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Motivations to go beyond the SM
Unbroken U(1)1 mixing with U(1)y
Grand unification with U(1)H

Enhanced axion-photon coupling in GUT axion
models with U(1)H



Motivations to go beyond the SM

. Strong CP problem

« Dark matter

Unification of SM gauge couplings and
matter fields, and charge guantization




Strong CP problem

In QCD, 6 -term breaks P and CP symmetry
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S a apv
LD 35,3 GG

G, gluon field strength  G*** : dual

The size of 8 Is severely constrained from the neutron EDM
experiment

9] <10719-107H

Why 0 is so small? This is strong CP problem



Peccei-Quinn introduced a (anomalous) global symmetry,
which makes 6 parameter a dynamical field
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1012 GeV
fa

Mg = .7 X 107 %eV ( ) for T<</Aaqcp



AXion as dark matter

The axion is produced as coherent oscillation
[misalignment mechanism]

Axion field starts to oscillate when ma(T)~H

1.19
Q.h* ~ 0.18 07 Ja
1012 GeV

The axion can be cold dark matter
(Almost) Stable due to very weak interaction and small mass

Behave as non-relativistic matter



Axion couplings

Photons Ja~~
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Electrons Nucleons
[from F. Takahashi's slide]



Axion couplings
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Detection

Production
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AXxion photon coupling

As an example, let’'s consider KSVZ axion model:

hQ field: ¢ = PR TP (Z-a(x))

V2 VPQ
Interaction: £ D Aoy v + h.c.

with Qpq(¥r) =1, Qpq(¥Yr) =0
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AXxion photon coupling

As an example, let’'s consider KSVZ axion model:

hQ field: ¢ = PR TP (ﬂﬁ?))

V2 VPQ
Interaction: £ D Aoy v + h.c.

with Qpq(¥r) =1, Qpq(¥Yr) =0

_ Yayy nln% — agm (L
L = 1 CLFM,,F 9oy o f, (N 19K2> |

from axion-meson mixing




Current and future experiments
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Motivations to go beyond the SM

. Strong CP problem
} Solved by QCD axion
. Dark matter

Unification of SM gauge couplings and
matter fields, and charge guantization

known quarks and leptons nicely fit into 5 and 10 in SU(b)

(dl)c 0 (US)C _(u2)c —’U,l _dl
(d2)c _(u3)c 0 (ul)c _u2 —d2
5= | (d3)° 10=| (u*)° —(u')° 0 —u®  —d’
e ul u2 u3 0 _et
—Ve dl d2 d3 6+ 0

Explains the charge quantization



Motivations to go beyond the SM

. Strong CP problem
} Solved by QCD axion
. Dark matter

Unification of SM gauge couplings and
matter fields, and charge guantization
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Motivations to go beyond the SM

. Strong CP problem
} Solved by QCD axion
. Dark matter

Unification of SM gauge couplings and
matter fields, and charge guantization

70

60

1 Moreover, It predicts too
rapid proton decay
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For Mx=101°GeV

30 -

=5x103" years (p — m° e*)

20
exp: > 1.7 x 1034 years

10 - [Takhistov, 2016]

0 2 4 6 8 10 12 14 16
logyo(1r/GeV)



Possible ways for unification

. Adding incomplete SU(b) multiplets
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. Supersymmetry
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e Unbroken hidden U(1)1 symmetry, which mixies

with U(1)y
[Redondo, 2008; Takahashi, Yamada, Yokozaki, 2016; Daido, Takahashi, Yokozaki, 2016, 2018]



A model with a hidden
photon (U(1)xH gauge boson)

i



Consider U(1)y x U(1)1 model with a kinetic mixing

1 Iuwv 1! 1 Ipv 1/ X v
‘C:_ZFY FY,UV_ZFH FHuV 2F FH,UV

M = orAY —ovAl (i =Y, H)

[Holdom, 1986]




Consider U(1)y x U(1)1 model with a kinetic mixing

1 v 1 Ly X LV
[ — _ZF}& Fy 0 — ZF; Fir QF# Fl

M = orAY —ovAl (i =Y, H)

