Guaranteed Cost Control of Multimodeling Systems

Hiroaki Mukaidani, Hidetoshi Oya and Hua Xu

Abstract—The guaranteed cost control problem for multiparameter singularly perturbed systems (MSPS) with uncertainties is investigated. The main contribution of this paper is that an ε–independent controller is newly derived by solving the reduced–order ε–independent slow and fast algebraic Riccati equations (AREs) which is extremely smaller than the dimension of full–order ARE. It is shown that if these AREs have positive definite stabilizing solution then the uncertain closed–loop system with the new ε–independent controller is quadratically stable and has the cost bound. As another important feature, our new results can be applied to the standard and the nonstandard MSPS because the nonsingularity assumption of the fast state matrices are not needed compared with the existing result.

I. INTRODUCTION

Multimodeling control problems have been studied extensively [1]–[11]. In order to obtain a controller, the multiparameter algebraic Riccati equation (MARE) must be solved. Although various reliable approaches for solving the MARE have been established (see e.g., [8]–[10], [14]), the major limitation in these early approaches is that the small parameters are assumed to be known.

In recent years, the problem of the robust control of singularly perturbed systems (SPS) with parameter uncertainties has been widely studied in the literatures (see e.g., [12] and reference therein). In particular, it is well–known that the guaranteed cost control approach [13] which satisfies not only the robust stability, but also an adequate level of performance is very useful. This approach has the advantage of providing an upper bound on a given performance index. However, when the parameters ε_j are unknown, the guaranteed cost control [13] cannot be directly applied to the uncertain MSPS in the sense that the MARE cannot be solved numerically.

A popular approach to deal with the MSPS is the two–time–scale design method (see e.g., [1]–[6], [14]). When ε_j is very small or unknown, this previously used technique is very efficient. However, the nonsingularity assumption for the fast state matrices are not satisfied. Therefore, the nonsingularity assumptions for the fast state matrices A_{jj} and $A_{jj} + \Delta A_{jj}(t)$ are not needed. As another significant feature, the new method of the calculation for the guaranteed cost controller does not require the ε–independent controller becomes extremely small in contrast with the case of solving the full–order MARE.

Notation: The notations used in this paper are fairly standard. The superscript T denotes matrix transpose. $\det L$ denotes the determinant of the square matrix L. I_p denotes the $p \times p$ identity matrix. block diag denotes the block diagonal matrix. vecM denotes the column vector of the matrix M [15]. \otimes denotes the Kronecker product. U_{pq} denotes the permutation matrix in the Kronecker matrix sense [15] such that $U_{pq} \text{vec} M = \text{vec} MT$, $M \in \mathbb{R}^{p \times q}$. vec$[\cdot]$ denotes the expectation.

II. PROBLEM STATEMENT

Consider the uncertain MSPS

$$
\dot{x}_0(t) = \left[A_{00} + \sum_{i=1}^{2} D_{0i} F_{ii}(t) E_{i0} \right] x_0(t) + \sum_{i=1}^{2} \left[A_{0i} + D_{0i} F_{ii}(t) E_{i0} \right] x_i(t) + \sum_{i=1}^{2} B_{0i} u_i(t), \quad (1a)
$$

$$
\varepsilon_j \dot{x}_j(t) = \left[A_{j0} + D_{jj} F_{jj}(t) E_{j0} \right] x_0(t) + \left[A_{jj} + D_{jj} F_{jj}(t) E_{jj} \right] x_j(t) + B_{jj} u_j(t), \quad (1b)
$$

$$
F_{jj}^T(t) F_{jj}(t) \leq I_{kj}, \quad j = 1, 2, \quad (1c)
$$

where $\varepsilon_j, j = 1, 2$ are the small positive parameters, $x_j(t) \in \mathbb{R}^{n_j}$, $j = 0, 1, 2$ are the state vectors, $u_j(t) \in \mathbb{R}^{m_j}$, $j = 1, 2$ are the control input. Moreover, $F_{jj}(t) \in \mathbb{R}^{k_j \times k_j}$ are Lebesgue measurable matrix of the uncertain parameters satisfying (1c). All the matrices are the constant.
matrices of appropriate dimensions. We assume that the ratio of the small positive parameter ϵ_j is bounded by some positive constants $\frac{k_j}{k}$ (see e.g., [1]-[3]),

$$0 < \frac{k_j}{k} \leq \alpha \leq \frac{\epsilon_j}{\epsilon_1} \leq \frac{1}{k} < \infty.$$

(2)

It should be noted that the fast state matrices A_{jj}, $j = 1, 2$ may be singular.

