups had all been classified.)

about 100 years later than the case of the continuous groups.

Thompson, Gorenstein, Aschbacher ...

More than 400 years ago,
Kepler tried to understand
cosmological structure by the
symmenty of five Platonic solids.

Johannes Kepler  The Cosmographic Mystery Scientists like symmetries !

Finite groups are used to classify crystal structures, regular polyhedra,

and the symmetries of molecules.

The assigned point groups can then be used to determine physical properties,
spectroscopic properties and to construct molecular orbitals.

Symmetry is a powerful approach if the dynamics is unknown.

. We investigate the flavor structure of leptons by Discrete Symmetry.



2 Examples of Finite Groups

Ishimori, Kobayashi, Ohki, Shimizu, Okada, M.T, PTP supprement,
183,2010,arXiv1003.3552,
Lect. Notes Physics (Springer) 858,2012

Finite group G
consists of a finite number of element of 6.

-The number of elements in G is called order.

The group G is called Abelian
if all elements are commutable each other,i.e. ab = ba.

The group G is called non-Abelian
if all elements do not satisfy the commutativity.



Familiar non-Abelian finite groups

order
S,: S,=2,, S3, S, ... Symmetric group N !
A, A;=2Z; A,=T, A; ... Alternating group (N 1)/2
D, D;=S; D, Ds ... Dihedral group 2N
Qneven)r Qv Q5 - Binary dihedral group 2N
2(2N?): X(2)=Z,, Z(18), 2(32), Z(50) ... 2N?
A(BN?): A(12)=A,, A(27) ... 3N?2
TNerime number)y 2Znv XZ3 1 T, Tyz Tags Taqs Tuz, Tag 3N
2(3N3): X(24)=Z,x (12), Z(81)... 3N3
A(BN?): A(6)=S;, A(24)=S,, A(54) ... 6N>2

T’ : double covering group of A,=T 24



For flavor physics, we are interested in
finite groups with triplet representations.

S; has two singlets and one doublet: 1, 1°, 2,
no triplet representation.

Some examples of
non-Abelian Finite groups with triplet representation,
which are often used in Flavor symmetry

S, Ay Ag o |




Elements of G are classified by Conjugacy Class

The number of irreducible representations is equal to
the number of conjugacy classes. Schur’s lemma

The elements g-'ag for g €6 are called
elements conjugate to the element a.

The set including (all elements |
to conjugate to an element a of G,
{g7lag, Yg € 6}, is called a conjugacy class.

When a" = e for an element a € G,
the number h is called the order of a.
All of elements in a conjugacy class have the same order.



[ A, gr'oup]

Even permutation group of four objects (1234)
12 elements (order 12) are generated by

Sand T: S2=T3z(ST)=1 : 5=(14)(23), T=(123) /
4 conjugacy classes A e e | s
c1: 1 h=1 S S I O
C3: S, T2ST, TST? h=2 gg T[T 1T
C4: T, ST, TS, STS h=3 s
C4': T2, ST2, T2S, ST2S h=3 &l il

Irreducible representations: 1, 1°, 1, 3
The minimum group containing triplet without doublet.

] -1 2 2 1 0 O
For 1'r'|p|e'r S = % 2 1 2 . T=10 W20 LW = o27i/3
2 2 -1 0 0 w



[54 group ]

All permutations among four objects, 4 ! =24 elements

h=4

24 elements are generated by S, T and U: " iy
52=T3=U2=1, ST3 = (SV)? = (TU)? = (STU)* =1 i
1 \*’
5 conjugacy classes )
C1: 1 h=1 —
C3: §, T?ST, TST? h=2 Symmetry of a cube
C6: U, TU, SU, T?U, STSU, ST?SU h=
C6’: STU, TSU, T2SU, ST?U, TST?U, T>STU h=4 Aol xt| x| x2 | xs | xy
C8: T, ST, TS, STS, T?, ST, T?S, ST?’S h=3 cCo 11| 121]3]3
Cy |21 1 2 | —1] -1
Irreducible representations: Co |2l 1 [—-1]0]1[-1
1, 1© 2, 3 3 Co |41 -1]0-1]1
Cs |31 L | =110 0

d3

0 -1 2 2 1 0 O

1) S—é(Q —1 2), T—(O w? O); w = e2mi/3
0 2 2 -1 0 0 w

For triplet 3

an

1 0

U=F|0 0

10 0 1



3 Flavor Symmetry with non-Abelian Finite Group

3.1 Towards non-Abelian Discrete Flavor Symmetry

In Quark sector

There was no information of lepton flavor mixing before 1998.
Discrete Symmetry and Cabibbo Angle,
Phys. Lett. 73B (1978) 61, S.Pakvasa and H.Sugawara

S; symmetry is assumed for the Higgs interaction with the quarks
and the leptons for the self-coupling of the Higgs bosons.

