A Physics somethic Approach to Solid-Sa Reactions by Thermal

Anal

Nobuyoshi KOGA Graduate School of Education HIROSHIMA University

OUTLINE

Theme:

How to characterize the overall kinetics of the solid-state reactions from physico-geometric points of view?

Contents: (1) Physico-Geometry of Solid-State Reactions (2) Kinetic Model Functions (3) Kinetic Equations (4) Application of Thermoanalytical Method (5) Sample Controlled Thermal Analysis (6) Concluding Remarks

Surface Nucleation (1)

ex. Thermal Decomposition of Solids

Reactant Surface *cone of the most reactive sites*

Reaction initiates by nucleation and growth

Surface defects and dislocations
Crystallographic direction
Reaction atmosphere
Others

Nonisothermal dehydration of α -NiSO₄·6H₂O to tetrahydrates under flowing N₂.

Surface Nucleation (2)

Relation to Crystallographic Direction

Isothermal dehydration of zinc acetate dihydrate to anhydride under flowing N_2 .

plate-like single crystals with stacking layer structure

Edge surface

The most reactive sites

Product nuclei appear parallel to the most developed surface (010)

Surface Nucleation (3)

Influence of Reaction Atmosphere

At a reduced pressure of 1.5 hPa

Formation of monohydrate nuclei

Isothermal dehydration of copper(II) sulfate pentahydrate

Surface Nucleation (4)

Structure of Product Nuclei

Isothermal dehydration of copper(II) sulfate pentahydrate to trihydrate.

Surface Nucleation (5)

Classification of Product Nuclei

Classification	Characteristics	Example
Fluid-flux	Retention of a volatile product at interface condensed as liquid	Dehydration of alum KBr+Cl ₂ KCl+BrCl
Fusion	Product melting facilitates reaction	Decomposition of ammonium dichromate and copper(II) malonate
Functional	Strain and/or heterogeneous catalytic breakdown of intermediate at reaction interface	Decomposition of copper(II) formate, nickel formate, nickel aquarate and silver malonate
Flux-filigree	Two-zone structure of reaction interface	Dehydration of $Li_2SO_4 \cdot H_2O$

Reaction Interface (1)

Reaction Interface

A zone of locally enhanced reactivity located at reactant/product contact

Reaction proceeds by advancement of reaction interface towards the center of reactant crystal

> Crystallographic direction
> Shape of reaction front
> Structure of reaction interface

Isothermal dehydration of copper(II) acetate monohydrate

Reaction Interface (2)

Example (1)

Surface nuclei \Rightarrow Growing hemispherically \Rightarrow Wavy frontoverlap

Isothermal dehydration of lithium sulfate monohydrate to anhydride

Reaction Interface (3)

Example (2)

Isothermal dehydration of copper(II) sulfate pentahydrate to trihydrate

Reaction Interface (4)

Example (3)

Isothermal dehydration of zinc acetate dihydrate

Reaction Interface (5)

Example (4)

Reaction Interface

An optically different layer of 20~50mm thickness

Isothermal dehydration of copper(II) acetate monohydrate

Reaction Interface (6)

A Model of Reaction Interface

What is taking place?

ex. Thermal dehydration

- Water mobility within the crystalline reactant.
- Diffusive migration of water to crystal edge or interface.
- Water volatilization at the crystal edge of interface.
- Chemical reaction, if any.
- Recrystallization of solid reactant to product structure.
- Water vapor adsorption/ desorption on product solid.
- Intranuclear diffusive escape of water and loss beyond crystal.