Let us introduce the partitioned matrices

$$\Pi_e := \text{block diag} \left(\epsilon_1 I_n, \epsilon_2 I_{n_2} \right),$$

$$A_e := \begin{bmatrix} A_{00} & A_{0f} \\ \Pi_e^{-1} A_f & \Pi_e^{-1} A_f \end{bmatrix},$$

$$A_{0f} := [A_{01} A_{02}], A_{f0} := [A_{T_{0}} A_{T_{20}}]^T,$$

$$A_f := \text{block diag} \begin{bmatrix} A_{11} & A_{22} \end{bmatrix},$$

$$B_e := \begin{bmatrix} B_0 \\ \Pi_e^{-1} B_f \end{bmatrix}, B_0 := [B_{01} B_{02}],$$

$$B_f := \text{block diag} \begin{bmatrix} B_{11} & B_{22} \end{bmatrix},$$

$$D_e := \begin{bmatrix} D_0 \\ \Pi_e^{-1} D_f \end{bmatrix}, D_0 := [D_{01} D_{02}],$$

$$D_f := \text{block diag} \begin{bmatrix} D_{11} & D_{22} \end{bmatrix},$$

$$F(t) := \text{block diag} \begin{bmatrix} F(t) & F(t) \end{bmatrix},$$

$$E := \begin{bmatrix} E_0 & E_f \end{bmatrix}, E_0 := [E_{T_{0}} E_{T_{20}}]^T,$$

$$E_f := \text{block diag} \begin{bmatrix} E_{11} & E_{22} \end{bmatrix}.$$

By using above relations, the MSPS (1) can be changed as

$$\dot{x}(t) = [A_e + D_e F(t) E] x(t) + B_e u(t),$$

(3)

where

$$x(t) := \begin{bmatrix} x_0^T(t) & x_1^T(t) & x_2^T(t) \end{bmatrix}^T \in \mathbb{R}^n,$$

$$u(t) := \begin{bmatrix} u_1^T(t) & u_2^T(t) \end{bmatrix}^T \in \mathbb{R}^m,$$

$$n := n_0 + n_1 + n_2, m := m_1 + m_2.$$

For technical simplification, without loss of generality we shall make the following basic assumptions.

Assumption 1: There exists a constant parameter $\sigma^* > 0$ such that the pair (A_e, B_e) is stabilizable for $\|e\| := \sqrt{\epsilon_1 + \epsilon_2} \in (0, \sigma^*], \epsilon := [\epsilon_1 \epsilon_2].$

Assumption 2: The pairs $(A_{jj}, B_{jj}), j = 1, 2$ are stabilizable.

Associated with the system (1) is the cost function

$$J = \int_0^\infty [x^T(t)Q x(t) + u^T(t)Ru(t)] dt,$$

(4)

where Q and R are given positive definite symmetric matrices.

Definition 1: A control law $u(t) = K x(t)$ is said to be a quadratic guaranteed cost control with the associated matrix $X_e > 0$ for the MSPS (1) and the cost function (4) if the closed-loop system is quadratically stable and the closed-loop value of the cost function (4) satisfies the bound $J \leq J^*$ for all admissible uncertainties, that is,

$$\frac{d}{dt} x^T(t) X_e x(t) + x^T(t) \left[Q + K^T R K \right] x(t) \leq 0,$$

(5)

where J^* is the guaranteed cost.

The objective of this paper is to design an ε-independent guaranteed cost control law $u(t) = K x(t)$ for the uncertain MSPS (1).

III. PRELIMINARY

Before constructing the guaranteed cost controller, let us establish the stability condition for the following autonomous uncertain MSPS (6) without the control input.

$$\dot{x}_0(t) = \begin{bmatrix} A_{00} + \sum_{i=1}^2 D_{0i} F_{ii}(t) E_{i0} \end{bmatrix} x_0(t) + \sum_{i=1}^2 \left[A_{0i} + D_{0i} F_{ii}(t) E_{i1} \right] x_i(t),$$

(6a)

$$\varepsilon_j \dot{x}_j(t) = [\tilde{A}_{j0} + D_{j0} F_{jj}(t) E_{j0}] x_0(t) + [\tilde{A}_{jj} + D_{jj} F_{jj}(t) E_{jj}] x_j(t),$$

(6b)

$j = 1, 2.$

It is easy to verify that the uncertain MSPS (6) is equivalent to the following uncertain MSPS.

$$\dot{x}(t) = [\bar{A}_e + D_t F(t) E] x(t).$$

(7)

Associated with the uncertain MSPS (7) is the cost function

$$J = \int_0^\infty \dot{x}^T(t) \bar{Q} x(t) dt,$$

(8)

where \bar{Q} is given positive definite symmetric matrices.

Definition 2: The matrix $P_{e} > 0$ is said to be the quadratic cost matrix for the uncertain MSPS (7) if the following inequality holds

$$\frac{d}{dt} \dot{x}^T(t) P_e x(t) + x^T(t) \bar{Q} x(t) \leq 0.$$

(9)

The following result is already known in [13].