4 S; doublet S,singlets S;doublet )
() (),
nl L’ n2 L

one Sy singlet {¢,} and one S5 doublet {¢y, ¢, }

{le}a {sz}a {an, an} ) tan OC = md/ms.

2 generations

11 Y,




Top quark was discovered in 1995

A Geometry of the generations, 3 generations
Phys. Rev. Lett. 75 (1995) 3985, L.J.Hall and H.Murayama

1st and 2"9 generations are 2 of S;, 3@ oneis 1,0f S,

(S(3))? flavor symmetry for quarks Q, U, D

(S(3)) flavor symmetry and p —> K® e*, (SUSY version)
Phys. Rev.D 53 (1996) 6282, C.D.Carone, L.J.Hall and H.Murayama

fundamental sources of flavor symmetry breaking are gauge singlet fields ¢ :flavons

Incorporating the lepton flavor based on the discrete flavor group (S;)3.

12



1998 Revolution in Neutrinos |

Atmospheric neutrinos brought us informations of neutrino masses and flavor mixing.

Prp, =1 = 4|U,q[" (1 _ \L»’MD sin? A_ +2|U,of |Ups| Arzsin Az + O(A3)

First clear evidence of neutrino
oscillation was discovered in 1998

v +v )/(v. +Vv
R=( u VDIV V) pam = 0.65+ 0.05+ 0.08

(V!/ 7 ‘7111 ) /(V(’ S ‘70) l;\f(" .
Multi-GeV

MC (V;J+Z;)/(VS+F3)|MCE2



Before 2012 (no data for 6,3)

Neutrino Data presented sin?0,,~1/3, sin®0,;~1/2

Harrison, Perkins, Scott (2002) proposed

Tri-bimaximal Mixing of Neutrino flavors.

sin? @12 = 1/3, sin® 63 = 1/2, sin®#13 = 0,

V273 J1/3 0
Utri—bimaximal — (\/ 1/6 \ 1/3 —\ 1/2)
PDG ~J/1/6 /1/3 /1/?
C12C13 $12C13 s13€”"0CP
JpMNs = | —S12023 — €12523513€"°CP  C1aca3 — S19S93513€"°CF 593C13
S$12893 — C19C23813€" 0P —C9Sa3 — S19Ca3513€°CP  Ca3Cq3

Tri-bimaximal Mixing of Neutrinos motivates to consider

Non-Abelian Discrete Flavor Symmetry.
14



Tri-bimaximal Mixing (TBM) is realized by the mass matrix

A, symmetric

in the diagonal basis of charged leptons.
Mixing angles are independent of neutrino masses.

Integer (inter-family related) matrix elements
suggest Non-Abelian Discrete Flavor Symmetry.

A, symmetry E. Ma and G. Rajasekaran, PRD64(2001)113012
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In 2012

©,; was measured by Daya Bay, RENO,
T2K, MINOS, Double Chooz

Tri-bimaximal mixing was ruled out |
013 ~9° ~0./v2

Rather large 6, suggests to search for CP violation |

: . 2 s :
Jop = $93(93512C12513C13 SIN0cp =~ 0.0327 sind
Jop(quark)~3x%10-

Challenge for flavor and CP symmetries for leptons



v, Result

A. Radovic, JETP January 2018
e Full Jomt fit with appearance analysis. Feldman Cousins corrections in 2D & 1D limits.

* All systematics, oscillation pull terms shared. NOVA Preliminary
* Constrain 613 using world — T .
average from PDG! Sin22813 3.2[— NOvVA Normal Hierarchy, 90% C.L. —
= 0.082 B — Joint Analysis, 8.85x10%° POT-equiv. i
Best fit: — 3:_ ______ _ -=- v,Analysis PRL118.151802 B
> — : i
o B i
2.444+0.079 4 577 X 103 eV?2 = 26 —
UO preferred at 0.20 5 24 -
Sin202s = x E
UO: 0.558+0-041 4 o33 - .
LO: 0.475+0.036_5 g44 A 0'5 — 5.7

sin 8

17



Atmosphenc Mixing and World Constraints

A. Radovic, JETP January 2018

-Con8|stent with world expectation.

