Non-Abelian Discrete Groups
and Neutrino Flavor Symmetry

Morimitsu Tanimoto

Department of Physics, Niigata University, Niigata 950-2181, Japan

Abstract

We discuss the recent progress of flavor models with the non-Abelian discrete symmetry in the lepton sector focusing on the CP violating Dirac phase. It is emphasized that the flavor symmetry with the generalised CP symmetry can predict the CP violating phases.

1 Introduction

The neutrino oscillation experiments have determined precisely the two neutrino mass differences and the three neutrino mixing angles. Especially, the recent data of both T2K and NOνA show that the atmospheric neutrino mixing angle θ_{23} is near the maximal angle 45°. Indeed, the NuFit 3.2 present the best fit $\theta_{23} = 47.2^\circ$ for the normal hierarchy of neutrino masses [1]. The closer maximal mixing $\theta_{23} = 45^\circ$, the more likely that some symmetry behind it. The recent experimental data of T2K and NOνA also strongly indicate the CP violation in the neutrino oscillation [2, 3]. We are in the era to develop the flavor structure of Yukawa couplings by focusing on the leptonic CP violation.

These experimental data give us a big hint of the flavor symmetry. Before the reactor experiments reported the non-zero value of θ_{13}, there was a paradigm of ”tri-bimaximal mixing” (TBM) [4, 5], which is a simple mixing pattern for leptons and can be easily derived from flavor symmetries. Some authors succeeded to realize the TBM in the A_4 models [6, 7, 8, 9]. After those successes, the non-Abelian discrete groups are center of attention at the flavor symmetry [10, 11, 12, 13]. The observation of the non-vanishing θ_{13} accelerate the study of flavor models deviating from the TBM [14]. In this talk, we summarize the recent progress of the flavor models with the non-Abelian discrete symmetry.

2 Tri-bimaximal mixing and Flavor symmetry

2.1 Tri-bimaximal mixing

After discovering two large mixing angles of neutrino flavors, Harrison-Perkins-Scott proposed a simple form of the mixing pattern, so-called the tri-bimaximal mixing (TBM) [4, 5] as follows:

$$V_{\text{TBM}} = \begin{pmatrix}
\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & 0 \\
\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}
\end{pmatrix}.$$ (1)

The TBM is given in the neutrino mass matrix $m_{\nu LL}$

$$m_{\nu LL} = \frac{m_1 + m_3}{2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + \frac{m_2 - m_1}{2} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} + \frac{m_1 - m_3}{2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix},$$ (2)
where m_1, m_2 and m_3 are neutrino masses, in the diagonal basis of the charged lepton. It is remarked that the mixing angles are independent of neutrino masses. It is also noticed that this mass matrix is given in terms of integer matrix elements. The non-Abelian symmetry connects different families by taking a doublet or a triplet irreducible representation for three families. The discrete symmetry gives us the definite meaning of three family. Therefore, the non-Abelian discrete symmetry is appropriate for lepton families in the standpoint of the TBM.

The model building of the flavor symmetries is not straightforward since the flavor symmetry groups G are generated by the generators S and T, which satisfy $S^2 = T^3 = (ST)^3 = 1$. They are classified by the conjugacy classes as:

$$C_1 : \{1\}, \quad h = 1,$$

$$C_3 : \{S, T^2ST, TST^2\}, \quad h = 2,$$

$$C_4 : \{T, ST, TS, STS\}, \quad h = 3,$$

$$C'_4 : \{T^2, ST^2, T^2S, ST^2S\}, \quad h = 3,$$

where we have also shown the orders of each element in the conjugacy class by h with $g^h = 1$. There are four conjugacy classes and there must be four irreducible representations, 1, $1'$, and $1''$, and a single triplet 3.

Next, we present the S_4 group, which consists of all permutations among four objects. The order of S_4 is equal to $4! = 24$. These elements are generated by the generators S, T and U, which satisfy $S^2 = T^3 = U^2 = 1$ and $ST^3 = (SU)^2 = (TU)^2 = 1$. They are classified by the conjugacy classes as:

$$C_1 : \{1\}, \quad h = 1,$$

$$C_3 : \{S, T^2ST, TST^2\}, \quad h = 2,$$

$$C_6 : \{U, TU, SU, T^2U, STSU, ST^2SU\}, \quad h = 2,$$

$$C_8 : \{T, ST, TS, STS, T^2, ST^2, T^2S, ST^2S\}, \quad h = 3,$$

$$C'_6 : \{STU, TSU, T^2SU, ST^2U, TST^2U, T^2STU\}, \quad h = 4.$$

The group S_4 includes five conjugacy classes, that is, there are five irreducible representations, two singlets 1 and $1'$, one doublet 2, and two triplets 3 and $3'$.