A hypothetical transfer from Kinetic Model Function(1) homogeneous to heterogeneous model

Kinetic Model Function(2)

Typical kinetic model functions for solid-state reaction

Model	Symbol	$f(\alpha) = \frac{1}{k} \frac{\mathrm{d}\alpha}{\mathrm{d}t}$	$g(\alpha) = \int_0^\alpha \frac{\mathrm{d}\alpha}{f(\alpha)} = kt$
Nucleation & Growth	$A_{\rm m} (0.5 \le m \le 4)$	$m(1-\alpha)\left[-\ln(1-\alpha)\right]^{1-1/m}$	$\left[-\ln(1-\alpha)\right]^{1/m}$
Phase Boundary Controlled	$R_{\rm n} (1 \le n \le 3)$	$n(1-\alpha)^{1-1/n}$	$1 - (1 - \alpha)^{1/n}$
Diffusion Controlled	D_1 (one D)	$\frac{1}{2\alpha}$	α^2
	D_2 (two D)	$-\frac{1}{\ln(1-\alpha)}$	$\alpha + (1-\alpha)\ln(1-\alpha)$
	D_3 (three D)	$\frac{3(1-\alpha)^{2/3}}{2\left[1-(1-\alpha)^{1/3}\right]}$	$\left[1-(1-\alpha)^{1/3}\right]^2$
	D_4 (three D)	$\frac{3}{2\left[\left(1-\alpha\right)^{-1/3}-1\right]}$	$1 - \frac{2\alpha}{3} - (1 - \alpha)^{2/3}$

Kinetic Equation

General Kinetic Equation

- Physico-geometric Kinetic Model Function
 - Temperature Dependence of rate constant
 - Other functional dependence of reaction rate

$$\frac{\mathrm{d}\alpha}{\mathrm{d}t} = kf(\alpha)$$
$$k = A \exp\left(-\frac{E}{RT}\right)$$
$$\frac{\mathrm{d}\alpha}{\mathrm{d}t} \propto a(\alpha, T, P, \dots)$$

$$\frac{\mathrm{d}\alpha}{\mathrm{d}t} = A \exp\left(-\frac{E}{RT}\right) f(\alpha) a(\alpha, T, P, \dots)$$

> Idealized Kinetic Equation

$$a(\alpha, T, P, \dots) = 1$$

$$\frac{\mathrm{d}\alpha}{\mathrm{d}t} = A \exp\left(-\frac{E}{RT}\right) f(\alpha)$$

Application of TA

Technique	Measuring Property	Kinetic Rate Data
DTA	Temperature difference	$(T_{\rm p}, \alpha_{\rm p})$
TG	Mass change	$(\mathrm{d}\alpha/\mathrm{d}t, \alpha, T, t)$
DSC	Heat flow rate	$(\mathrm{d}\alpha/\mathrm{d}t,\alpha,T,t)$
EGA	Evolved gas	$(\mathrm{d}\alpha/\mathrm{d}t,\alpha,T,t)$

Isothermal Analysis(1)

(1) Measurement of Isothermal mass-loss data

Isothermal Analysis(2)

(2) Determination of rate constant k

(a) Differential

(b) Integral $g(\alpha) = kt$

Isothermal Analysis(3)

(3) Determination of E & A

Arrhenius plot

$$\ln k = \ln A - \frac{E}{RT}$$

Nonisothermal Analysis(1)

(1) Measurement of Nonisothermal rate data

From single TA run

Nonisothermal Analysis(2)

2) Integral $g(\alpha) = \int_{0}^{\alpha} \frac{\mathrm{d}\alpha}{f(\alpha)} = \frac{A}{\phi} \int_{T_{0}}^{T} \exp\left(-\frac{E}{RT}\right) \mathrm{d}T = \frac{AE}{\phi R} p(x)$ $x = \frac{E}{RT}$ with $p(x) = \frac{\exp(-x)}{x} - \int_{x}^{\infty} \frac{\exp(-x)}{x} \cong \frac{\exp(-x)}{x} \pi(x)$ For example $\pi(x) = \frac{x - 2/x}{x}$ Coats & Redfern method х $\ln \frac{g(\alpha)}{T^2} = \left[\ln \frac{AE}{\phi R} \left(1 - \frac{2RT}{E} \right) \right] - \frac{E}{RT}$ (b) Coats & Redfern -12 -13 $\ln \left[g(\alpha)/T^2 \right] / \mathrm{K}^{-2}$ -14 -15 -16 1.76 1.68 1.72 1.80 T^{1} / kK^{-1}