Lemma 1: Suppose there exist a symmetric positive definite matrix $P_e > 0$ and a positive scalar parameter μ such that for all uncertain matrices (1c), the following multiparameter algebraic Riccati equation (MARE) is satisfied.

$$P_e \tilde{A}_e + \tilde{A}_e^T P_e + \mu P_e D_e D_e^T P_e + \mu^{-1} E^T E + \tilde{Q} = 0,$$

(10)

where

$$\tilde{A}_e := \begin{bmatrix} \tilde{A}_{00} & \tilde{A}_{0f} \\ \Pi_e^{-1} \tilde{A}_{f0} & \Pi_e^{-1} \tilde{A}_f \end{bmatrix},$$

$$\tilde{A}_{0f} := \begin{bmatrix} \tilde{A}_{01} & \tilde{A}_{02} \end{bmatrix}, \tilde{A}_{f0} := [\tilde{A}_{T_{0}} \tilde{A}_{T_{20}}]^T,$$

$$\tilde{A}_f := \text{block diag} \begin{bmatrix} \tilde{A}_{11} & \tilde{A}_{22} \end{bmatrix},$$

$$P_e := \begin{bmatrix} P_{00} & P_{0f} \\ \Pi_e P_{f0} & \Pi_e P_f \end{bmatrix},$$

$$P_{00} = \Pi_e^T P_{00} \Pi_e, \quad P_{0f} = \Pi_e^T P_{0f},$$

$$P_{f0} := \Pi_e^T P_{f0}, \quad P_{f} := \Pi_e^T P_{f} \Pi_e.$$

Then the autonomous uncertain MSPS (7) is quadratically stable and the corresponding value of the cost function (8) satisfies the following inequality (11).

$$J \leq \dot{x}^T(0) P_e x(0).$$

(11)
In order to investigate the solvability condition of the MARE (10), let us introduce the following useful lemma [10].

Lemma 2: The MARE (10) is equivalent to the following generalized multiparameter algebraic Riccati equation (GMARE) (12)

\[P^T A + A^T P + \mu P^T D D^T P + \mu^{-1} E^T E + \tilde{Q} = 0,(12a) \]

\[P_c = \Phi_e^T P = P^T \Phi_e, \quad (12b) \]

where

\[\Phi_e := \begin{bmatrix} I_n & 0 \\ 0 & \Pi_e \end{bmatrix}, \quad \tilde{A} := \begin{bmatrix} \tilde{A}_{00} & \tilde{A}_{0f} \\ \tilde{A}_{f0} & \tilde{A}_f \end{bmatrix}, \]

\[D := \begin{bmatrix} D_0 & 0 \\ 0 & D_f \end{bmatrix}, \quad P := \begin{bmatrix} P_{00} & P_{0f} \\ P_{f0} & P_f \end{bmatrix}, \]

\[P_{0f} = P_{f0}^T \Pi_e := \begin{bmatrix} \varepsilon_1 P_{10}^T & \varepsilon_2 P_{20}^T \end{bmatrix}. \]

In order to simplify the notation of the GMARE (12a), we introduce the following matrices.

\[S := \mu DD^T := \begin{bmatrix} S_{00} & S_{0f} \\ S_{0f}^T & S_{ff} \end{bmatrix}, \]

\[S_{00} := \mu D_0 D_0^T := \frac{2}{\varepsilon_2} D_0 D_0^T, \]

\[S_{0f} := \mu D_0 D_f^T = \begin{bmatrix} S_{01} & S_{02} \end{bmatrix}, \]

\[S_{f} := \mu D_f D_f^T = \text{block diag} \left(S_{11}, S_{22} \right), \]

\[S_{0j} := \mu D_0 D_{fj}^T, \quad S_{jj} := \mu D_j D_{fj}^T, \]

\[U := \mu^{-1} E^T E + \tilde{Q} = \begin{bmatrix} U_{00} & U_{0f} \\ U_{0f}^T & U_f \end{bmatrix}, \]

\[U_{00} := \frac{2}{\varepsilon_2} \mu^{-1} E_0^T E_0 + \tilde{Q}_{00}, \quad U_{0f} := \begin{bmatrix} U_{01} & U_{02} \end{bmatrix}, \]

\[U_f := \text{block diag} \left(U_{11}, U_{22} \right), \]

\[U_{0j} := \mu^{-1} E_{0j}^T E_j + \tilde{Q}_{0j}, \quad U_{jj} := \mu^{-1} E_j^T E_j + \tilde{Q}_{jj}, \]

\[\tilde{Q} := \begin{bmatrix} \tilde{Q}_{00} & \tilde{Q}_{0f} \\ \tilde{Q}_{0f}^T & \tilde{Q}_f \end{bmatrix}, \quad \tilde{Q}_{0f} := \begin{bmatrix} \tilde{Q}_{01} & \tilde{Q}_{02} \end{bmatrix}, \quad \tilde{Q}_f := \text{block diag} \left(\tilde{Q}_{11}, \tilde{Q}_{22} \right). \]