2.2 A_4 and S_4 symmetry

The most predictive models involve flavor symmetry groups which admit triplet representations. The typical non-Abelian discrete symmetries are A_4 and S_4, which are adopted in some neutrino models.

Let us introduce these groups briefly [11, 12]. All even permutations of four objects form a group, which is called A_4. The order of this group, that is the number of elements, is 12. These elements g are generated by the generators S and T, which satisfy $S^2 = T^3 = (ST)^3 = 1$. They are classified by the conjugacy classes as:

$$C_1 : \{1\}, \quad h = 1,$$

$$C_3 : \{S, T^2ST, TST^2\}, \quad h = 2,$$

$$C_4 : \{T, ST, TS, STS\}, \quad h = 3,$$

$$C'_4 : \{T^2, ST^2, T^2S, ST^2S\}, \quad h = 3,$$

where we have also shown the orders of each element in the conjugacy class by h with $g^h = 1$. There are four conjugacy classes and there must be four irreducible representations, 1, $1'$, and $1''$, and a single triplet 3.

2.3 Flavor models with A_4 or S_4 symmetry

The model building of the flavor symmetries is not straightforward since the flavor symmetry group G must be broken. The key of the model building is how the symmetry G is broken. The
predictions depend crucially on the breaking pattern of G. Although G is completely broken in the full theory, there are some relic symmetries of G in the neutrino sector and the charged lepton sector, respectively. These relic symmetries are different in the neutrino sector and the charged lepton sector. This difference is crucial to predict the flavor mixing angles. If no relic symmetries survive, there is no predictive power of the flavor group G.

There are two approaches, the direct one and the indirect one [13]. In the direct approach, the different subgroups of the flavor symmetry survive in the neutrino sector or charged lepton sector. Then, the survival symmetry in the neutrino sector is $Z_2 \times Z_2$ (the Klein symmetry), while the symmetry in the charged lepton sector is Z_3. However, it is not true that the relevant Klein symmetry is a subgroup of the underlying family symmetry G. Indeed, the S_4 group has the relevant subgroup $Z_2 \times Z_2$ which is generated by S and U, but the A_4 symmetry does not.

On the other hand, in the indirect approach, no subgroup of the flavor symmetry survives. Instead, the flavons have special vacuum alignments whose alignment is assisted by the flavor symmetry. These flavons are different ones in the neutrino sector and the charged lepton sector by an additional Z_n symmetry.

2.3.1 Direct Approach of S_4 symmetry

We discuss the direct approach of the $G = S_4$ group. The S_4 group has subgroups, which are nine Z_3, four Z_3, three Z_4 and four $Z_2 \times Z_2$ (Klein four group).

Suppose S_4 is spontaneously broken to one of subgroups, in which

$$K_4 : \{1, S, U, SU\} \quad \text{for neutrinos}, \quad Z_3 : \{1, T, T^2\} \quad \text{for charged leptons},$$

are preserved. The neutrino mass matrix $m_{\nu LL}$ respects the S and U generators, on the other hand, the charged lepton mass matrix m_ℓ respects the T generator. Then, these mass matrices satisfy the following relations:

$$S^T m_{\nu LL} S = m_{\nu LL}, \quad U^T m_{\nu LL} U = m_{\nu LL}, \quad T^\dagger m_\ell m_\ell^\dagger T = m_\ell m_\ell^\dagger,$$

which turn to

$$[S, m_{\nu LL}] = 0, \quad [U, m_{\nu LL}] = 0, \quad [T, m_\ell m_\ell^\dagger] = 0.$$

For the triplets, which are two ones in S_4, the representation of U is taken to be:

$$S = \frac{1}{3} \begin{pmatrix} -1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1 \end{pmatrix}, \quad T = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega^2 & 0 \\ 0 & 0 & \omega \end{pmatrix}, \quad U = \mp \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix},$$

where $\omega^3 = 1$ and the signs \mp in U correspond to the different triplets. The mixing matrix which diagonalizes both S and U is fixed as

$$\begin{pmatrix} 2/\sqrt{6} & 1/\sqrt{3} & 0 \\ -1/\sqrt{6} & 1/\sqrt{3} & -1/\sqrt{2} \\ -1/\sqrt{6} & 1/\sqrt{3} & 1/\sqrt{2} \end{pmatrix},$$

which is just the TBM mixing matrix. Thus, the TBM is derived from the direct approach of the S_4 group.