From a series of TA runs

Nonisothermal Analysis(3)

Isoconversional method

$$\frac{\mathrm{d}\alpha}{\mathrm{d}t} = A \exp\left(-\frac{E}{RT}\right) f(\alpha)$$

1) Differential

Friedman method

$$\ln\!\left(\frac{\mathrm{d}\alpha}{\mathrm{d}t}\right) = \ln\!\left[Af(\alpha)\right] - \frac{E}{RT}$$

From a series of TA runs

Peak method

Nonisothermal Analysis(4)

Kissinger method

$$\frac{\mathrm{d}\alpha}{\mathrm{d}t} = A \exp\left(-\frac{E}{RT}\right) f(\alpha)$$

First derivative with respect to t

$$\frac{\mathrm{d}^{2}\alpha}{\mathrm{d}t^{2}} = A\exp\left(-\frac{E}{RT}\right)f(\alpha)\left[\frac{\mathrm{d}f(\alpha)}{\mathrm{d}\alpha}A\exp\left(-\frac{E}{RT}\right) + \frac{\phi E}{RT^{2}}\right]$$

First order equation $f'(\alpha) = -1$

For other kinetic models

At peak maximum

$$\left(\frac{\mathrm{d}^2\alpha}{\mathrm{d}t^2}\right)_p = 0$$

$$\ln \frac{\phi}{T_p^2} = \ln \left[\frac{f'(\alpha_p)AR}{E}\right] - \frac{E}{RT_p}$$

W

ith
$$f'(\alpha) = \frac{\mathrm{d}f(\alpha)}{\mathrm{d}\alpha}$$

Kinetic Master Plot

Nonisothermal Analysis(5)

Nonisothermal

Introduction of generalized time θ

1) Differential $\frac{\mathrm{d}\alpha}{\mathrm{d}\theta} = Af(\alpha) \Box_{\lambda}$

$$\frac{f(\alpha)}{f(0.5)} = \frac{(\mathrm{d}\alpha/\mathrm{d}\theta)}{(\mathrm{d}\alpha/\mathrm{d}\theta)_{\alpha=0.5}}$$

$$\frac{\mathrm{d}\alpha}{\mathrm{d}\theta} = \frac{\mathrm{d}\alpha}{\mathrm{d}t} \exp\!\left(\frac{E_a}{RT}\right)$$

2) Integral

$$g(\alpha) = \int_{0}^{\alpha} \frac{\mathrm{d}\alpha}{f(\alpha)} = A \int_{0}^{\theta} \mathrm{d}\theta = A\theta$$

$$\frac{g(\alpha)}{g(0.5)} = \frac{\theta}{\theta_{\alpha=0.5}}$$

Fractional reaction α

Ambiguities of TA Kinetics(1)

Practical usefulness of the kinetic parameters?

Yes!!

(1) For simulating the reaction process(2) For estimating life-time(3) Others

Physico-chemical meaning of the kinetic parameters?

Not answered as yet!!

Problems

- (1) Further detailed characterization of reaction mechanism
- (2) Missing functional dependence in the idealized kinetic equation
- (3) Reliability of the kinetic rate data measured by TA
 - 1) Self-cooling or self-heating effects
 - 2) Self-generated reaction atmosphere
 - 3) Mass-transfer and heat-transfer phenomena
 - 4) Others

Ambiguities of TA Kinetics(2)

Self-cooling effect

Ambiguities of TA Kinetics(3)

Self-generated atmosphere

Mass-transfere phenomena

Ambiguities of TA kinetics(4)

Increase of Sample Mass

Balk or Pellet

Difficulty of internal diffusive escape of product gas through solid product layer