*Competitive measurement NOVA Preliminary

T T T | T |
Normal Hierarchy 90 /o C. L

Of Am232- 82 20 ,
— NOVA 8.85x10°" POT-equiv.
. 3 e T2K 2016
Bestfit: - ~ F . MINOS 2014

Am2zp =
2.444+0.079 5 577 x 103 eV?2

UQO preferred at 0.20

2, (10° eV?)

Mo Mo

(o2} (03]
III|III|III|III|III|III|I

Am

2.4
SIN20o3 = Ny

UQO: 0.558+0-041 5 33 | sint anaiysis
LO: 0.475%0.036 5 g44 e T e

18
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3.2 Direct approach of Flavor Symmetry

Suppose Flavor Symmetry Group 6 Direct APProaCh
at high energy

S.F.King
G breaks down to subgroups of 6, G

which are different in Yukawa S,U broken but T broken but
sectors of Neutrinos and T preserved S,U preserved
Charged leptons, respectively.

S, T, Uare o
generators

of Finite groups -

arXiv: 1402.4271 King, Merle, Morisi, Simizu, M.T
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Consider S, flavor symmetry:

24 elements are generated by S, T and U:
S?=T3=U?=1, ST3 = (SU)?=(TU)?=(STU)*=1
Irreducible representations: 1, 1°, 2, 3, 3’

It has subgroups, nine Z,, four Z;, three Z,, four Z,xZ, (K,)

Suppose S, is spontaneously broken to one of subgroups:

Neutrino sector preserves (1,5,U,8V) (K,)
Charged lepton sector preserves (1,T,T?) (Z;)
) L W= 6271'1'/3

, -1 2 2 1 0
For 3 and 3 s=1l2 1 2], 7=[0 o
2 2 -1 0 O

E oo
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Neutrino and charged lepton mass matrices
respect S, U and T generators, respectively:

STmY S=mY,, Urmy U=mY,, TIY.YJT =YY,

|
[S’ mZL] =0, [U7 mIiL] =0, [TerYeT] =0

Mixing matrices diagonalize mass matrices also diagonalize S,U, and T, respectively !
The charged lepton mass matrix is diagonal because T is diagonal matrix.

(2/\@ /13 0 )

V,=| -1/v6 1/V3 -1/2 Tri-bimaximal mixing 0,3=0

~1/v/6 1/V/3  1/2
which digonalizes both S and U.

C.S.Lam, PRD98(2008)
arXiv:0809.1185

Independent of mass eigenvalues |



If S, is spontaneously broken to another subgroups,
Neutrino sector preserves (1,9V) (Z,)
Charged lepton sector preserves (1,T,T?) (Z,),

mixing matrix is changed !

(SUYTmy , SU =my,, TIY.YIT =Y.V}

B
[SU,m%,] =0, [T,Y.Y1]=0

v —

~1/V6 | c/V3—5/vV2 —s/\V/3—c/V2

( 2//6 c/V'3 s/V3 )
Tri-maximal mixing \-1/V6/ ¢/V3+s/vV2 —s/V3+c/V2
@ c=cosf, 5=sinf includes CP phase.

O is not fixed by the flavor symmetry.

MiXiNQ . 9 _ 2 1 1 ) 1 _
sin“fio =1— — < - cos Ocp tan 209 ~ — 1 —
sum rules 0 12 3cos?fi3 — 3 “r * 2v/2sin 13

sin? 913)

Lo | =1

22
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Inputting the experimental data of 3 mixing angles,
mixing sum rules predict 3.,

Shimizu, Tanimoto, Yamamoto, arXiv:1405.1521

3F
2f
1}
5 o} The sign of 5
15 is not fixed.
_25_ I
0.40 045 050 0.55 0.60 0.65
Si]l:HH
2 1 1 1 7
. 9 ;4 I, L : . 9
sin®fig =1 — —— < - cos Ocp tan 2093 ~ — _ (l — —sin 913>
3cost O3 ~ 3 2v/2sin Hy3 2



3.3 CP symmetry in neutrinos

Exciting Era of Observation of CP violating phase @T2K and NOvA

-2AIn(L)

