
　
　
　　

令和5年度修士論文
　

概古典的な仮想結び目の
determinantについて

　
　

広島大学大学院先進理工系科学研究科数学プログラム
M225524 畑野 友明
主指導教員 藤森 祥一

2024年 2月 8日



はじめに
円周 S1の 3次元球面 S3への埋め込みを結び目という. 結び目の集合に対し
て, アンビエントイソトピーにより同値関係が定められる. 結び目は, S3の良
い射影 p : S3 → S2による像を考え, 各交点に射影に関する上下の情報を与え
ることで, 平面上の図式として捉えることができる. これを結び目図式という.

この結び目図式に対して, Reidemeister移動という図式の局所変形 (と平面上
のイソトピー)による同値関係を考えると, 結び目図式の同値類と, その結び目
図式が表す結び目の同値類は一対一に対応することが分かる.

結び目図式の拡張として, S1から S2へのはめ込みに対し, 2重点に上下の他
に新たな形の情報 (仮想交点)を与える. このようにして与えられる図式は仮想
結び目図式として, Kauffman [13]により導入された.

図 1: Virtual trefoil の仮想結び目図式

仮想結び目図式に対して, 通常のReidemeister移動に加えて, 新たに仮想交
点を含む局所変形 (と平面上のイソトピー)により同値関係を考えることがで
きる. この同値関係による仮想結び目図式の同値類として, 仮想結び目が従来
の結び目とは逆説的に定義される. また区別のために, 従来の結び目を古典的
結び目という.

仮想結び目図式を考える動機の一つに, 厚みをつけた曲面内の結び目に対し,

その曲面への射影による像を平面上の図式として表す方法を与えることがある.

図 2: Virtual trefoil の仮想結び目図式が対応する結び目のトーラスへの射影
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古典的結び目に関して, 2つの結び目が同値であることを示すのは容易であ
る一方, 同値でないことを示すのは一般に困難であった. この問題に対処する
ために, 同値な結び目に対して同じ何らかの値を与える結び目の不変量という
概念が考えられる. 古典的結び目に関する結び目の不変量の仮想結び目への拡
張は仮想結び目理論における中心的問題の一つである.

Alexander多項式は, ある条件を満たす仮想結び目に関して拡張可能な不変
量の一つである. 向き付けられた古典的結び目に関して, Alexander多項式は
結び目の補空間の基本群の情報から導かれる 1変数多項式であり, 単元倍によ
る差を除いてwell-definedとなる. 一方で, 結び目が境界をなす, 向き付けられ,

かつ連結でコンパクトな曲面 (Seifert曲面という)の 1次元ホモロジー群から
得られる正方行列 V (Seifert行列という)により, det(tV −V ⊤)として計算可能
である.

Alexander多項式が拡張可能な仮想結び目のクラスとして, 概古典的な仮想
結び目というものが存在する. 概古典的な仮想結び目はAlexander numbering

を許容する図式を持つ仮想結び目として, Silver, Williams [20]により導入され
た. この概古典的な結び目に関して, Alexander加群の 1次初等イデアルが単
項イデアルであることがNakamura [16]等によって示され, 古典的な意味での
Alexander多項式が拡張されることが示唆された. また, 概古典的な仮想結び
目は曲面内の結び目としてホモロジカルに自明という性質を持ち, その Seifert

曲面からAlexander多項式を計算を行うことで, ある条件のもとスケイン関係
式が成り立つことがBoden [3]等によって示された.

概古典的な結び目の Alexander多項式は, その Seifert曲面の 1次元ホモロ
ジー群から得られる 2つの正方行列 V +, V −により, det(tV − − V +)として計
算できる. また, Alexander多項式に t = −1を代入し, 絶対値をとった値とし
て, 結び目の determinantがそのまま概古典的な結び目にも拡張される.

Alexander多項式に関連する古典的結び目の不変量としてConway多項式が
存在する. Conway多項式は通常, 自明な結び目に対し 1を返し, スケイン関係
式を満たす多項式として定義される. この定義は, 古典的結び目が交差変形に
より unknotting可能であることから意味をなすが, 一般の仮想結び目に関し
ては交差変形により unknottingできないため拡張できない. 一方で, 古典的結
び目に関する任意の有限型不変量は, Gauss diagram formulaとよばれる, 基
点付き Gauss diagram内の arrow diagramの数え上げにより表されることが
Goussarov [11]により示された. Conway多項式の各項の係数は有限型不変量で
あることが知られており, 実際に Sergei [6]等によってGauss diagram formula

による表示が与えられた. これは基点を持つ仮想結び目に対して自然に拡張で
きる. この様な拡張は 2種類存在し, それぞれ ascending多項式, descending多
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項式といい, ∇asc,∇dscと表わす. 古典的結び目に関して, ∇asc,∇dscは基点の
選び方によらず, また両者は一致する. 一方で, 一般の仮想結び目に関しては,

いずれも成り立たない.

Alexander多項式とConway多項式の関係として, 古典的結び目Kに関して
次が成り立つ.

Fact. Kのある Seifert曲面に関する Seifert行列を V とし, KのAlexander多
項式を∆K(t) = det(t

1
2V − t−

1
2V ⊤)とする. またKのConway多項式を∇K(z)

とする. このとき,

∆K(t) = ∇K(t
− 1

2 − t
1
2 )

が成り立つ.

ここで, ∆K(t) = det(t
1
2V − t−

1
2V ⊤)の形で定めたAlexander多項式を特に,

Conway-normalized Alexander多項式といい, 実質的に Conway多項式と同じ
ものを表している. またこのことから, Kのdeterminant det(K)は |∆K(−1)| =
|∇K(−2i)|として求められる. 結び目に関してConway多項式の奇数次の係数
は 0, 定数項は 1となるので次が成り立つ.

Fact. v2(K)を∇K(z)の 2次の係数とする. このとき,

det(K) ≡

{
±1 mod 8, (v2(K) ≡ 0 mod 2)

±3 mod 8, (v2(K) ≡ 1 mod 2)
(1)

が成り立つ.

本論文では, この結果が概古典的な仮想結び目についても拡張できることを
示した. これを証明するにあたり, まず前述したように, 一般の仮想結び目に
関して∇asc,∇dscは基点の選び方に依存し, 両者は一致しないことが問題とな
る. しかし, 概古典的な結び目に限れば, 2次の係数 v2,1, v2,2は基点の選び方に
よらず, 両者は一致することが示される.

定理. Gを概古典的な仮想結び目図式のGauss diagramとする. Gの円周上の
コードの端点を除く 2点 a, bを任意に選ぶ. a, bを基点とするGauss diagram

Ga, Gbに対し, v2,1(Ga), v2,1(Gb)をそれぞれ∇asc(Ga)(z),∇asc(Gb)(z)の 2次の
係数とする. このとき,

v2,1(Ga) = v2,1(Gb)

が成り立つ. v2,2についても同様のことが成り立つ.
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よって, v2(K) = v2,1(K) = v2,2(K)はKの不変量としてwell-definedとなる.