Powder

Difficulty of gross diffusion of product gas through sample power matrix

CRTA(1)

Controlled transformation Rate Thermal Analysis

Practical Usefulness of CRTA Techniques
(1)Separation of overlapped reaction steps
(2)Measurement of kinetic rate data
(3)Process control and product control

CRTA(2)

Technique	Feedback parameter
CRTG	Rate of mass change
CRDL	Rate of length change
CREGD	Rate of total gas evolution
CREGA	Rate of specific gas evolution

CREGD-TG(1)

Thermal Decomposition of Calcite

$$\frac{d\alpha}{dt} = A \exp\left(-\frac{E}{RT}\right) f\left(\alpha\right) \left(1 - \frac{P}{P_0}\right)$$

CREGD-TG(2)

CREGD-TG(3)

Typical CREGD-TG Record

CREGD-TG(4)

How to change decomposition rate for kinetic calculation?

(1)Control pressure(2)Sample mass(3)Basal pressure

Effect of Sample Mass

$$\left(1-\frac{P}{P_0}\right) \approx const.$$
 $\ln\left(\frac{\mathrm{d}\alpha}{\mathrm{d}t}\right) = \ln[Af(\alpha)] - \frac{E}{RT}$

Friedman Plot

CREGD-TG(5)

CREGD-TG(6)

Typical Rate-jump CREGD-TG Record

$$E = R \frac{T_1 T_2}{T_1 - T_2} \ln \frac{(d\alpha / dt)_1}{(d\alpha / dt)_2}$$

CREGA-TG(1)

CREGA-TG(2)

Thermal decomposition of synthetic

malachite

CREGA-TG(3)

Influence of Reaction Atmosphere

With increasing the influence of self-generated atmospheric condition

Reaction temperature shifts systematically to lower temperature region

CREGA-TG(4)

Influence of atmospheric CO₂ and H₂O

CREGA-TG(5)

A Typical TG-DTA-EGA Curves

Sample mass: 20.08 mgCarrier Gas: $dry N_2$ Flow Rate: 200 ml min^{-1} H.R.: 10.0 K min^{-1}

CREGA-TG(6)

Typical CREGA(CO₂)-TG Curves

Sample mass: 20.55 mg Carrier Gas: dry N₂ Flow Rate: 200 ml min⁻¹ **H.R.**: 2.0 K min⁻¹ **Controlled Gas:** CO₂ (100ppm)

CREGA-TG(7)

Influence of Water Vapor

Sample mass: 20.55 mg Carrier Gas: N_2 with H_2O : 1.98 g m⁻³ 8.14 g m⁻³ 11.57 g m⁻³ Flow Rate: 200 ml min⁻¹ H.R.: 2.0 K min⁻¹ Controlled Gas: CO_2 Controlled Value: 100ppm

CREGA-TG(8)

Influence of CO₂

CREGA-TG(9)

How to change decomposition rate for kinetic calculation?

Parameter	Problem	
Control Value	Change in the partial pressure of evolved gas	
Sample Mass	Change in the mass-transfer phenomena in the sample matrix	
Flow Rate	Change in the suction effect	

CREGA-TG(10)

Two Different CREGA(CO₂)-TG Curves for Kinetic Calculation

Sample Mass: 20.22 mg Ref. Mass: Carrier Gas: dry N₂ Flow Rate: 200 ml min⁻¹ H.R.: 2.0 K min⁻¹ **Controlled Gas:** CO₂ (100ppm)

Possibility of Quantitative Control of the Relationship between Reaction Kinetics and Self-generated Reaction Atmosphere

Near-equilibrium \longrightarrow Far-equilibrium

Conclusion(2)

Logical Consideration on Kinetic Characteristics

Practical Usefulness of CRTA Techniques
(1)Separation of overlapped reaction steps
(2)Measurement of kinetic rate data
(3)Process control and product control