There is another possibility of the breaking pattern of the S_4 group. Suppose S_4 is spontaneously broken to

$$Z_2 : \{1, SU\} \quad \text{for neutrinos}, \quad Z_3 : \{1, T, T^2\} \quad \text{for charged leptons},$$
preserved. This case is called as the semi-direct approach.

Then, these mass matrices satisfy the following relations

\[[SU, m_{\nu LL}] = 0 \quad [T, m_\ell m_\ell^T] = 0 \quad (11) \]

which give us another mixing pattern as follows:

\[V_\nu = \begin{pmatrix} 2/\sqrt{6} & c/\sqrt{3} & s/\sqrt{3} \\ -1/\sqrt{6} & c/\sqrt{3} - s/\sqrt{2} & -s/\sqrt{3} - c/\sqrt{2} \\ -1/\sqrt{6} & c/\sqrt{3} + s/\sqrt{2} & -s/\sqrt{3} + c/\sqrt{2} \end{pmatrix}, \quad (12) \]

where \(c = \cos \phi \) and \(s = \sin \phi \) including a CP violating phase. This mixing matrix is also the tri-maximal mixing which is called TM\(_1\).

3 CP symmetry and Flavor Symmetry

Let us start with discussing the generalised CP symmetry \([15, 16]\). The CP is a discrete symmetry which involves both complex conjugation of the fields and inversion of spatial coordinates,

\[\varphi(x) \rightarrow X_{r_1}\varphi^*(x') \quad , \quad (13) \]

where \(x' = (t, -x) \) and \(X_{r_1} \) is a matrix of transformations of \(\varphi(x) \) in the irreducible representation \(r_1 \) of the discrete flavor symmetry \(G \). If \(X_{r_1} \) is the unit matrix, the CP transformation is the trivial one. This is the case for the continuous flavor symmetry \([16]\). However, in the framework of the discrete family symmetry, non-trivial choices of \(X_{r_1} \) are possible. The unbroken CP transformation \(X_{r_1} \)'s form the group \(H_{CP} \). Then, \(X_{r_1} \)'s must be consistent with the flavor symmetry transformation,

\[\varphi(x) \rightarrow \rho_{r_1}(g)\varphi(x) \quad , \quad g \in G \quad , \quad (14) \]

where \(\rho_{r_1}(g) \) is the representation matrix for \(g \) in the irreducible representation \(r_1 \).

The consistent condition is obtained as follows. At first, perform a CP transformation \(\varphi(x) \rightarrow X_{r_1}\varphi^*(x') \), then apply a flavor symmetry transformation, \(\varphi(x')^* \rightarrow \rho_{r_1}(g)\varphi(x')^* \), and finally an inverse CP transformation. The whole transformation is written as \(\varphi(x) \rightarrow X_{r_1}\rho_{r_1}(g)X_{r_1}^{-1}\varphi(x) \), which must be equivalent to some flavor symmetry \(\varphi(x) \rightarrow \rho_{r_1}(g')\varphi(x) \). Thus, one obtains the consistent condition \([17, 18]\)

\[X_{r_1}\rho_{r_1}(g)X_{r_1}^{-1} = \rho_{r_1}(g') \quad , \quad g, g' \in G \quad . \quad (15) \]

The full symmetry of the unbroken flavor symmetry and generalised CP symmetry is the semi-direct product of \(G \) and \(H_{CP} \), that is \(G \otimes H_{CP} \), where \(G \) and \(H_{CP} \) do not commute in general for the case of the non-Abelian discrete symmetries.