By the field redefinitions, we can go to the canonical basis




Consider U(1)y x U(1)1 model with a kinetic mixing

1 v 1 Ly X LV
[ — _ZF};‘ Fy 0 — ZFL’; Fir QFY‘.‘ Fl

M = orAY —ovAl (i =Y, H)

Let's consider a matter field charged only under U(1)H
T / /L
Vi (9 aa: A ) Vi

Vl

The hidden matter obtalns fractlonal U(T)y charge In the
canocnical basis

A + HQI‘I'L‘A'u \Ijz




Consider U(1)y x U(1)1 model with a kinetic mixing

1 Iuwv 1! 1 Ipv 1/ X v
‘C:_ZFY FY,UV_ZFH FHuV 2F FH,UV

M = orAY —ovAl (i =Y, H)

Let’'s consider a matter field charged only under U(1)y

Uiy, (g5 Qi A’ )W
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= Uy, (gyQ:AY) U
he visible matter does not couple to U(1)H
The normalization of U(1)y coupling changes




Consider U(1)y x U(1)1 model with a kinetic mixing

1 1 X
[ — —ZF{}‘”F{/W _ ZJ_!?’g,“’Fygm,, , F{}‘”F}IW

EM = orAY —ovAl (i =Y, H)

The gauge couplings in the two basis are related as
/

9y
V1=X3
9H

observed
value

couplings In the
canonical basis



Grand unification
with U(1)H



Without matter fields
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However, without a hidden charged field, unification basis
IS not fixed

‘I’%(QQ/Q‘YA/{/L)‘I’ = Uy, (gy Qy A5 W

(original basis) (canonical basis)
/ AY
= A
AL = AR 1"_X2A§;
9y
* gy = \/1 — X27
2
1 2
9 A generator of SU(D)
2v/15 _q



Once we have the hidden charged field

Uy, (0y Qv AY + grqu ALY = Uy, (9v (Qy + 0Qyv)AY + grqu AY;) T

(original basis) (canonical basis)
This basis Is not ready to be
embedded into SU(b)
(There is a fractional charge)
JHA4H X

5 —
Oy gy /1 — x?

1
215 3
—3
The basis of the unification becomes manifest

Does the hidden charged field affect the unification?



With matter fields

Let’'s consider the Lagrangian including matter fields
charged under U(1)H

1 / IV 1 / A% X / /v
;C — _ZFMVF“ — ZFH,LLVFH 2 H;LI/F“
— ) My 0,0,

U, has a hypercharge of (); and a U(1)y charge of qp;.

JHYH; X
Q; — Q; :

;= qu;

In the canonical basis, the field gets a fractional U(1)y charge



The RG equations

RGEs In the canonical basis

dgy 1
ﬂ — 1672 (byg:})” T ngYg?nix + meixgi?/gmix)a
dgH 1
R — b 3
dt 1672 HIH
dt — 167T2 (ngmixgy T 2ngmngH + ngmix + 2bminggH + 2bminggmix)7

[Babu, Kolda, March-Russell, 1996]

t =Inugr (ug is a renormalization scale)

bY — %+§ZQ?7 bH: gZQHfa bmix: %ZQ’LQHz

Jmix = V12 It looks like GUT is non-trivial.



The RG equations

However, RGEs in the original basis are simple:

dgg/ 1 13 [ \/ 2
it 162 Y9V 9y =gy v1=X
dgH 1

IH = brg;

dx 1

dt 1672 X(by gy + brgr) — 2bmixgy 9n]

t =Inugr (ugr is a renormalization scale)

by Z%‘ngQ?, b = %ZQH?, Drmix = ngiQHi

RGE running is trivial at the one-loop level in this basis.

How does it affect if two-loop RGEs are considered?