T2K reported the constraint on 8. Nova reported the preliminary
data.
e T2KRunl-8 preliminary NOVA Prellmlnary
- ] 5 —————————
30: — Normal E  NOVA FD' —NH Upper octant ]
- — Inverted . —_ [ 8.85x10%° POT equiv. ---NH Lower octant
25 ] L 4 - ]
C ] ~ B '," \‘ —IH Upper octant 7
20 - 8 ; \ ---1H Lower octant™
» ] % :
15H . -
) e
o - i
105 D
L . CI 5
03 2 10 1 2 3
dp (rad)

24
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Consistency of CP symmetry and Flavor Symmetry

Example: Impose A, symmetry for leptons

e \A, transformation [ ¢ e
13) = p = T |\ pl . S| p
T T T

-1 2 2 1 0 0
S:% 2 —1 2 , T = 0 w2 0 X w:eQﬂ'i/S
2 2 -1 0 0 w
7

4 conjugacy classes

CP transformation: (S ,T)= (S,T?) C1:1 h=1
C3: S, T?ST, TST? h=2

_ ) C4: T, ST, TS, STS h=3

Out (A,)=Z, outer automorphism C4’: T2, ST2, TS, ST2S h=3
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G.Ecker, W.Grimus and W.Konetschny, Nucl. Phys. B 191 (1981) 465
G.Ecker, W.Grimus and H.Neufeld, Nucl.Phys.B 229(1983) 421

Generalized CP Symmetry in the flavor space

P
e symmetry  9(z) > Xpp*(x'), @' = (1, —x)
Flavor Symmetry () g, pe(g)o(x). g€ Gy

Is CP symmetry consistent with Flavor symmetry ?

Finite groups inconsistent with CP symmetry
A(27), T, ....... Explicit CP violation  cChen, et al: arXiv 1402.0507

Investigation in Finite group theory
class-inverting automorphism

Finite groups consistent with CP symmetry
Ay, A;, T ...... non-trivial CP symmetry
S;, S, ... trivial CP symmetry

Spontaneous CP violation
CP can be predicted



27

Suppose a symmetry
including FLASY and Gy X H p
CP symmetry at high energy: (@) (®,)

Gep =Gy x Hep

is broken to the subgroups
in neutrino sector and
charged lepton sector,
differently.

. T
CP symmetry gives [ m, ] [ (L ]
vT [ * Mixing angles
Xr myLLXr m,rr \ CP phase

X; T (mgme) Xy = (mjme)*




Generalized CP Symmetry

G.Ecker, W.Grimus and W.Konetschny, Nucl. Phys. B 191 (1981) 465
G.Ecker, W.Grimus and H.Neufeld, Nucl.Phys.B 229(1983) 421

cp s N
CP Symmetry o(z) = Xe@*(2'), o' =(t,—X) [X¢Tim, X2 = m*,,
g i PR TR
Flavour Symmetry Q(I) — pr(g)tp(:r)? g & Gf XfT(mémﬁ)Xf = ( Emﬁ)

. J

X, must be consistent with Flavor Symmetry pr (9)

Holthhausen, Lindner, Schmidt,
JHEP1304(2012), arXiv:1211.6953

Consistency condition

—~Automorphism

X pr(9)e* ()
[Xr pi(g) Xo 't =pe(d), 9,9 € Gf]

/ ) 3 ' __l
pe(9)p(z) = Xept(9) X o(2) C'P

28 Mu-Chun Chen, Fallbacher, Mahanthappa, Ratz, Trautner, Nucl.Phys. B883 (2014) 267-305



An example of S, model

Ding, King, Luhn, Stuart, JHEP1305, arXiv:1303.6180

One example of S;: 6,7{1,5} (Z,) and X5'=U , X, =1

satisfy the consistency condition
Xe pi(9) Xit=pe(9), 9.9 € Gy

(

29

\_

2
myrr — «& —1
—1

O = =
—_ O =
N—
+
™M
7
|
Hi—‘O
Olr—\
[E—
._.c>|
—

-1 -1 1 0 0 0
2 —-1]4+810 0 1 |+y|1
-1 2 0O 1 O 1

Commutative with S

Impose

CP symmetry on m,;, X{'m,p Xy =m};p

o, B, y arereal, €is imaginary.
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V, = —c/V6+is/vV2 1/V/3 —s5/v6 —ic/V?2

—c/V6+is/V2 1/V3 —s/V6+ic/V2
c =cosf, s =sin6
1

Sin2 913 — 3 SiIl2 9, SiIl2 912 =

( 2¢//6 1/v/3 25//6 )

SiIl2 923 = %

1
2-4cos 267

|sindcp| =1, sinas; =sinaz; =0

O p=E /2

The predicton of CP phase depends on

the residual generators of FLASY and CP symmetry.