The GMARE (12a) can be partitioned into

\[f_1 = P_{00}^T \tilde{A}_{00} + S_{00}^T P_{00} + P_{f0}^T \tilde{A}_{f0} P_{f0} + P_{f0}^T \tilde{A}_{f0} P_{f0}, \]

\[+ P_{00}^T S_{0f} P_{0f} + P_{f0}^T S_{f0} P_{f0} + P_{f0}^T S_{f0} P_{00} + U_{00} = 0. \quad (13a) \]

\[f_2 = \tilde{A}_{00}^T P_{00} + \tilde{A}_{0f}^T P_{0f} + \tilde{A}_{f0}^T P_{f0} + P_{00}^T \tilde{A}_{f0} P_{0f} + P_{00}^T \tilde{A}_{f0} P_{f0}, \]

\[+ P_{f0}^T S_{0f} P_{0f} + P_{f0}^T S_{f0} P_{f0} + P_{f0}^T S_{f0} P_{00} + U_{00} = 0. \quad (13b) \]

\[f_3 = P_{f0}^T \tilde{A}_f + \tilde{A}_f^T P_f + \Pi_e P_{00} \tilde{A}_{00} + \tilde{A}_{00}^T P_{00} \Pi_e \]

\[+ P_{f0}^T S_{f0} P_{f0} + P_{f0}^T S_{f0} P_{0f} + \Pi_e P_{f0} S_{0f} P_{f0}, \]

\[+ \Pi_e P_{f0} S_{00} P_{f0} \Pi_e + U_f = 0. \quad (13c) \]

It is assumed that the limit of \(\alpha \) exists as \(\varepsilon \rightarrow +0 \) and \(\epsilon_2 \rightarrow 0 \). Let \(\bar{P}_{00}, \bar{P}_{f0} \) be the limiting solutions of the above equations (13) as \(\varepsilon_1 \rightarrow +0, \ v_1 = 1, 2 \), then we obtain the following equations

\[\bar{P}_{00}^T \tilde{A}_{00} + \tilde{A}_{00}^T \bar{P}_{00} + \bar{P}_{f0}^T \tilde{A}_{f0} + \tilde{A}_{f0}^T \bar{P}_{f0}, \]

\[+ \bar{P}_{00}^T S_{0f} \bar{P}_{0f} + \bar{P}_{f0}^T S_{f0} \bar{P}_{f0} + \bar{P}_{f0}^T S_{f0} \bar{P}_{00} + U_{00} = 0, \quad (15a) \]

\[\bar{A}_{f0} \bar{P}_{f} + \bar{P}_{f0}^T \bar{A}_{f0} + \bar{P}_{f0}^T \tilde{A}_f + \tilde{A}_f^T \bar{P}_f, \]

\[+ \bar{P}_{f0}^T S_{f0} \bar{P}_f + \bar{P}_{f0}^T S_{f0} \bar{P}_{f0} + U_{f0} = 0, \quad (15b) \]

\[\bar{P}_f^T \bar{A}_f + \bar{A}_f^T \bar{P}_f + \bar{P}_f^T \bar{P}_f + U_f = 0, \quad (15c) \]

where

\[\bar{P}_f := \begin{bmatrix} \bar{P}_{11} & \bar{P}_{12} \\ \bar{P}_{21} & \bar{P}_{22} \end{bmatrix}, \quad P_{3j} = B_{3j}, \ j = 0, 1, 2. \quad (16) \]

Note that the ARE (15c) is asymmetric. However, it will be shown that the ARE (15c) admits at least a symmetric positive definite stabilizing solution under the appropriate conditions. In the following analysis, we need a weaker assumption than the nonsingularity assumption of the fast state matrices.

Assumption 3: The Hamiltonian matrices \(T_{jj}, \ j = 1, 2 \) are nonsingular, where

\[T_{jj} := \begin{bmatrix} \tilde{A}_{jj} & S_{jj} \\ -U_{jj} & -\tilde{A}_{jj} \end{bmatrix}. \]

We will establish the relation between the GMARE (12a) and the zeroth-order equations (15). Firstly, the following sets are newly defined.

\[\Gamma_f := \{ \mu > 0 \} \] The ARE \(P_{jj}\tilde{A}_{jj} + \tilde{A}_{jj}^T P_{jj} + P_{jj} S_{jj} P_{jj} + U_{jj} = 0 \) has a positive definite stabilizing solution., \(j = 1, 2 \).

\[\mu_f := \sup \{ \mu | \mu \in \Gamma_f \}, \]