また,式 (1)を示すにあたり, Conway-normalized Alexander多項式と∇asc,∇dsc

の変数変換 z = t−
1
2 −t

1
2 による直接的な関連付けが期待されるが,一般に概古典

的結び目に関するAlexander多項式は palindromicでないことから成り立たな
いことがわかる. そこで,両方の多項式に共通する良い性質を持ったdescending

なる結び目図式のクラスに着目し, そのような図式を基準に両者のスケイン関
係式を比較することで式 (1)を示した.

定理. Kを概古典的な仮想結び目とする. このとき,

det(K) ≡

{
±1 mod 8, (v2(K) ≡ 0 mod 2)

±3 mod 8, (v2(K) ≡ 1 mod 2)

が成り立つ.

今後の展望として, 今回示した定理はチェッカーボード彩色可能な結び目に
対しての拡張が期待される. 実際, 主定理の証明のための補題の多くが, 主張
を適切に調整することでチェッカーボード彩色可能な結び目に対しても同様に
成り立つ.
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1 古典的結び目と仮想結び目
本節では, まず古典的な結び目の定義を再確認し, その後, より一般化された
概念として仮想結び目を導入する.

1.1 古典的絡み目
定義 1.1. µ個の互いに交わらない単純閉曲線からなる 3次元球面 S3の部分
集合を, µ成分の (古典的)絡み目という. 特に 1成分の絡み目を (古典的)結び
目という. また各成分に向きをつけたものを有向絡み目という.

定義 1.2. L,L′をそれぞれLi, L
′
i (i = 1, . . . , µ)からなる有向絡み目とする. 向

きを保つ同相写像 h : S3 → S3で h(Li) = L′
i (i = 1, . . . , µ)かつ各 h |Li

も向き
を保つものが存在するとき, L, L′は同値であるという. また,絡み目の同値類
を絡み目型という.

以下, 混同の恐れがない場合, 絡み目型を単に絡み目とよぶ.

定義 1.3. Lを絡み目とする. ∞ ∈ S3\Lを1つ選ぶ. このとき, R3とS3\{∞},
および R2と S2 \ {∞} の同一視のもと, p(∞) = ∞, p(x, y, z) = (x, y)で定義
された射影 p : S3 → S2が次の 2つの条件を満たすとき,射影 pは正則であると
いう.

(1) p|Lは高々有限個の 2重点 (このような点を交点という)を除き同相.

(2)各交点 p(a) = p(b) (a, b ∈ L, a ̸= b)に関して, Lは a, bの十分小さい近傍
内で線形. (a, bのうち z座標の大きい方を上交点,もう一方を下交点という.)

絡み目型が正則射影を持つ絡み目を含むとき tameであるという. 以下, 全
ての絡み目型は tameであるとする.

定義 1.4. Lを正則射影をもつ絡み目とする. また, Lに対する正則な射影 pを
一つ選ぶ, このとき, 像 p(L)の各 2重点 p(a) = p(b) (a, b ∈ L, a ̸= b)に対し, 上
交点, 下交点の情報を与えたものを Lの絡み目図式という.

絡み目型は, 以下のように絡み目図式の局所変形による同値類としても捉え
られる.

定理 1.5. L,L′を正則射影をもつ同値な絡み目とする. このとき, L,L′の絡み
目図式は, 以下の局所変形 (r1)–(r3)と平面上のイソトピーにより移りあう.
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図 3: Reidemeister移動

局所変形 (r1)–(r3)をReidemeister移動という.

1.2 仮想絡み目
仮想絡み目の概念は, 古典的絡み目の一般化として, Kauffmanにより導入さ
れた ([13]).

定義 1.6. R2へのm個の S1のはめ込みで, 多重点は 2重点に限られ以下のい
ずれかにマーキングされたものを, 成分数mの仮想絡み目図式という. 特に, 1

成分のものを仮想結び目図式という.

図 4: 実交点と仮想交点

定義 1.7. 2つの仮想絡み目 (結び目)図式が, 局所変形 (r1)–(r3), (v1)–(v4), お
よび R2上のイソトピーにより移りあうとき, virtually isotopicであるとい
う. virtually isotopicによる仮想絡み目 (結び目)図式の同値類を仮想絡み目
(結び目)という.

局所変形 (v1)–(v4)を virtual moveといい, (r1)–(r3), (v1)–(v4)を合わせ
て一般化されたReidemeister移動という.

以下, 特に断りがない場合, 絡み目 (結び目)とは仮想絡み目 (結び目)を指す.
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図 5: virtual move

また,一般化されたライデマイスター移動に加えて, forbidden overpass move

とよばれる図 6の局所変形 (f1) を含めて 2つの仮想絡み目図式が移りあうと
き, welded equivalentであるという. welded equivalent による仮想絡み目
(結び目) 図式の同値類をwelded link (knot)という.

図 6: forbidden overpass move

仮想絡み目図式の各成分に向きを付けることで有向仮想結び目図式が考えら
れる. このとき, 有向仮想絡み目の virtual isotopyによる同値類を有向仮想絡
み目と定義する.

今, 図式の局所変形による同値類として仮想絡み目を定義した. 仮想絡み目
には, これと同値な定義が主に 2つ存在する. 以降でそれらを確認していく.

1.2.1 Gauss diagram

有向仮想絡み目図式は向き付けられた円周のはめ込みであるが, この円周上
の 2重点の逆像をコードでつなぎ, 各コードに交差の符号と, 上交点から下交
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点への向きを与えたものをGauss diagramという.

図 7: virtual trefoilとそのGauss diagram

Gauss diagramは実交点の情報をのみ抽出したものであり, virtual moveの
もと不変である. このことから, Gauss diagramは virtual moveと平面上のイ
ソトピーによる差異を除いた仮想絡み目図式と解釈できる ([11]). したがって,

仮想結び目はGauss diagramと, Reidemeiter moveに対応する図 8の変形によ
る差を除いて一対一に対応する.

　

図 8: Reidemeister moveに対応するGauss diagramの変形
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1.2.2 厚みをつけた曲面内の絡み目
任意の仮想絡み目図式Kは, 曲面内の絡み目として実現できる.

具体的には次のように構成する : まず図 9のように, 各実交点に十字のバン
ドを, 各仮想交点に交わらないバンドを貼り付ける.

図 9: 各交点に対応するバンド

次に残りのK の弧に沿ってねじれのないバンドを貼り付ける. このように
して得られた境界付きの向き付けられた 2次元多様体に, 各境界成分に 2次元
円板を貼り合わせることで, 図式Kを含む向き付けられた閉曲面ΣKが得られ
る. ΣK をKのCarter surfaceという. ΣK × Iには, Kを射影に持つような
絡み目を埋め込める.

図 10: virtual trefoilのCarter surface

このような厚みをつけた曲面内の絡み目の集合に対し, 以下の同値関係が定
められる.

