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Abstract

Unruh effect

A uniformly accelerating observer sees the Minkowski vacuum as a

Entangled state between the left and right Rindler wedges

©.@)

Extend the description of the Minkowski vacuum
state to the entire Minkowski spacetime

N,

Entanglement _{¢¥8 R>

Clarify the structure of the entanglements
of the states in these spacetimes




Introduction

Quantum entanglement
A state which can’t be expressed by a direct product

Example: A state of complex system of particle A and B

Entangled

AB) = 7(|O>A Mg+, ®10)p)

A and B are entangled

AB) = (10} + 11),) ® (100 + 1))

A and B aren’t entangled




Introduction

What's the Unruh ef Ty = &
2m

Unruh effect Unruh temperature

The phenomenon that an uniformly accelerated observer sees
the Minkowski vacuum as a thermal state.

The temperature is proportional to the acceleration of the observer.

Orbit of an uniformly accelerating observer

R Rindler coordinate (R-region)

1 1
t = —e* sinhar 2 = —e* coshar
a a

1 1
t = —sinhart 2z = —coshart
a a




Introduction

- . N
Minkowski vacuum state

bk, |0, M) = 0

\_ _/

Bogoliubov
transformation

/Rindler vacuum state )

The vacuum state which is naturally
defined on the Rindler coordinate is
different from the vacuum which is

defined on the Minkowski coordinate.

The expectation value of number
operator of the Rindler observer in
non-inertial frame is not zero

Unruh effect




Introduction

The model of the field consisting of two harmonic oscillators

simplified Minkowski vacuum
~. Fregion .~

density operator L region R region

PR = TrL[|O7 M> <07 M”
P region
Expectation value of number operator

: Bose distribution function

Therefore---

The description of the Minkowski
vacuum state is important for the

Unruh temperature understanding of the Unruh effect.




Motivation and Purpose

Significance of the description of vacuum

The description of Minkowski vacuum is important for the Unruh effect.

The Unruh effect is basic prediction of QFT in curved spacetime.

The Unruh effect is related to the Hawking effect.

It's necessary to understand the difference of expectation
value of number operator on each coordinates.




Motivation and Purpose

Historical back ground of the study of

the description of Minkowski vacuum with the entang

Unruh, Wald (1984)
Minkowski vacuum (4-dimensional case)

N 4
N 4
N ’
N . ’
N ’
N ’
N ’
N 4
N 4
N\ 4
N ’
N

L region —x R region

The entanglement of R region and L region is

important to understand the Unruh effect P region

Olson, Ralph (2010)
There is entanglement between F region and P region (2-dimensional case)

Obtain the description which explains the entanglement structure
of the entire Minkowski spacetime in 2,4-dimensional case




Procedure and Calculations

(1). Obtainthe mode expansion of scalar field in each (F,R,P,L) region

(2). Connect the mode functions of each region

(3). Describe the Minkowski vacuum state on the curved space-time

(4). Verify the obtained description by calculating 2 point correlation function




Procedure and Calculations

Coordinates that we used in this research

R region (R Rindler coordinate)

1 1
t = —e% sinh ar 2 = —e% coshar
a a

L region (L Rindler coordinate)

1 = 1 : -
t = —e% sinh a7 2 = — % cosh aF
a a

F region (F expanding degenerate Kasner

1 1 ,
t=—e"coshal 2z = —e""sinha(
a a

P region (Past shrinking degenerate Kasner universe)

1 : 1 A
t=——e “coshal z=—-e *sinha
a a




Procedure and Calculations

Action of massless scalar field
1

Eq. of motion

Commutation relation

Mode expansion
dk,d?k |
) 3/2 V2ko

Minkowski vacuum
bk, |0,M) =0

(kakJ_G_Zkot—szz_'—ZkJ"mJ‘ + hC)

Creation and annihilation operator
bioie, B, g 1 = 0 (ke — K05 (k. — )

Basically, the mode expansion on other coordinates are derived by the same procedure




Procedure and Calculations

Action of massless scalar field

1
5= [ dov=a9"9,00,0

ds? = 2% (dr? — d€?) — dx?

Eq. of motion
:

/sinh Zw/aKiw/a (/@eaf) pik 1 @y —iwr
4m%a a

1 1
t = —e*sinhar z = —e® cosh ar
a a




Procedure and Calculations

Action of massless scalar field

1
5= [ dov=a9"9,00,0

Eq. of motion

sinh 7w /a
Arta

N 1 N
sinh a7 2z = —=e% cosh a7
a




Procedure and Calculations

Action of massless scalar field

1
5= [ dov=a9"9,00,0

Eq. of motion

—1e

F
VU ke, (TF) = -]
,ku( F) I 4asinh(7T|W|/a)

1 1 .
t=~e“coshal z= —e"Tsinha(
a a




Procedure and Calculations

Future (expanding) degenerate Kasner coordinate(F region: t>|z|)

We decompose the solution of scalar field into two parts.




Procedure and Calculations

Action of massless scalar field

1
5= [ dov=a9"9,00,0

ds? = e 241 (dp? — d¢?) — da?
Eq. of motion

1 _ - ~ 1 _ - . ~
——e “coshal z= —e “"sinha(
a a




Procedure and Calculations

Past(shrinking) degenerate Kasner coordinate(P region: -t>|z|)

,L'esz

- g
2w+ /4asinh(rw/a)

We can write the quantum field separating the right-moving wave
modes from the left-moving wave modes by decomposing the solution.