Typically, it is simple value, O, n, +n/2.
A, As, A(6N?) ...
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Direct Approach

¢ Flavor Structure of Yukawa Interactions are directly related
with the Generators of Finite groups. Predictions are clear.

% One cannot discuss the related phenomena without Lagrangian.
Leptogenesis, Quark CP violation, Lepton flavor violation

Go to Indirect Approach !

3¢ Introduce flavons (gauge singlet scalars) to discuss dynamics of
flavors, so write down Lagrangian.
Flavor symmetry is broken spontaneously.
Also investigate the vacuum structure in the broken symmetry.

% The number of parameters of Yukawa interactions increases.
Predictivity of models is less than the Direct approach.



3.4 Indirect approach of Flavor Symmetry
Model building by flavons

Flavor symmetry G is broken by flavon (SU, singlet scalors) VEV's.
Flavor symmetry controls Yukaw couplings
among leptons and flavons with special vacuum alignments.

Consider an example : A, model
Leptons flavons

A, triplets (Le, Ly, Ly) [%(%17%2»%3)} neltrino sector
)

E(Or1, Op2, O3

A, singlets er:1 pp:1” 71

couple to
charged lepton sector

Mass matrices are given by A, invariant couplings with flavons

3LX3L><3 _)19 3L><1R()()>< 3flavon_)l
G. Altarelli, F. Feruglio, Nucl.Phys. BE720 (2005) 64

flavon
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Flavor symmetry G is broken by VEV of flavons
3, x 3, %3 — 1 X 1,12, 1.7) X

flavon ﬂavon

2<¢1/1> _<¢1/3> _<¢1/2> M ye @ 3 Ye ¢E2
murr ~ Yy | —(0u3)  20w2)  —(du1) Mg Y E2> y Op3)
_<¢z/2> —<¢l/1> 2<gb,,3> yT<¢E3> yT TE?
Suppose specific Vacuum Alingnments, which preserve S or T generator.

Take (v1) = (¢v2) = {(dvs) and (Pr2) = (dr3) =0

= (o)~ (1,1,1)" . (¢p) ~(1,0,0)" (1) (1) (
sfi]=11|., T
1

1

O O =
O O =

Then, (¢.)preserves S and (?z)preserves T.

me is a diagonal matrix, on the other hand, m,, is

1 0 0 1 1 1 two generated masses and
Mmyrr ~ 3Y ( 0 1 0\| ( \ one massless neutrinos !

— 1
\o 0 1/ \1 1 1) (O 3y, 3y)
Flavor mixing is not fixed !
Rank 2



Adding A, singlet £ : 1 in order to fix flavor mixing matrix.

3L X 3L X lﬂavon — 1
2<¢I/1> _<¢I/3> _<¢1/2> 1 0 O
murr, ~ Y1 | —(dv3)  2(pv2) —(dv1) | +32(§) |0 0 1
_<¢1/2> _<¢1/1> 2<¢1/3> 0O 1 O
(du1) = (dv2) = (¢v3), which preserves S symmetry.
1 0 O 1 1 1 1 0 O
myrr=3a10 1 0)—all 1 1]1+b610 0 1
0O 0 1 1 1 1 0O 1 0

Flavor mixing is determined: Tri-bimaximal mixing. @ 13=(.)

m, =3a+b, b, 3a—b = m,, —m,, =2m,,

3

There appears a Neutrino Mass Sum Rule.

This is a minimal framework of A, symmetry predicting mixing angles and masses.
34
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A, model easily realizes non-vanishing 6,; .