定義 1.8. Σを向き付けられた曲面, LをΣ× I内の絡み目とする. D1, D2 ⊂ Σ

をLの射影とは交わらないディスクとする. ここでΣからD1, D2を引き抜き,

生じた境界どうしを 2次元の 1ハンドルでつないで得られる曲面をΣ′とする.

このとき L′ ⊂ Σ′ × Iを L ⊂ Σ× Iの安定化という.

絡み目 L1 ⊂ Σ1 × I, L2 ⊂ Σ2 × I が安定化, またはその逆の操作 (非安定化
という), およびアンビエントイソトピー, 曲面の向きを保つ微分同相で互いに
移りあうとき安定同値であるという.

厚みをつけた曲面内の絡み目の安定同値類は, 仮想絡み目と一対一に対応す
ることが知られている ([5]).
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また, より強い結果として厚みをつけた曲面内の絡み目の安定同値類は, 一
意に既約な代表元を持つことが知られている ([14]). ここで既約とは, これ以上
非安定化できないことを意味する.

図 11: 安定化の例

1.3 結び目群
古典的結び目に対し, 結び目の管状近傍の補空間の基本群として結び目群な
るものが定義される. この群はWirtinger表示という有向結び目図式に由来す
る表示の仕方が存在する. この図式を用いた群表示を有向仮想結び目図式に対
しても拡張することで, 結び目群の概念が仮想結び目に対しても同様に拡張さ
れる.

Kを n個の実交点を持つ, 有向仮想結び目図式とする. また, 結び目図式上
に一つ基点を選んでおく. この基点から向きに従って, 下交差区切りで弧を
a1, a2, . . . , anとラベル付けしていく. このとき各 i = 1, . . . , nに対し, aiが入る
交差は, その符号 εi = ±1によって図 12のいずれかの形になっている. (ここ
で対応するメリディアンは right-handedとし, π1の元は右から読む.)

図 12: 各交差に対応する関係

Kの結び目群を
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GK = ⟨a1, . . . , an | ai+1 = aεijiaia
−εi
ji

, i = 1, . . . , n⟩

と定義する.

結び目群GKは局所変形 (r1)–(r3), (v1)–(v4), (f1)に対して不変である. よっ
てGK はKのwelded equivalentによる同値類に関する不変量である.

2 概古典的仮想絡み目
本節では, [3]の内容を中心に概古典的な結び目の概念を導入し, またその性
質について紹介する.

2.1 定義
概古典的な仮想絡み目は Silver, Williams [20] により導入された.

定義 2.1. (i) 整数 p ≥ 0が与えられているとする. 有向仮想絡み目図式Dに対
して, short arc (Dを全ての交点で分割したもの)の集合上の整数値関数 λが
存在し, 図 13を満たすとき, 図式Dはmod p Alexander numberableであ
るという. 特に p = 0の場合 (このとき図 13の関係は整数としての等式とみな
す), 図式DはAlexander numberableであるという.

(ii) 有向仮想絡み目Kがmod p Alexander numberableな図式を許容すると
き, Kはmod p 概古典的であるという. 特に p = 0の場合, Kは概古典的で
あるという.

任意の有向古典的結び目図式はAlexander numberableである ([1]).

例 2.2. 概古典的仮想結び目図式の例として図 14のようなものが考えられる.

2.2 性質
概古典的な仮想絡み目には, それぞれGauss diagram, 厚みをつけた曲面内
の結び目の観点からも, ある性質を満たすものとして解釈できる.

定義 2.3. GをGauss diagramとし, そのコードを c1, . . . , cnとする. このとき
各コード ciについて

r± = {ciから見て右に向かって交わる±コードの数 }
l± = {ciから見て左に向かって交わる±コードの数 }
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図 13: 各交点の周りのAlexander numbering

図 14: 概古典的な仮想結び目図式とAlexander numberingの一例
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と定める. これらを用いて, Gauss diagram Gのコード ci の指数を I(ci) =

εi(r+ − r− + l− − l+) で定義する. (εiはコード ciの符号.)

命題 2.4. Gauss diagram Gで表される有向仮想絡み目図式がAlexander num-

berableであることと, 各コード ciについて I(ci) = 0が成り立つことは同値で
ある.

証明. (⇒) コード ci を任意にとる. ci の符号 εi = ±1に対して Alexander

numberableの条件より, コード ciの端点の周りで図 15 のように整数を対応さ
せることができる. ここで ciから向かって右に位置するコードの端点に着目す
る. コードの向きと符号によって, 端点の前後で対応する値は±1変化する. 具
体的には, 端点が arrowheadの場合, 符号±1によって対応する値は±1変化す
る. 端点が arrowtailの場合, 符号±1によって対応する値は∓1変化する. ここ
で ciと交わらないコードは, arrowheadと arrowtailでの数の変化は打ち消しあ
うため, ciの周りでの対応する値が一致するための条件は r+−r−+ l−− l+ = 0.

すなわち I(ci) = 0が成り立つこととなる.

図 15: コード ciの周りのAlexnder number

(⇐) コード ciの arrowtailの向かって左に整数 aを対応させるとする. ここ
で各コードの端点の前後で, 端点が arrowheadの場合, 符号が±1ならば±1, 端
点が arrowtailの場合, 符号が±1ならば∓1変化させながら, 端点で分割され
る各弧に整数を対応させていく. このとき各コード ciの端点の周りで, 各弧に
対応する値は, 仮定 I(ci) = 0より, 前述のように一致することがわかる. よっ
て, Alexander numberableである.

定理 2.5 ([3, Theorem 6.1]). 有向仮想絡み目Kについて以下は同値である.

(a) Kは概古典的.

14



(b) KはΣ× [0, 1]の内部に埋め込まれた絡み目としてホモロジカルに自明.

ここで Σは K の Alexander numberableな図式から構成される Carter

surfaceとする.

(c) KはΣ× [0, 1]の内部に埋め込まれた連結かつ向き付けられた曲面 F の
境界をなす. ここで Σは同様にKのAlexander numberableな図式から
構成されるCarter surfaceとする.

このような曲面 F をKの Seifert曲面という.

証明. (a) ⇒ (b). Alexander numberableな仮想結び目図式Kについて, Carter

surface ΣK は CW複体とみなすことができる. (実交点を 0-セル, 各辺を 1-セ
ル, ディスクD1, . . . , Dnを 2-セルとする.) これらのディスクDiに対して, そ
のディスクを右手に持つ辺のAlexander number λiを対応させる. Alexander

numberの定め方より, λiは辺の選び方によらず well-definedである. このと
き, Kの任意の辺について, 左側のディスクに対応する値は右側のディスクよ
り 1大きい. このことから, ∂(λ1D1 + · · · + λnDn) = K が成り立つ. よって,

[K] = 0 ∈ H1(Σ;Z). すなわち, Kはホモロジカルに自明である.

(b) ⇒ (a). Σ × [0, 1]内の絡み目 K が H1(Σ;Z)の元として自明であると
き, 前述の λ1, . . . , λnのように Carter surface ΣK の 2-ディスクD1, . . . , Dnの
Alexander numberが誘導される. これはKのAlexander numberingを与える.