Suppose the full symmetry including the CP symmetry and the flavor symmetry is broken to the subgroups in the neutrino sector and the charged lepton sector, respectively. The CP symmetry gives us the relations as to the neutrino mass matrix and the charged lepton mass matrix as follows:

\[X_{r_1}^{\nu T}m_{\nu LL}X_{r_1}^\nu = m_{\nu LL} \quad , \quad X_{r_1}^{\ell T}m_\ell m_\ell^T X_{r_1}^\ell = m_\ell m_\ell^T \quad . \quad (16) \]

Once the subgroups of \(G \) and \(H_{CP} \) are chosen to satisfy the conditions of Eqs. (15) and (16) for the neutrino sector and the charged lepton sector, respectively, one can predict the CP phase, \(\delta_{CP} \).
In this talk, we present an example of the S_4 symmetry [19, 20]. Suppose the full symmetry is broken to G_ν and H'_{CP} in the neutrino sector, while the charged lepton sector respects T, that is the diagonal charged lepton mass matrix:

$$G_\nu = \{1, S\}, \quad X_3' = U, \quad G_\ell = \{1, T, T^2\}, \quad X_3^\ell = 1,$$

which satisfy the consistency condition Eq.(15). Then, the neutrino mass matrix, which respects S, is given as

$$m_{\nu LL} = \alpha \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix} + \beta \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} + \gamma \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} + \epsilon \begin{pmatrix} 0 & 1 & -1 \\ 1 & -1 & 0 \\ -1 & 0 & 1 \end{pmatrix},$$

where α, β, γ and ϵ are arbitrary complex parameters. Imposing the CP symmetry $S^T m_{\nu LL} S = m_{\nu LL}^*$ in Eq.(16), one finds α, β and γ to be real, and ϵ to be pure imaginary. Then, the neutrino mass in Eq.(18) is diagonalized by the unitary matrix:

$$V_\nu = \begin{pmatrix} 2c/\sqrt{6} & 1/\sqrt{3} & 2s/\sqrt{6} \\ -c/\sqrt{6} + is/\sqrt{2} & 1/\sqrt{3} & -s/\sqrt{6} - ic/\sqrt{2} \\ -c/\sqrt{6} - is/\sqrt{2} & 1/\sqrt{3} & -s/\sqrt{6} + ic/\sqrt{2} \end{pmatrix},$$

where $c = \cos \phi$ and $s = \sin \phi$. Since the charged lepton mass matrix is diagonal, we obtain

$$\sin^2 \theta_{13} = \frac{2}{3} \sin^2 \phi, \quad \sin^2 \theta_{12} = \frac{1}{2 + \cos 2\phi}, \quad \sin^2 \theta_{23} = \frac{1}{2}, \quad |\sin \delta_{CP}| = 1,$$

which correspond to the maximal CP violation, $\delta_{CP} = \pm \pi/2$. The prediction of the CP phase depends on the respected "Generators" of the flavor symmetry and the CP symmetry. Typically, it is simple values 0, $\pm \pi/2$ or π for other cases [20, 21].

It is useful to summarize the comprehensive work by Chen et al. [18] in the relation between the discrete symmetries and the physical CP invariance guaranteed by generalized CP transformations. They have studied the CP violation by the automorphisms of G carefully. The origin of the CP violation with a discrete flavor symmetry is categorized into three types: (i) Groups explicitly violate CP, which can be related to the complexity of some CG coefficients. An example is the $\Delta(27)$ group. (ii) Groups for which one can find a CP basis in which all the CG coefficients are real. For such groups, imposing CP invariance restricts the phases of coupling coefficients. The examples are A_4, T' and S_4. (iii) Groups that do not admit real CG coefficients, but can define the generalized CP transformation. An example is $\Sigma(72)$.

4 Prospect

The flavor symmetry predicts non-vanishing θ_{13}. The flavor symmetry with the generalised CP symmetry also predicts the CP violating phase. Moreover, the flavor symmetry predicts the mass sum rules. These predictions will be testable by the precise data of the neutrino mixing angles, the CP violating phase and the effective neutrino mass m_{ee}.

On the other hand, we have another important question. Can one predict the CKM mixing matrix in the quark sector from the flavor symmetry? We expect challenging works, in which the neutrino mixing angle θ_{13} is related to the Cabibbo angle and the CP violating phases are related each other in the framework of the unification of quarks and leptons.

Acknowledgement This work is supported by JSPS Grand-in-Aid for Scientific Research 15K05045 and 16H00862.
References