Theorem 1: Under Assumption 3, if we select a parameter \(0 < \mu < \mu_f := \min \{ \mu_f, \mu_f \} \), then the ARE (15c) admits a unique symmetric positive definite stabilizing solution \(\bar{P}_f \) which can be written as

\[\bar{P}_f := \text{block diag} \left(\bar{P}_{11}, \bar{P}_{22} \right), \quad (17) \]

where \(\bar{P}_{11} \) is a unique symmetric positive definite stabilizing solution for the following ARE, respectively

\[\begin{bmatrix} \tilde{A}_{fj} + \tilde{A}_f^T \bar{P}_{fj} + \bar{P}_{fj}^T \tilde{A}_{fj} + \bar{P}_{fj}^T S_{fj} \bar{P}_{fj} + U_{fj} = 0, \quad j = 1, 2 \end{bmatrix}. \]

Proof: Substituting the matrix (17) into the ARE (15c) as \(P_f \rightarrow \bar{P}_f \), it is easy to verify that \(\bar{P}_f \bar{A}_f + \bar{A}_f^T \bar{P}_f + \bar{P}_f S_f \bar{P}_f + U_f = 0 \). Furthermore, it can be seen that \(\bar{P}_f = \bar{P}_f^T > 0 \) and the following matrix \(\bar{A}_f + S_f \bar{P}_f \) is stable because \(\bar{P}_f \) is the unique symmetric positive definite stabilizing solution.

\[\begin{bmatrix} \bar{A}_f + S_f \bar{P}_f \end{bmatrix} = \text{block diag} \left(\bar{A}_{11} + S_{11} \bar{P}_{11}^*, \bar{A}_{22} + S_{22} \bar{P}_{22}^* \right). \]
Consequently, there exists the unique solution of the ARE (15c) and its solution is (17) itself.

In this situation, we obtain the following zeroth–order equations (18) [10]

\[P_{00}^*A + AP_{00}^* + P_{00}^*S_{00}P_{00}^* + U = 0, \]
\[P_{j0}^* = \begin{bmatrix} P_{jj}^* - I_{nj} \end{bmatrix} T_{jj}^{-1} T_{j0} \begin{bmatrix} I_{nj} \end{bmatrix} P_{00}^*, \]
\[P_{jj}^*\hat{A}_{jj} + \hat{A}_{jj}^*P_{jj}^* + P_{jj}^*S_{jj}^*P_{jj}^* + U_{jj} = 0, \]

where \(j = 1, 2, \)

\[T_0 := \begin{bmatrix} A & S \\ \mathcal{U} & -A^T \end{bmatrix} = T_{00} - \sum_{j=1}^2 T_{0j}T_{jj}^{-1}T_{j0}, \]
\[T_{00} = \begin{bmatrix} \hat{A}_{00} & S_{00} \\ -U_{00} & -A_{00}^T \end{bmatrix}, \quad T_{0j} = \begin{bmatrix} \hat{A}_{0j} & S_{0j} \\ -U_{0j} & -A_{0j}^T \end{bmatrix}, \quad j = 1, 2. \]

Secondly, let us define the following set.

\[\Gamma_s := \{0 < \mu \} \text{ The ARE (18a) has a positive definite stabilizing solution.} \]
\[\mu_s := \sup \{\mu | \mu \in \Gamma_s \}. \]

As a result, for every \(0 < \mu < \tilde{\mu} = \min \{\mu_s, \mu_f\}, \) the AREs (18a) and (18c) have the positive definite stabilizing solutions. Hence, the limiting behavior of \(P_e \) as the parameter \(\|\epsilon\| = \sqrt{\epsilon_1^2 + \epsilon_2^2} \to +0 \) is described by the following theorem.

Theorem 2: Under Assumption 3, suppose there exists a positive scalar \(\tilde{\mu} := \min \{\mu_s, \mu_f\} \) such that for all \(0 < \mu < \tilde{\mu}, \) the AREs (18a) and (18c) have the positive definite stabilizing solutions. Then there exists a small constant \(\tilde{\sigma} (\leq \sigma^*) \) such that for all \(\|\epsilon\| \in (0, \tilde{\sigma}) \) and any \(\mu (\leq \tilde{\mu}), \) the MARE (10) admits the symmetric positive definite stabilizing solution \(P_e \) which can be written as

\[P_e = \begin{bmatrix} P_{00}^* + O(\|\epsilon\|) & \Pi_e[P_{0j}^* + O(\|\epsilon\|)] \Pi_e^T \\ \Pi_e[P_{0j}^* + O(\|\epsilon\|)]^T \Pi_e & \Pi_e[P_{jj}^* + O(\|\epsilon\|)] \end{bmatrix}, \]