Y. Simizu, M. Tanimoto, A. Watanabe, PTP 126, 81(2011)

3x3=1 =ai*xby +as *xbs+ asx*bs
3><3:>1’:a1*62—|—a2*b1—|—a3*63
3X3:>1H:al*bg+ag*bg+a3*bl

S O

I1x1=1 |, 1" x1' =1
4

1 0 0 0 0 1\

0 0 1 0 1 0

0 1 0 1 0 0
\_ )




Additional Matrix

4 )
1 0 0 111 1 0 0 00 1
M, =al0 1 0 +b[1 1 1) +cf0 0 1]+d|0 10
00 1 111 010 \1 0 0/
et whesd _wae? o gpae o _3p
A T 3A T A " A

Both normal and inverted mass hierarchies are possible.

a+tc—4g 0 L
M, = Visibi 0 a+3b+c+d 0 V.. Tri-maximal mixing: TM,
?d 0 a—c—+ %
Am3, = —dav/c? +d? —ed | Ami = (a+3b+c+d)? —(a+ Ve +d? —cd)?
Normal hierarchy Inverted hierarchy »
: ' ' ' ' ] 150
100 o _./’/
— 50 -
% 0
° _s0 —
~100 T |
[ -150 \ :
010 012 0.14 0.16 0.18  0.20 0.35 0.40 045 050 055 0.60 0.65

- 2
Emi [eV] sin 623
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4 Prospect
Quark Sector ?

Y<How can Quarks and Leptons become reconciled ?

T', S, As and A(96) SU(D)
S;, S,;, A(27) and A(96) can be embeded in SO(10) GUT.
A4 ar\d 54 Ps

For example: See references S.F. King, 1701.0441
quark sector (2, 1) for SU(5) 10
lepton sector (3) for SU(D) 5

Different flavor structures of quarks and leptons appear !

Cooper, King, Luhn (2010,2012), Callen,Volkas (2012), Meroni, Petcov, Spinrath (2012)
Antusch, King, Spinrath (2013), Gehrlein, Oppermann, Schaefer, Spinrath (2014)
Gehrlein, Petcov,Spinrath (2015), Bjoreroth, Anda, Medeiros Varzielas, King (2015) ..

Origin of Cabibbo angle ?
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% Flavour symmetry in Higgs sector ?

Does a Finite group control Higgs sector ?
2HDM, 3HDM ...

an interesting question since Pakvasa and Sugawara 1978

% How to test Flavor Symmetry ?

* Mixing angle sum rules

Example:

2 1 1 1 7
™ sin?fp =1 — = < -, cosOcptan 2693 ~ ———n—— (1 — —sin? 913)
! -3 2/2 sin 643 2

3cos?f3

* Neutrino mass sum rules in FLASY <+ neutrinoless double beta decays

* Prediction of CP violating phase up to sign Takagi's talk



Backup slides



3.2 Origin of Flavor symmetry

Is it possible to realize such discrete symmetres in string theory?
Answer is yes |

Superstring theory on a certain type of six dimensional compact
space leads to stringy selection rules for allowed couplings
among matter fields in four-dimensional effective field theory.

Such stringy selection rules and geometrical symmetries result in
discrete flavor symmetries in superstring theory.

- Heterotic orbifold models (Kobayashi, Nilles, Ploger, Raby, Ratz, 07)

- Magnetized/Intersecting D-brane Model
(Kitazawa, Higaki, Kobayashi, Takahashi, 06 )
(Abe, Choi, Kobayashi, HO, 09, 10)

40



Stringy origin of non-Abelian discrete flavor symmetries
T. Kobayashi, H. Niles, F. PloegerS, S. Raby, M. Ratz, hep-ph/0611020

D,, A(54)

Non-Abelian Discrete Flavor Symmetries from

Magnetized/Intersecting Brane Models
H. Abe, K-S. Choi, T. Kobayashi, H. Ohki, 0904.2631

Non-Abelian Discrete Flavor Symmetry from T%/Z,, Orbifolds
A.Adulpravitchai, A. Blum, M. Lindner, 0906.0468

A4! S4! D3’ D4! D6

Non-Abelian Discrete Flavor Symmetries of 10D SYM

theory with Magnetized extra dimensions
H. Abe, T. Kobayashi, H. Ohki, K.Sumita, Y. Tatsuta 1404.0137

S,, A(27), A(54)

41
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Sl/Z2 orbifold (Kobayashi, Nilles, Ploger, Raby, Ratz, 07)

1:(0,0) 2:(6,e1)

‘.—Q

There are two fixed point under the orbifold twist

These two fixed points can be represented by space group elements
which act (0, v) (0, v)a — Qo + 2
€1 : shift vectorinone torus (¥ ~ y + e1)

1 1 O 1
charge assignment of Z» : > >\l 0o 1 2

(stringy selection rule: Coupling is only allowed in matching

of the string boundary conditions)

H.Ohki
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Discrete flavor symmetry from orbifold S 1 /7>

This effective Lagrangian also have permutation symmetry of
these two fixed point (orbifold geometry).