(c) ⇒ (b) は明らか. 一方で (b) ⇒ (c) については, 一般の向き付けられた
3次元多様体内のホモロジカルに自明な絡み目がザイフェルト曲面を持つこと
が良く知られている ([9, Lemma 2.2]). (具体的にザイフェルト曲面を構成する
ためのアルゴリズムも存在する ([3, 7]).)

3 仮想結び目のAlexander不変量
本節では, 引き続き [3]を参考に, 概古典的な仮想結び目に関するAlexander

多項式の定義とその性質について紹介する.

古典的結び目に関して, その結び目群からAlexander不変量なるものが定義
された. 仮想結び目に関しても, 結び目群に対し, その定義を流用することで
Alexander不変量を定義することが可能である.

3.1 Alexander加群
K を有向仮想結び目とする. また, K の結び目群を GK = ⟨a1, . . . , an |

r1, . . . , rn⟩ とする. ここで, G′
K = [GK , GK ], G′′

K = [G′
K , G

′
K ] をそれぞれ
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1,2次の交換子部分群とする. このとき, 商群 G′
K/G

′′
K をK のAlexander加

群という. Alexander加群は Laurent多項式環 Z[t, t−1]上の有限生成な加群で
あり, 表現行列Aをもつ. ここでAはGK の関係子 rj を生成元 aiにより自由
微分し, 各生成元を tに送ることで得られる n× n行列である. 行列AはGの
表示の仕方によるが, 初等イデアルの列

(0) = E0 ⊂ E1 ⊂ · · · ⊂ En = Z[t, t−1]

は表示の仕方によらない. ここで k次初等イデアル EkはAの全ての (n− k)×
(n− k)小行列式により生成されるZ[t, t−1]のイデアルとして定義する. GKは
welded equivalentに関する不変量であるので, これらのイデアルも同様に不変
量である.

3.2 Alexander多項式
以下, ホモロジー群は全て整数係数とする. 古典的結び目の場合, 前述の

Alexander加群は結び目の Seifert曲面を用いて構成することができた. 具体的
には, 古典的結び目K ⊂ S3について補空間 S3 \Kを Seifert曲面に沿って切
り開き, 可算無限個のコピーを互いに貼り合わせて得られる無限巡回被覆X∞

の 1次元ホモロジー群がAlexander加群と一致する. また Seifert曲面の 1次元
ホモロジー群から得られる Seifert行列により, Alexander加群の 1次初等イデ
アルの生成元が表される. この生成元をAlexander多項式という.

この結果は Seifert曲面を持つ概古典的な仮想結び目に関しても拡張できる.

実際, 概古典的な仮想結び目に関して, その結び目群の 1次初等イデアルは
単項イデアルであることが示されているため Alexander多項式が定義できる
([16, Theorem 1.2]). このことを説明するために必要な定義や命題を紹介する.

命題 3.1 ([3, Proposition 7.1]). KをΣ× Iの内部に埋め込まれた結び目とす
る. このとき, 相対ホモロジー群H1(Σ× I \K,Σ× {1})はKのメリディアン
で生成される無限巡回群である.

証明. j : Σ × {1} → Σ × I \ K, および i : Σ × I \ K → Σ × I を包含写像,

p : Σ× I → Σ× {1}を射影とする. このとき次の合成写像

Σ× {1} j−→ Σ× I \K i−→ Σ× I
p−→ Σ× {1}

は恒等写像であり, j∗ : H∗(Σ×{1}) → H∗(Σ×I \K)は retractionを持つ. よっ
て, 対 (Σ× I \K,Σ× 1)に関する長完全系列から得られる完全系列

0 → H1(Σ× {1}) → H1(Σ× I \K) → H1(Σ× I \K,Σ× {1}) → 0
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は分裂し, H1(Σ× I \K) ∼= H1(Σ×{1})⊕H1(Σ× I \K,Σ×{1})が成り立つ.

N(K)をKの閉な正則近傍とする. Σ × I = (Σ × I \K) ∪ int(N(K))に対
し, Mayer–Vietoris完全系列を適用する.

0 → H1(∂N(K)) → H1(Σ× I \K)⊕H1(K) → H1(Σ× I) → 0

ここでH1(∂N(K)) ∼= Z ⊕ ZはK のメリディアンとロンジチュードで生成さ
れ, ロンジチュードの因子はH1(K)に同型に写される. よってH1(Σ× I \K)

の直和分解と合わせて結論が得られる.

以上より, 有向仮想結び目KはH1(Σ× I \ J,Σ×{1})において, ホモロジー
類 [K] = mµを決定する. この一意な整数mを絡み数 ℓk(J,K)と定義する. こ
れはK が J をメリディアン方向に何回転しているかを表しており, その意味
で古典的な絡み数の自然な拡張とみなせる. ここで絡み数は対称的でない, す
なわち一般には ℓk(J,K) ̸= ℓk(K, J)であることに注意する.

例 3.2. 図 16の曲面内の絡み目は, ℓk(L1, L2) = −1, ℓk(L2, L1) = 0となる.

図 16: 絡み数が非対象となる例

Alexander加群の構成は古典的な場合と同様の議論を, Σに関するホモロジー
群や基本群の元を無視するために商空間で置き換えて考えることで得られる.

F をΣ×Iの内部に埋め込まれた,コンパクトかつ連結で向き付けられた種数
g,境界成分n(> 0)の曲面とする. ホモロジー群H1(Σ×I \F,Σ×{1})とH1(F )

は同型であり, ともに階数 2g + n − 1の自由加群である. さらに Σ × I \ F, F
内の任意の向き付けられた閉曲線 c, dに関して β([c], [d]) = ℓk(c, d)で定まる一
意な非特異な双線形形式

β : H1(Σ× I \ F,Σ× 1)×H1(F ) → Z

が存在する. これは [15, Theorem 6.3] の自然な拡張として示される.
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F をΣ× Iの内部に埋め込まれたホモロジカルに自明な成分数 nの有向絡み
目Lに関する連結な Seifert曲面とする. この曲面 F に対し, 閉正則近傍N(F )

を F × [−1, 1] ∼= N(F )でパラメータ付けされ, F × {0}が F に対応し, Lの
各成分のメリディアンが F × {−1}から入り, F × {1}から出るものとする.

ι± : F → Σ× I \ F を ι±(x) = (x,±1)で与えられる埋め込みとし, xの正負の
push-offをそれぞれ x± = ι±(x)で表す. このとき, α±(x, y) = β(x±, y)で定ま
る 2つの双線形形式,

α+, α− : H1(F )×H1(F ) → Z

が得られる. これを F の Seifert形式という.