where the Jacobian (20) can be expressed as

\[\text{det} \mathbf{J} = \text{det} \mathbf{J}_{22} \cdot \text{det} \mathbf{J}_{11} \cdot \text{det} [I_{nj} \otimes \hat{A}_{00}^T + \hat{A}_{00}^T \otimes I_{nj}], \]

for \(j = 1, 2. \) Obviously, \(\mathbf{J}_{jj}, j = 1, 2 \) are nonsingular because the matrix \(\hat{A}_j = \hat{A}_j + S_j^T \mathbf{P}_j^* \) is stable from Theorem 1. After some straightforward but tedious algebra, we see that \(A + S^T P_{00}^* = \hat{A}_{00} - A_{0j}^T \hat{A}_0 f_j = \hat{A}_f. \) Therefore, the matrix \(\hat{A}_j \) is also stable because the assumption that the ARE (18a) has the positive definite stabilizing solution is satisfied. Thus, \(\text{det} \mathbf{J} \neq 0, i.e., \mathbf{J} \) is nonsingular at \(\|\epsilon\| = 0. \) The asymptotic structure of \(P_e \) is obtained directly by using the implicit function theorem.

The remainder of the proof is to show that \(P_e \) is the positive semidefinite stabilizing solution. Since this proof can be done by using Schur complement similarly as in [11], it is omitted.

IV. GUARANTEED COST CONTROL FOR THE MSPS

In this section, we consider not the MARE but the GMARE because these equations are equivalent under the mathematical argument in Lemma 2. The following useful result is known [13].

Lemma 3: Under Assumption 1, suppose there exists a matrix \(X \) satisfying \(X^T = \Phi(X > 0) \) and the positive scalar parameter \(\nu \) such that for all uncertain matrices (1c), the following GMARE satisfies

\[X^T A + A^T X + X^T (\nu DD^T - BR^{-1}B^T)X + \nu^{-1} E^T E + Q = 0, \]

where

\[A := \begin{bmatrix} A_{00} & A_{0f} \\ A_{f0} & A_f \end{bmatrix}, \quad B := \begin{bmatrix} B_0 \\ B_f \end{bmatrix}, \]
\[R := \text{block diag} \left(\begin{bmatrix} R_{11} & R_{12} \\ R_{21} & R_{22} \end{bmatrix} \right) > 0, \]
\[Q := \begin{bmatrix} Q_{00} & Q_{0f} \\ Q_{f0} & Q_f \end{bmatrix} > 0, \quad Q_{0f} := \begin{bmatrix} Q_{01} & Q_{02} \end{bmatrix}, \]
\[Q_f := \text{block diag} \left(\begin{bmatrix} Q_{11} & Q_{12} \end{bmatrix} \right), \]
\[X := \begin{bmatrix} X_{00} & X_{0f} \\ X_{f0} & X_f \end{bmatrix}, \quad X_{00} = X_{00}^T > 0, \quad X_{f0} = X_{f0}^T, \quad X_{0f} = X_{0f}^T, \quad X_{f0} = X_{f0}^T, \]
\[\Pi_e X = X_f^T \Pi_e, \quad X_{f0} := \begin{bmatrix} X_{10} \\ X_{20} \end{bmatrix}, \]

\[\Pi_e X = X_f^T \Pi_e, \quad X_{f0} := \begin{bmatrix} X_{10} \\ X_{20} \end{bmatrix}, \]

\[\Pi_e X = X_f^T \Pi_e, \quad X_{f0} := \begin{bmatrix} X_{10} \\ X_{20} \end{bmatrix}, \]
Then the closed-loop uncertain MSPS with the linear state feedback control law (23) is the guaranteed cost control
\[u(t) = \mathbf{K} x(t) = -R^{-1} B^T X x(t). \] (23)

Moreover, the corresponding value of the cost function (4) satisfies the following inequality (24).
\[J \leq x^T(t) (0) \Phi (X x(0)). \] (24)

Applying the similar analysis used in Theorem 2, the existence condition of the GMARE (22) is studied. Firstly, we introduce the following matrices.
\[V := \nu D D^T - B R^{-1} B^T = \begin{bmatrix} V_{00} & V_{0f} \\ V_{0f}^T & V_f \end{bmatrix}, \]
\[V_{00} := \nu D_0 D_0^T - B_0 R^{-1} B_0^T = \sum_{i=1}^2 (\nu D_i D_i^T - B_i R^{-1} B_i^T), \]
\[V_{0f} := \nu D_0 D_f^T - B_0 R^{-1} B_f^T = \begin{bmatrix} V_{01} & V_{02} \end{bmatrix}, \]
\[V_f := \nu D_f D_f^T - B_f R^{-1} B_f^T = \text{block diag} \left(V_{11}, V_{22} \right), \]
\[V_{ij} := \nu D_j D_j^T - B_j R^{-1} B_j^T, \]
\[W := \nu^{-1} E^T E + Q = \begin{bmatrix} W_{00} & W_{0f} \\ W_{0f}^T & W_f \end{bmatrix}, \]
\[W_{0f} := \begin{bmatrix} W_{01} & W_{02} \end{bmatrix}, \]
\[W_f := \text{block diag} \left(W_{11}, W_{22} \right), \]
\[W_{ij} := \nu^{-1} E_j^T E_j + Q_{ij}, \]
\[W_{ij} := \text{block diag} \left(W_{ij} \right). \]

To guarantee the existence of the solution of the GMARE (22), the nonsingularity assumptions of the Hamiltonian matrices are needed.