1 01 1) _ [2
> ) 7110 2 ) \1

Closed algebra of these transformations {( (1) é ) , ( é _01 >}
) Dy~ S?U(Zo X Z5)

Two field localized at two fixed points : doublet of D4 2

Bulk mode (untwisted mode) . singlet of D4 1

Thus full symmetry 1s larger than geometric symmetry

H.Ohki
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Alternatively, discrete flavor symmetries may
be originated from continuous symmetries

Escobar, Luhn (C X d) X ((Lb)
A(6n?) = (Z, X Zy) X S3

NEWN = (70 2 Ay @
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Restrictions by mass sum rules on \meel

ﬁi‘] +ﬁ12=ﬁi3—

ﬁ’l’l +m3=2ﬁ32—

2i, + i3 =

ﬁ?l+ﬁ12 =2ﬁ?3—
o j3+l o _33—1 ~ |
m1+ 5 My = 3 5]

-1 -1 _ g,-1

-
215

=1 | m=1 _ pa—1|
my" +my =2,
~1 — z-1]

-u_]_ "
m; :|:21m'2 =

Vg — iy =2+
Vi +Vmy =2+m,

%+ ;M = 2,

=1 _ =1

-1/2|

Inverted
normal
S
S
‘El
-3
3
3
=
. a
Data: n:u—'F'it'or" l
= 279 Imeel [€V]
107* 0.001 001 0.1 1

King, Merle, Stuart, JHEP 2013, arXiv:1307.2901
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Mass sum rules in A,, T', S,, A5, A(96) ...
(Talk of Spinrath)  Barry, Rodejohann, NPB842(2011) arXiv:1007.5217

Different types of neutrino mass spectra correspond
to the neutrino mass generation mechanism.

X’fhg + f’fhg = fnl (XZZ, &21) (Xz-l, 521)

o | ms  my My structre in See-saw
xvma +&v/ms =+/m1 My structre in See-saw
x4 & 1 .

=t 5 T T My in inverse See-saw

X and £ are model specific complex parameters

King, Merle, Stuart, JHEP 2013, arXiv:1307.2901
King, Merle, Morisi, Simizu, M.T, arXiv: 1402.4271



[A5 gr'oup] (simple group)

The A; group is isomorphic to the symmetry of
a reqular icosahedron and a reqular dodecahedron.

60 elements are generated S and T .
S2=(ST)P=1and T° =1

5 conjugacy classes

Irreducible representations: - /12 1 § :;’ jz ?
1, 3, 3, 4, 5 ,.-1 T 5
’ ’ ’ ’ 015 211 —1 —1 0 1
i Cy | 3|1 0 0 1 | -1
For triplet 3 T o= 0
1 V2 V2 oni 12 | D o1 o
S= | V2 —o 5 | T=]oe5 0
V2 1 —¢ gmi e
¢ 0 0 eb 143 .
0= =3 Golden Ratio




48

Mixing pattern in A; flavor symmetry

It has subgroups, ten Z;, six Z;, five Z,*Z, (K,) .

Suppose Aj is spontaneously broken to one of subgroups:
Neutrino sector preserves S and U (K,)
Charged lepton sector preserves T (Z5)

STmY S=m4,, UlmY, U=mY,, TY.YIT =YY/

| |
[Sv mZL] =0, [Uv mZL] =0, [TaYeYj] =0

I 0 0

2mi 1

T= O€5 0 [/“T: O
8i

0 0 eb 0

F. Feruglio and Paris, JHEP 1103(2011) 101 arXiv:1101.0393

1 V2 V2
V2 =0
V2 1 —¢

—_ o O
oS = O
v
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\
4 cosfip  sinfyy 0 \
sin #19 cos B9 1 0..=0
(/TGR = \/§ o \/§ \/E 13~
\ sin #19 cos B9 1 )
2 2 2
\_ V2 V2 V2 ' )

tanbyo =1/ : ¢ = 1+2\/§ Golden Ratio

Neutrino mass matrix has py-1v symmetry.

Ty vy
m,=|vy z w with z+w=2x— V2
y w oz

sin20,, = 2/(5+y 5) = 0.2763...
which is rather smaller than the experimental data.

sin® 015 = 0.306 + 0.012