Z = (Σ × I \ L)/Σ × {1}を Σ × I \ L内の Σ × {1}を 1点につぶして得
られる空間とする. このとき Z の基本群はGLと同型である. GLの可換化は
H1(GL) ∼= H1(Z) ∼= H1(Σ× I \ L,Σ× {1}) ∼= Znとなる. ε : Zn → Zを準同型
ε(a1, . . . an) =

∑n
i=1 aiとし, Z∞を準同型GL → H1(GL) ∼= Zn ε−→ Zに対応す

る被覆空間とする. Z∞のモデルは, Seifert曲面 F とパラメータ F × [−1, 1] ∼=
N(F )を用いて次のように構成される. X = (Σ× I \ int(N(F )))/Σ×{1}とす
る. このときXは有限CW複体であり, H1(X) ∼= H1(Σ× I \ F,Σ× {1}が成
り立つ. Y をX を F に沿って切り開いて得られる空間とする, すなわち Y は
X \ F の 2つの F のコピー ι−(F )と ι+(F )をコンパクト化して得られる空間
である. (Y は F の開近傍 F × (−1, 1)を除いてXと同相.) ϕ : ι−(F ) → ι+(F )

を ι±で定まる同相写像とする. (Xは ι−(F )と ι+(F )を ϕで同一視することで
復元できる.) 各整数 i ∈ Zに対し Yi = Y × {i}とする, またX∞を

⊔
i∈Z Yiか

ら F−
i = ι−(F ) × {i}と F+

i+1 = ι+(F ) × {i + 1}を ϕで同一視して Yiと Yi+1

どうしを貼り合わせて得られる空間とする. このときX∞は無限巡回被覆 Z∞

と同相であり, t(y, i) = (y, i + 1)で与えられる同相写像 t : X∞ → X∞ は同
型 t : H1(X∞) → H1(X∞)を誘導し, これをH1(X∞)上の作用とみなすことで
H1(X∞)に Z[t, t−1]加群の構造を与える. 以上の設定のもとで, [15, Theorem

6.5] は次の定理に拡張される.

定理 3.3 ([3, Theorem 7.2]). F を Σ × I の内部に埋め込まれたホモロジカル
に自明な有向絡み目 Lに関する連結な Seifert曲面とする. 与えられたH1(F )

の基底に関する Seifert形式 α±の行列表示を V ±とする. このとき tV − − V +

は Z[t, t−1]加群H1(X∞)の表現行列である.

系 3.4 ([3, Corollary 7.3]). 概古典的な有向仮想結び目, または絡み目の 1次初
等イデアルは単項イデアルであり, det(tV − − V +)で生成される. したがって
単元倍を除いて∆L(t)は det(tV − − V +)と一致する.
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定理 3.5 ([10, Lemma 3]). K+, K−, K0を図 17 で示される 1つの交差の小さ
い近傍を除いて一致する 3つの有向仮想結び目図式とする. これらの図式の内
1つが Alexander numberableであると仮定する. (このとき自動的に残りの 2

つもAlexander numberableとなる.) 各∆K+(t),∆K−(t),∆K0(t)は±ti倍の差
を除いて well-definedであるが, 全ての図式に対し, 交差の周りを除いて同じ
Seifert曲面を用いることで得られる Seifert行列をそれぞれ V ±

+ , V ±
− , V ±

0 とす
る. これらを用いてAlexander多項式を, ∆K+(t) = det(tV −

+ − V +
+ ),∆K−(t) =

det(tV −
− −V +

− ),∆K0(t) = det(tV −
0 −V +

0 )として計算すると,これらのAlexander

多項式はスケイン関係式

∆K+(t)−∆K−(t) = (1− t)∆K0(t)

を満たす.

図 17: skein triple

証明. K+, K−, K0に関する Seifert曲面で交差の周りで図 18のようになってい
るものを F+, F−, F0とする. ここで F+, F−はそれぞれ F0に半ひねりバンドを
付け加えたものとみることができる.

図 18: skein tripleに対応する Seifert曲面

H1(F+)の基底でこのバンドを通過するものが存在しない場合, L0は非連結
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であり L+, L−は一致する. よって∆L0(t) = 0であり, ∆L+(t)−∆L−(t) = 0 =

(1− t)∆L0(t)が成り立つ.

次にH1(F+)の基底でバンドを通過するものが存在する場合, このバンドを
通過する基底がただ 1つとなるよう基底を選びなおし, この基底を αとする.

このとき F0に対応する Seifert行列を V ±
0 とすると,

V ±
+ =

(
a tx±

y± V ±
0

)
, V ±

− =

(
a+ 1 tx±

y± V ±
0

)
となる. これらを用いて∆L−(t)を計算すると

∆L−(t) = det

(
(t− 1)(a+ 1) ttx− − tx+

ty− − y+ tV −
0 − V +

0

)

= det

(
(t− 1)a ttx− − tx+

ty− − y+ tV −
0 − V +

0

)
+ det

(
t− 1 0

ty− − y+ tV −
0 − V +

0

)
= ∆L+(t) + (t− 1)∆L0(t)

となり主張が成り立つ.

3.3 チェッカーボード彩色可能な仮想絡み目のdeterminant

古典的絡み目に関して, Alexander加群の表現行列は, Fox-Jacobian行列 (結
び目群の関係子を各生成元で自由微分し, 得られた元の各生成元を tに送った
ものを成分とする行列)として結び目群から直接求めることができた. これは
仮想絡み目に対しても拡張できるが, 一般の仮想絡み目について 1次初等イデ
アルは単項イデアルとならない. よって Alexander多項式は定義できないが,

その表現行列に t = −1を代入して得られる行列の (n−1)× (n−1)小行列式の
絶対値として考えられる determinantは概古典的より弱い条件, mod 2 概古典
的 (チェッカーボード彩色可能)を満たす絡み目に関してwell-definedとなる.

Lをチェッカーボード彩色可能な図式Dで表される有向仮想絡み目とする.

またDは n個の実交点 {c1, . . . , cn}, m個の long arc (実交差の下交点から出
て, 上交点と仮想交点を通過し, 次の下交点に入る図式Dの arc) {a1, . . . , am}
を持つ. Dが k個の連結成分を持つとき, m = n+ k − 1が成り立つ.

n×m彩色行列B(D)を, (i, j)成分を次のように与えて定義する.

bij(D) =


2, if aj is the over-crossing arc at ci,

−1, if aj is one of the under-crossing arcs at ci,

0, otherwise.
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aj が ciの over-crossing arcかつ under-crossing arcである場合, bij(D) = 1と
する. この行列B(D)は, Fox-Jacobian行列 A(D)に t = −1を代入したものと
して得られる. よって, B(D)の各行の和は 0となる.

このとき, 次の命題が成り立つため, チェッカーボード彩色可能な絡み目に
対して determinantはwell-definedであることがわかる.

命題 3.6 ([4, Proposition 3.1]). B(D)の任意の 2つの (n− 1)× (n− 1)小行列
式は, 符号の差を除いて等しい. この小行列式の絶対値はチェッカーボード彩
色可能な図式Dの選び方によらない. よって, チェッカーボード彩色可能な絡
み目 Lの不変量が定まる. これを Lの determinantといい, det(L)で表す.

命題 3.7 ([4, Proposition 4.1]). 概古典的な絡み目Lに対して, det(L) = |∆L(−1)|
が成り立つ.