Results and discussions

4-dimensional massless scalar field

derived mode functions

L region R region

Nk, o, | SiDh7Tw/a »
w/a
Amta

— @ uu/a ( e—iku_-a:J_
~ 2n\/da smh(mu/a) a

a

iw/a

N sinh(7w/a)




Results and discussions

Analytic continuation of exponential term




Results and discussions

Analytic continuation 4-dimensional massless scalar field

Scalar field:

Minkowski vacuum :




Results and discussions

4-dimensional massless scalar field

Each mode is propagating like massive wave




Results and discussions

: : . 2-dimensional massless scalar field
Analytic continuation

©.@)

Z / dw (a7 v (x) + h.c.)

o=1,11,1T1,1vV 7 0

10, M) = H[Nw N e e, 1) @ [n,, TTD)|

w n.,=0

[ee}

1 [Nw/ N e e g, 1) @ [, V)




Results and discussions

2-dimensional massless scalar field

Each mode is propagating along with the
light cone just like massless wave




Results and discussions

4-dimensional massless 2-dimensional massless case

massive massless

The cause of the difference is the existence of wavenumber which corresponds
to the spatial axis which is perpendicular to the direction of acceleration.

P region, massive field

Eq. of motion




Results and discussions

Calculation of 2-point correlation function

We calculated 2-point function with derived descriptions and compared
the result with the 2-point function on the Minkowski coordinate

Verification of derived description
— 1

Aassless scalar field (4-dim) (2-dim) \

o(x) = Z /000 dw /_oo d*ky (a4 v, (x) +hec.) T Z /OOO dw (a2 v (x) + h.c.)

o=I,II o=ILII,IILIV

Minkowski vacuum (4-dim)

10, M) = H[Nj D el 1) @ \ng’,I)] 10, M) = H[Nw i e~mww/ay 1) g |nw,III>]

J n;=0 w n,=0

®H[Nw/ i e‘”"’w’“’//“|nw/,11>®|nw/,IV>]

/ —
w n,r=0




Results and discussions

4-dimension

, dk,d*k ko (t—t' —ie)tiky (z—2" ) Fik L (@) —x))
<O,M|¢($)¢(£E )|07M> — (27’(’)32]606

10,M) = H[N Ze ™iWilan 11) @ |ny, )}

J n;=0

o= 3 [ [ b a0

o=I,I1

2-point correlation
2-dimension function on flat spacetime

> dk Ny /
M —z|k:|(t—t )+ik(z—2z")
@) — [ e

o0

0.:) = T |ve 3 em™ereng, D @ . HI}®H[ Z e Sy T 6 [, TV) |

Z /000 dw (a2 v? (z) + h.c.)

o=LILIILIV




Results and discussions

By using the property of operators and Bogoliubov
transformations, we obtained--:

(4-dim)

dk.d*k : PN "o ,
(0. Mg(a)o(a)]0.M) —> [ TEE et i bk s (o el

(271')32]{0

0,M )[0, M) o ik (t—t")Fik(z—2")
(0, Ml(z)¢(") _>/ wﬁ'

The 2-point function with derived descriptions is equal to 2-point
function on the Minkowski coordinate.

- consistent with QFT on the flat spacetime
The derived description is - reliable to calculate 2-point function
- applicable for calculation of quantum radiation




Summary & Future work

Unruh, Wald(1984) ~
Minkowski vacuum (4-dimensional case)

0, M) o H[i e~/ )R @ |nj>L}

j ’)’Lj:O

\ J

Our group(2017)
Minkowski vacuum (4-dimensional Case)\

’07M> X H[Z e_ﬂ-njwj/a|nj71> ® |n9711>}

j n;=0

Minkowski vacuum (2-dimensional case)

H[Nw i e W/ n 1) @ \nw,lm}

w N, =0

oo

o[I[Ne 3 & ™ i, ) © s V)

F region

L region R region

P region

defined on the
entire Minkowski spacetime

We extended the description of the
Minkowski vacuum state with states
of curved spacetime.




Summary & Future work

Summary

We derived the description which explains the
entanglement structure of the massless scalar field iIn
the entire Minkowski spacetime in 2,4-dimensional case.

This results is useful to the understanding of the
quantum radiation due to the accelerated particle.




Summary & Future work

We derived the description which explains the entanglement
structure of the massless scalar field in the entire Minkowski
spacetime in 2,4-dimensional case.

Future work
#1 the description of Dirac filed with entanglement
#2 the description in other spacetimes
#3 the relation of the QFT on the curved space and Cosmology
etc.

#1 #2
Klein-Gordon eq. Minkowski spacetime
= Dirac eq. = other spacetimes




Thank you for listening.




Quantum radiation

Radiation due to the detector
[Lin and Hu (2006)]

Entanglement-induced

Plankian radiation

<BE>= 4 =1y
27

Canceled




Energy-momentum tensor

Yy—x

Energy flux




We divide the solution into homogeneous term and inhomogeneous term

¢(r) = on(x) + Ginn(x)

thermal radiation

(-B)

2-point correlation function

< o(@)d(y) >=< on(x)on(y) > + < Ginn(T)On(y) > + < On(2)Pink (y) > + < Ginn(T)Pinn(y) >

Vacuum fluctuation
(don’t contribute to radiation)

Interference term of detector and field
A+B

Shown by S.lIso,
K.Yamamoto

Entanglement-induced and
quantum radiation R.Tatsukawa




Thank you for listening.