Assumption 4: The Hamiltonian matrices \(Z_{jj}, \ j = 1, 2 \) are nonsingular, where
\[Z_{jj} := \begin{bmatrix} A_{jj} & V_{jj} \\ -W_{jj} & -A_{jj} - P_{jj} \end{bmatrix}. \]

Secondly, let us define the reduced-order AREs (25).
\[\dot{X}_{00} = \Xi^T X_{00} + \dot{X}_{00}^T V_{00} + W_{00} = 0, \] (25a)
\[\dot{X}_{00} = \begin{bmatrix} \dot{X}_{00}^T \\ \dot{X}_{00} \end{bmatrix} = \begin{bmatrix} A_{00} & V_{00} \\ -W_{00} & -A_{00}^T \end{bmatrix}, \]
\[Z_{00} = \begin{bmatrix} A_{00} & V_{00} \\ -W_{00} & -A_{00}^T \end{bmatrix}, \]
\[\dot{X}_{10} = \begin{bmatrix} \dot{X}_{10}^T \\ \dot{X}_{10} \end{bmatrix} = \begin{bmatrix} A_{10} & V_{10} \\ -W_{10} & -A_{10}^T \end{bmatrix}, \]
\[Z_{10} = \begin{bmatrix} A_{10} & V_{10} \\ -W_{10} & -A_{10}^T \end{bmatrix}, \]

Now, let us define the design parameters.
\[\nu_f := \min\{\nu_{f1}, \nu_{f2}\}, \] where \(\nu_{f1} := \sup\{\nu | \nu \in \Lambda_{f1}\} \) and \(\Lambda_{f1} := \{\nu > 0\} \) The AREs (25c) have a positive definite stabilizing solution, respectively.
\[\nu_0 := \sup\{\nu | \nu \in \Lambda_{0}\}, \] where \(\Lambda_{0} := \{\nu < 0\} \) The ARE (25a) has a positive definite stabilizing solution.

As a result, for every \(0 < \nu < \bar{\nu} = \min\{\nu_{0}, \nu_{f}\} \), the AREs (25a) and (25c) have the positive definite stabilizing solutions. Hence, there exists a small \(\delta (\leq \sigma^*) \) such that for all \(||\epsilon|| \in (0, \delta) \) and for any \(\nu < \bar{\nu} \), the GMARE (22) has a solution \(X \) which can be written as
\[X = \begin{bmatrix} X_{00} + O(||\epsilon||) \\ X_{0f} + O(||\epsilon||) \\ X_f + O(||\epsilon||) \end{bmatrix} (26) \]

We now give a new design approach to the construction of the guaranteed cost controller. The new \(\epsilon \)-independent guaranteed cost controller can be obtained by solving reduced-order slow and fast AREs (25). The \(\epsilon \)-independent guaranteed cost controller are obtained by neglecting the term of \(O(||\epsilon||) \) of the guaranteed cost controller (23). The reason why the proposed approximation is adopted is that these parameters are unknown and \(O(||\epsilon||) \) term is sufficiently small. If \(||\epsilon|| \) is very small, it is obvious that the guaranteed cost controller (23) can be changed as
\[u(t) \approx u_{\text{app}}(t) = K_{\text{app}} x(t) \]
\[= -R^{-1} \begin{bmatrix} B_0^T & B_f^T \end{bmatrix} \begin{bmatrix} X_{00} + O(||\epsilon||) \\ X_{0f} + O(||\epsilon||) \\ X_f + O(||\epsilon||) \end{bmatrix} x(t). \] (27)

Since the proposed \(\epsilon \)-independent controller (27) is very close to the exact one (23) because of \(||K - K_{\text{app}}|| = O(||\epsilon||) \), it is expected that the proposed controller (27) works well as the guaranteed cost control. The main result of this section is as follows.

Theorem 3: Under Assumptions 1, 2 and 4, if we select a parameter \(0 < \nu < \bar{\nu} = \min\{\nu_{0}, \nu_{f}\} \), then there exists a small \(\delta > 0 \) such that for all \(||\epsilon|| \in (0, \delta) \), the uncertain closed-loop MSPS is quadratically stable and the cost (4) has the upper bound via the \(\epsilon \)-independent controller (27). That is, the approximate controller (27) is the guaranteed cost controller.