このことから, 概古典的な絡み目については, determinantは古典的な場合
と同様に定義できる. また, チェッカーボード彩色可能な結び目K について,

det(K)は奇数となることが知られている.

4 Gauss diagram formulaとConway多項式
本節では, [6]を参考に, 古典的結び目に関する不変量であるConway多項式
をGauss diagram formulaによって再解釈し, 仮想結び目への拡張を考える.

4.1 古典的結び目のConway多項式
定義 4.1. 有向古典的結び目図式 Dの交差の部分集合 S について, S の交差
を全て向きに沿ってスムージングして得られる曲線が 1成分である場合, Sは
one-componentという.

定義 4.2. 有向古典的結び目図式Dは基点を持ち, SをKの交差のone-component

な部分集合とする. このときKを Sでスムージングして得られる曲線を基点
から辿るとスムージング下交差の近傍をそれぞれ 2回通過する. その過程でそ
れらの交差に対し, 先にK の下 (上)パスの方から近傍に接近し, 上 (下)パス
の方から帰ってくる場合に, Sは ascending (descending)であるという.

基点付き古典的結び目図式Dに対し, ascending多項式を

∇asc(D)(z) :=
∑

S : ascending
one-component

(∏
×∈S

wr(×)

)
z|S|

21



と定める.

古典的結び目に関して, ascending多項式はConway多項式と一致する.

また同様にして descending多項式∇dsc(K)を考えることができる. 古典的
結び目に関して, ascending多項式と descending多項式は基点の選び方によら
ず, また両者は一致する (どちらもConway多項式と一致する) ことが分かる.

4.2 Gauss diagram formulaによるConway多項式の再解釈
定義 4.3. コードに向きをつけた基点付きコード図式を arrow diagramと
いう.

以下, Gauss diagram, および arrow diagramの円周はいずれも反時計回りに
向き付けられているとする.

定義 4.4. Aを arrow diagram, GをGauss diagram (両方とも基点付き) とす
る. このときAからGへの準同型 φはAの円周からGの円周への向きを保つ
同相写像であり, Aの基点をGの基点に写しAのコードからGのコードへの,

コードの向きを保つ単射を誘導するもののことをいう.

定義 4.5. arrow diagram Aと基点付きGauss diagram Gに対して

⟨A,G⟩ :=
∑

φ∈Hom(A,G)

∏
c : chord in A

sign(φ(c)) ∈ Z

を定める.

定義 4.6. コード図式Dの各コードを平行に二重化すると k成分の曲線が得ら
れるとき, Dを k-componentといい, |D| = kで表す.

定義 4.7. 基点付き one-component コード図式を次のルールに従って arrow

diagramに変える. 基点からスタートして二重化したコードに沿って動く. こ
の移動の途中,各コードのコピーの両方を互い違いの向きで通過する. ここで各
コードに対し最初 (後)に通過するコードの向きに対応する arrowを選ぶ. この
ようにして得られる arrow diagramを descending (ascending) arrow diagram

という.
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図 19: 基点付きコード図式から descendingな arrow diagramの構成

定義 4.8. Conway combination C2n (C
′
2n)を2n本のarrowをもつone-component

ascending (descending) diagramの全ての総和と定める.

例 4.9.

C2 := , C′
2 :=

これまで説明した one-component ascending (descending)な arrow diagram

やConway combinationは, 2つの円周からなる arrow diagramについても自然
に拡張できる.

例 4.10.

C1 := , C′
1 :=

一般の基点付き仮想絡み目に関して, ∇asc,∇dscは不変量となることが知ら
れている ([17]).

以下の補題は古典的結び目に関するものであったが, 仮想結び目についても
自然に拡張できる.

補題 4.11 ([6, Lemma 5.1]). K+をある 1つの正の実交差 cを区別した有向仮
想結び目図式とする. またK−, K0を Conway skein relation に従って, 交差 c

を変形して得られる結び目, または cをスムージングして得られる 2成分絡み
目とする. ここで簡単のためG+ := GK+ , G− := GK− , G0 := GK0とする. この
とき,

⟨C2n, G+⟩ − ⟨C2n, G−⟩ = ⟨C2n−1, G0⟩ (2)

が成り立つ.
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証明. Aを C2nの arrow diagramの一つとする. また cに対応するG+の arrow

を cとする. φ+ ∈ Hom(A,G+)が c /∈ Imφ+をみたす準同型である場合, この
準同型はHom(A,G−)にも同様に含まれる. また, これらは左辺において打ち
消しあう. 次に, ある arrow a ∈ A に関して φ+(a) = c が成り立つと仮定す
る. このとき 2円周の one-component ascending arrow diagram Aaと準同型
φa ∈ Hom(Aa, G0)を構成できる. この準同型は ⟨C2n−1, G0⟩に対し φ+と同じ
だけ寄与する. つまり,∏

l : chord in A

sign(φ+(l)) =
∏

l : chord in Aa

sign(φa(l)). (3)

arrow diagram AaはAのコード aを二重化して得られる図式. これは 2つの円
周からなり, 明らかに one-componentかつ ascendingである. ここで結び目K0

のGauss diagram G0は, G+の cに対応する arrowを二重化して得られる. よっ
て aを cに送る任意の準同型φ+ : A → G+は, a以外のarrowをG0の同じarrow

に送る準同型φa : Aa → G0を誘導する. このとき sign(φ+(a)) = sign(c) = 1よ
り式 (3) は明らかに成り立つ.

これと同様に, aを cに送る準同型φ− : A → G−は準同型φa : Aa → G0を誘
導する. ここで sign(φ−(a)) = sign(c) = −1より, 式 (3) の左辺と右辺は符号
が異なる. 一方で, 式 (2)において φ− ∈ Hom(A,G−)は ⟨C2n, G−⟩の一部とし
て負の符号を伴う. よって φ−の左辺への寄与と φaの右辺への寄与は同じで
ある.

以上とは逆に, ⟨C2n−1, G0⟩の 2円周 arrow diagram A0に関する, 任意の準同
型φ0 : A0 → G0に対して, 式 (2)の左辺に右辺のφ0と同様の寄与をするφ+ま
たはφ−を構成できる. 実際, φ0はA0の異なる 2円周上の 2つの弧を, K0の交
差 cの付近の 2つの弧に対応するG0の 2つの弧に写す.

これらの弧をバンドでつなぐことで A0の 2円周の連結和をとる. これは 1

円周の arrow diagramとなる. ここで, 2円周をつないだバンドを横切るコー
ド aを配置し, 図式が ascendingとなるように向きをつける.
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このときバンドは, 結び目図式においてK0の 2成分をつなぐ半ひねりバン
ドに対応し, K+またはK−(aの向きによる)が得られる. また得られたK+, K−

により aの符号は決定される. よって one-componentかつ ascendingな arrow

diagram Aと, 対応する準同型φ+またはφ−が得られた. このφ±に対するφa

は φ0と一致する. よって φ±は, 式 (2)において φ0と同じ寄与をする.