Case with a hidden matter
which is a singlet of SU(D)

1 1 X
I A/ I v / v / Nz
L = 4FW]F‘ 4FHWFH : Pyt
— one-loop RGEs are
—MyWoWy dgy _ 1 (41\
/’ dt 1672\ 6 )Y
dg2 o 1 19 3
1 TeV QH(\IJ()) =3 E T 1672 _F 92
dgs _ 1 3
dt 1672 (=7) 95




Running of the gauge couplings
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Running of the gauge couplings
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Running of the kinetic mixing
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Large kinetic mixing at the GUT scale



With SU(5) multiplets charged
under U(1)H

Ny
L =—My Z(\IJL;@\I/L,@’ T \IJD,z'\IJD,i)a
1=1

W (¥p,) is 2 of SU(2)L (3 of SU(3)c);

(QL,ia(JHL,i) — (_1/23 1) and (QD,iagHD,i) — (1/37 1)
one-loop RGEs are

dg; 1 41 10 d 1 20
Iy ( | Nb) g, “IH (_Nb> 9

d 1672\ 6 ' 9 dt 1672 \ 3
— =_N :
dt 167r2< 6 ' 3 b) 72

d 1 2
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\ and two-loop corrections--:
3 ) 937



With SU(5) multiplets charged
under U(1)H

\IJL,z' (\I’D,i) 1s 2 of SU(Z)L (3 of SU(3)C),

(QL,ia QHL,z') — (—1/27 1) and (QD,ia QHD,@') — (1/37 1)

However, the effects are loop suppressed and small



70 ——
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My =1TeV My = 101° GeV

(Almost) insensitive to Nb, gH and My

Again, the unification depends only on x (mz)



Short summary

. The unification depends only on x (mz)

. We need a hidden charged field to fix the unification
basis

. The unification does not depend on the hidden

gauge coupling nor matter fields charged under
SU(b) and/or U(1)H.

e The above statement implies that we can easily
accommodates the PQ symmetric solution to
the strong CP problem.



A GUT axion model

Setup _ _
LD — _\/§¢($5L¢5R + Yy YER) + h-C-_

aun \

PQ breaking field SU(S) Complete Hidden matter
iIncluding axion multiplet with charge of gH

vpQ + p(z) a(z) _ P
b = PQ\/§ exp (z vPQ) fa Now UVpPQ

@ contains the axion In Its phase component



A GUT axion model

Setup _ _
LD — _\/§¢($5L¢5R + Yy YER) + h-C-_

aun \

PQ breaking field SU(S) Complete Hidden matter
iIncluding axion multiplet with charge of gH

In the canonical basis, hidden matter
gets an effective electric charge:

_ X gH
eff — —4H
V1—x29y




Then, axion-photon coupling gets an additional contribution
from the hidden matter field through the electromagnetic
anomaly

E/N

- e

\
from SU(b) complete multiplet

For large gH and x, the enhancement is significant.
Large x and gu are required for consistency with GUT
Gauge coupling unification wesfp X(mz) ~ 0.37
large x of O(0.1) w==p large gH



Generation of large x

Around the GUT scale

With the GUT breaking mass induced by 2 24:
Ny
—L D Z (M5W5i ‘1157: + k‘@m <ZQ4> \1152) QH(\IJE,Z) = —1
1=1
Ny
— Z (Mpﬁpi\lfpi -+ MLﬁfJi\I!,ji) :
1=1



Generation of large x

Around the GUT scale

With the GUT breaking mass induced by 2 24:

x(Mgur) ~ 0.12N; (gOGg;)

g (Mgur) | [In(Mp//Mp:) "
47t | In4

X

IargégH IS required



Enhanced Axion-Photon Coupling

We take the possibly large gH avoiding the Landau Pole

The kinetic mixing is taken as x(mz) = 0.365
required for GUT

Case (i) : L D — :\/§¢(E5L¢5R + @HLQﬂHR) + h-C-: ,
Case (ii) : L D — —\/§¢@§L¢§R +he. ,

U(1)1 charges are
an(Vr) =1 qu(s) =0 au(¥s)=—1



0 ol ABRACADABRA (Res)
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Axion-photon coupling is enhanced by about a factor 10-100
for fa=10'9GeV-101GeV compared to the case without U(1)H
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Of course, the gauge coupling unification is maintained.



Summary

Massless hidden photon can achieve the gauge
coupling unification

The unification is rather robust, allowing the existence
of matter fields charged under SU(5)/U(1)H

No rapid proton decay problem

If the QCD axion is accommodated, axion-photon
coupling is significantly enhanced (by about a factor

10-100).

With the enhancement, the QCD axion is more easily
tested in future experiments



Thank you for your
attention!