Proof: It is enough to show that the GMARE (12a) has the solution \(P = A + BK_{\text{app}} \rightarrow \hat{A}, K_{{app}}^T RK_{\text{app}} + Q \rightarrow \hat{Q} \). Substituting \(A + BK_{\text{app}} \) and \(K_{\text{app}}^T RK_{\text{app}} + Q \) into \(\hat{A} \) and \(\hat{Q} \) respectively, it follows:
\[P^T \left(A + BK_{\text{app}} \right) + \left(A + BK_{\text{app}} \right)^T P + \lambda P^T D D^T P \]
\[+ \lambda^{-1} E^T E + K_{\text{app}}^T RK_{\text{app}} + Q = 0. \]

The proof of the existence of \(P \) is obtained by the implicit function theorem [5]. Using the similar manner used in the proof of Theorem 2, it is easy to prove that
\[P = \begin{bmatrix} X_{00} + O(||\epsilon||) \\ X_{0f} + O(||\epsilon||) \\ X_f + O(||\epsilon||) \end{bmatrix} \]
\[\begin{bmatrix} \Xi_{00}^T + O(||\epsilon||) \\ \Xi_{0f}^T + O(||\epsilon||) \\ \Xi_f^T + O(||\epsilon||) \end{bmatrix} \]

under \(\lambda = \nu \).

Since \(X_{00} \) and \(X_f \) are positive definite solution of the AREs (25a) and (25c) respectively, we find that the solution
whereas the parameter independent calculation method of the cost bound is newly established.

If $|\varepsilon|$ is very small, then the guaranteed cost given by (24) can be changed as follows

$$x(0)^TP_e x(0) = x(0)^T\hat{P} x(0) + O(|\varepsilon|).$$ \hfill (30)

Thus, in order to calculate the bound of the cost, our new idea is to use only the solution \hat{X}_{00} of the reduced-order ARE (25a). That is, we can neglect the $O(|\varepsilon|)$ term of the cost (30) if $|\varepsilon|$ is sufficiently small. Therefore, the amount of the computation required to get the ε–independent controller becomes extremely small compared with the case of solving the full–order GMARE (22) because the approximate cost bound can be computed by the small dimension which are the same as the slow subsystems.

Remark 1: It can be noted that the bound obtained in Theorem 3 depends on the initial condition $x(0)$. To remove this dependence on $x(0)$, we assume that $x(0)$ is a zero mean random variable satisfying $E[x(0)x^T(0)] = I_n$. In this case, it is interesting to point out that the guaranteed cost becomes

$$x(0)^TP_e x(0) = \text{Trace } \hat{P} = \text{Trace } \hat{X}_{00} + O(|\varepsilon|).$$ \hfill (31)

Finally, we give an algorithm for the guaranteed cost control problem of the uncertain MSPS.

Step 1. Search the minimum parameter $\nu_f = \min\{\nu_1, \nu_2, \nu_3\}$ such that the reduced–order AREs (25c) have positive definite stabilizing solution \hat{X}_{ij} by using the bisection method.

Step 2. Secondly, search the minimum parameter $\nu_g(\leq \nu_f)$ such that the reduced–order ARE (25a) has positive definite stabilizing solution \hat{X}_{00} by using the bisection method.

Step 3. Choose any parameter ν such that $0 < \nu < \hat{\nu} = \min\{\nu_1, \nu_2, \nu_3\}$ and calculate Ξ, φ and W via the matrices Z_{00}, Z_{ij}, Z_{10} and Z_{2j}, $j = 1, 2$.

Step 4. Compute the positive definite stabilizing solution \hat{X}_{00} and calculate the approximate guaranteed cost

$$f(\nu) = \text{Trace } \hat{X}_{00},$$ \hfill (32)

where we have neglected the $O(|\varepsilon|)$ term.

Step 5. Find a $\nu = \hat{\nu}$ that minimizes the approximate cost $f(\nu)$ for all $0 < \nu < \hat{\nu}$.

Step 6. Using the obtained $\nu = \hat{\nu}$, design the ε–independent controller (27).

V. CONCLUSION

The guaranteed cost control problem for the uncertain MSPS has been studied. By solving the reduced–order slow and fast AREs, the new ε–independent controller can be obtained. The new technique has the following advantages. 1. The proposed method does not need the information for the small parameters. 2. The required work space is the same as the reduced–order slow and fast subsystems. 3. Our new results apply to the standard and the non–standard MSPS without the nonsingularity assumption of the fast subsystems although the fast subsystems include the uncertainty. Therefore, we have succeeded in applying the new design approach to more practical MSPS.

REFERENCES