以上より, C2nの arrow diagramから G±への準同型で aを cに送るものと
C2n−1の arrow diagramからG0への準同型は一対一に対応し, 符号を含めると
式 (2)において, それぞれ両辺に同じだけの寄与をする. よって補題は示され
た.

また, この補題と類似した主張が 2成分の絡み目に対しても成り立つ.

補題 4.12. L+, L−, L0を交差 cに関して Conway skein relationを満たす 3つ
の有向仮想絡み目図式とする. また, G+, G−, G0をそれらのGauss diagramと
する. ここで, L+, L−は 2成分絡み目とし, 交差 cをなすひもは互いに異なる
成分に属しているとする. このとき L0は結び目図式であり,

⟨C2n+1, G+⟩ − ⟨C2n+1, G−⟩ = ⟨C2n, G0⟩

が成り立つ.

証明. 補題 4.11と同様.

ここで新たに, 基点付きGauss diagram Gについて, Gが 1成分の場合,

∇asc(G)(z) :=
∑
i≥0

⟨C2i, G⟩z2i

Gが 2成分の場合,

∇asc(G)(z) :=
∑
i≥0

⟨C2i+1, G⟩z2i+1
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と定義しなおす. descending多項式についても Cを C′に置き換えて同様に定
義する. 補題 4.11, 4.12より, これらの多項式はスケイン関係式を満たすこと
が容易にわかる.

また, 古典的結び目に関して, これらは前述の ascending, descending多項式
と一致し, したがって基点の選び方によらずConway多項式と一致する. 一方
で, 一般の仮想結び目に関しては基点の選び方に依存し等号は成り立たない.

しかし, 後述するように概古典的な結び目に限れば, 2次の係数に関して等号が
成り立つ.

4.3 descendingな仮想結び目図式とwarping degree

定義 4.13. Dを基点付き有向結び目図式とする. この図式を基点から向きに
沿って動いたとき, それぞれの実交点を, 最初に上交差, そのあとに下交差を通
過するとき, Dは descendingという.

descendingな図式は, 以下のような特徴を持つ.

命題 4.14 ([18, Proposition 2.2]). 任意の descendingな図式は有限回の (r1),

(v1)–(v4), (f1) moveにより自明な結び目にできる.

基点付き有向結び目図式の交差の情報を表す値として warping degreeとい
うものが古典的結び目図式に対して定義される ([19]). この定義を, 仮想結び目
図式に次のように拡張して用いる.

定義 4.15. Dを基点付き有向結び目図式とする. また, その基点を aとする.

この図式を基点から向きに沿って動いたとき, 最初に下交差を, そのあと上交
差を通過するような実交点をwarping交点という. また, Dのwarping交点の
数をwarping degreeといい, d(D)で表す.

descendingな基点付き有向結び目図式Daについて, d(Da) = 0である.

また, Gauss diagramについても同様の拡張を考える.

定義 4.16. Gを基点付きGauss diagramとする. また, その基点を aとする.

この図式を基点から向きに沿って動いたとき, 最初に arrowheadを, そのあと
arrowtailを通過するような実交点をwarping arrowという. また, Gのwarping

arrowの数をwarping degreeといい, d(G)で表す.

以下, 基点付き結び目図式D, 基点付きGauss diagram Gについて基点 aを
明示するとき, それぞれDa, Gaと表わす.
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5 主結果
補題 5.1. Gをdescendingかつ概古典的な有向仮想結び目図式のGauss diagram

とする. また aをwarping degree が 0であるGの基点とする. このとき, n ≥ 1

について
⟨C2n, Ga⟩ = ⟨C′

2n, Ga⟩ = 0

が成り立つ.

証明. aのwarping degreeは 0であるので, Gaの descendingな subdiagramは
図 20の形に限られる.

図 20: descendingな subdiagram

これは明らかに one-componentでない. よって, n ≥ 1に対して ⟨C′
2n, Ga⟩ =

0. また ⟨C2n, Ga⟩ = 0は明らか.

補題 5.2. Gaを概古典的な有向仮想結び目図式の基点付きGauss diagramで
次を満たすものとする : ある arrow aが存在し, aでGauss diagramの円周を
2分割した時に, aと交わる他の arrowが全て基点を含む方から出て, 基点を含
まない方に入る.

LaをGaの arrow aをスムージングして得られる基点付き 2成分Gauss dia-

gramとする. このとき, n = 1について

⟨C2n−1, La⟩ = ⟨C′
2n−1, La⟩ = 0

また, n ≥ 2について
⟨C2n−1, La⟩ = 0

が成り立つ.
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証明. n = 1のとき,

⟨C1, La⟩ = ⟨ , La⟩,

⟨C′
1, La⟩ = ⟨ , La⟩

である. よって, ⟨C1, La⟩, ⟨C′
1, La⟩はそれぞれaを左 (右)に向かって横切るarrow

の符号の和とみなせる. ⟨C1, La⟩ = 0は明らか. また, 元のGauss diagram Ga

は概古典的であったので, aを左に向かって横切る arrowの符号の和と右に向
かって横切る arrowの符号の和は等しい. よって, ⟨C′

1, La⟩ = ⟨C1, La⟩ = 0.

n ≥ 2のとき, Laの one-componentな subdiagramは aを横切る必要がある
が, そのような arrowは全て基点を含まない成分に入るので, ascendingとなら
ない. よって, ⟨C2n−1, La⟩ = 0.

補題 5.3. Kを descendingかつ概古典的な図式を持つ有向仮想結び目とする.

このとき,

∆K(t)
.
= 1

が成り立つ.

証明. 命題 4.14より, descendingな図式を持つ結び目は自明な結び目とwelded

equivalentである. ここでAlexander多項式はwelded equivalentに関する不変
量であるので, ∆K(t)

.
= ∆unknot(t)

.
= 1が成り立つ.

補題 5.4. L = L1∪L2を 2成分の概古典的有向仮想絡み目かつ, 一方の成分L1

が他方の成分 L2に対して, 上交差のみを持つ有向仮想絡み目図式Dを許容す
るとする. このとき, det(L) = 0が成り立つ.

証明. 図式Dについて, 実交点を c1, . . . , cnとする. ここで, L1の自己交差を
c1, . . . , cp, L2の自己交差を cp+1, . . . , cq, L1, L2間の交差を cq+1, . . . , cnとラベル
付けしなおす. また, long arc a1, . . . , anを, L1に属するものを a1, . . . , ap, L2に
属するものを ap+1, . . . , anとする. ここで, L1の下交点は自己交差のみに限ら
れるので, 自己交差の数と long arcの数は一致することに注意. このとき, 色
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彩行列B(D)は次のようになる.

B(D) =



b11 . . . b1p
...

. . .
... 0

b11 . . . b1p

B′ B′′


ここで, B(D)から n行目と n列目を除いたものをB(D)n,n, B

′′から (n− p)行
目と (n− p)列目を除いたものをB′′

n−p,n−pとすると,

det(L) = | detB(D)n,n|
= | det(bij)1≤i,j≤p detB

′′
n−p,n−p|

が成り立つ. ここで, 行列 (bij)1≤i,j≤pは, L1を L2との交差を無視して結び目
図式とみなしたときの図式D1に関する色彩行列B(D1)となる. 色彩行列の行
ベクトル全体は線形従属であったので, det(bij)1≤i,j≤p = 0が成り立つ. よって,

det(L) = 0.

定理 5.5. Kを概古典的な有向仮想結び目とする. Kの Seifert曲面を任意に選
び, 得られる Seifert行列を V ±とする. ここで, ∆K(t) = det(tV − − V +)とす
る. また, GaをKの概古典的な結び目図式に対応する基点付きGauss diagram

とする. このとき,

∆K(−1) ≡ ±∇asc(Ga)(2) mod 8

が成り立つ.

証明. 条件 (∗)nを,

n個の実交点を持つ概古典的結び目図式Dが表す概古典的結び目を
Kとする. ここで, Kの Seifert曲面を任意に選び, 得られる Seifert

行列を V +, V −とし, ∆K(t) = det(tV − − V +)とする. Dに対応す
るGauss diagramをGとし, 任意に基点 aをとると,

∆K(−1) ≡ ±∇asc(Ga)(2) mod 8

が成り立ち, 加えて, n+1個の実交点を持つ概古典的結び目図式を
スムージングして得られる 2成分絡み目図式Dに対して, Dが表
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す絡み目をLとし, Lの Seifert曲面を任意に選び, 得られる Seifert

行列を V ±とし, ∆L(t) = det(tV − −V +)とする. また, Dに対応す
るGauss diagramをGとし, 任意に基点 aをとると,

∆L(−1) ≡ ±∇asc(Ga)(2) mod 4

が成り立つ.

とする.

(∗)nが任意の nについて成り立つことを,数学的帰納法を用いて示す.

n = 0の場合, 実交点を持たない結び目図式で表される結び目Kは自明な結
び目であるので, ∆K(t)

.
= 1. よって, ∆K(−1) = ±1が成り立つ. 一方で, 図式

Dに対応するGauss diagram Gは arrowを持たないので, 任意の基点 aについ
て, ∇asc(Ga)(z) = 1. よって, ∇asc(Ga)(2) = 1が成り立つ. また, 1個の実交点
を持つ概古典的結び目図式をスムージングして得られる 2成分絡み目図式Dで
表される絡み目Lは自明な絡み目であるので, ∆L(t) = 0. よって, ∆L(−1) = 0

が成り立つ. 一方で, 図式Dに対応するGauss diagram Gは arrowを持たない
ので, 任意の基点 aについて, ∇asc(Ga)(z) = 0. よって, ∇asc(Ga)(2) = 0が成
り立つ. 以上より, (∗)0は成り立つ.

次に, (∗)mが成り立つと仮定する.

このとき, まずm+1個の実交点を持つ概古典的結び目図式DについてDが
表す概古典的結び目をKとし, Kの Seifert曲面を任意に選び, 得られる Seifert

行列を V ±とし, ∆K(t) = det(tV − − V +)とする. また, Dに対応するGauss

diagramを Gとし, Gに任意に基点 aをとり, Gaの warping degreeを dとす
ると,

∆K(−1) ≡ ±∇asc(Ga)(2) mod 8 (4)

が成り立つことを dに関する数学的帰納法により示す.

d = 0の場合, 図式Dは descendingなので, 補題 5.3より, ∆K(t)
.
= 1. よっ

て, ∆K(−1) = ±1が成り立つ. 一方で, 補題 5.1より, ∇asc(Ga)(z) = 1. よっ
て, ∇asc(Ga)(2) = 1が成り立つ.

次に d = d′で成り立つと仮定する. ここで, m + 1個の実交点を持つ概古典
的結び目図式Dを任意にとり, Dが表す概古典的結び目をKとし, Dに対応す
るGauss diagramをGとする. またGに任意に基点 aをとり, Gaの warping

degreeが d′ + 1の場合を考える. このとき, Gaの arrowで, 基点 aから向きに
沿って動いたとき arrowheadを先に通過するものを一つ選び aとする. aの符
号が正の場合, 図式Dの aに対応する交差の上下を入れ替えて得られる図式を
D′, 交差をスムージングして得られる図式をD0とし, 図式D′, D0で表される
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結び目と絡み目をそれぞれK ′, K0とする. ここで, Kの Seifert曲面 F を任意
にとり, 対応する Seifert行列を V ±とする. 定理 3.5と同様にK の Seifert曲
面 F をもとにK ′, K0の Seifert曲面 F−, F0を構成し, 対応する Seifert行列を
V ±
− , V ±

0 とする. ∆K′(t) = det(tV −
− − V +

− ), ∆K0(t) = det(tV −
0 − V +

0 )とする.

また, Gaの aの向きと符号を反転させて得られるGauss diagramをG′
a, aをス

ムージングして得られるGauss diagramをG0
aとする.

Alexander多項式のスケイン関係式に t = −1を代入すると

∆K(−1)−∆K′(−1) = 2∆K0(−1)

が得られる. ここで, G′
aのwarping degreeは d′であるので, 帰納法の仮定より,

∆K′(−1) ≡ ε′∇asc(G
′
a)(2) mod 8 (ε′ = ±1)

が成り立つ. また, K0はm+1個の実交点を持つ概古典的な結び目図式スムー
ジングして得られる 2成分の絡み目図式を持つので, (∗)mより,

∆K0(−1) ≡ ε0∇asc(G
0
a)(2) mod 4 (ε0 = ±1)

が成り立つ. よって,

∆K(−1) = ∆K′(−1) + 2∆K0(−1)

≡ ε′∇asc(G
′
a)(2) + 2ε0∇asc(G

0
a)(2) mod 8

≡ ε′∇asc(G
′
a)(2) + 2ε0

∑
i≥1

⟨C2i−1, G
0
a⟩ · 2i mod 8

≡ ε′∇asc(G
′
a)(2) + 4ε0⟨C1, G

0
a⟩ mod 8

≡ ε′∇asc(G
′
a)(2) + 4ε′⟨C1, G

0
a⟩ mod 8

≡ ε′(∇asc(G
′
a)(2) + 2∇asc(G

0
a)(2)) mod 8

≡ ε′∇asc(Ga)(2) mod 8
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が成り立つ. aの符号が負の場合についても同様のことが成り立つ. よって, 任
意の dについて式 (4)が成り立つことが示された.

次に, (∗)n+1 の後半を示す. m + 2個の実交点を持つ概古典的結び目図式
をスムージングして得られる 2成分絡み目図式Dに対して, Dが表す絡み目
を Lする. Lの Seifert曲面を任意に選び, 得られる Seifert行列を V ± とし,

∆L(t) = det(tV − − V +)とする. また, Dに対応するGauss diagram Gとする.

Gに任意に基点 aをとり, Gaの arrowのうち基点を含まない成分から基点を含
む成分に向かう arrowの数を kとする. このとき,

∆L(−1) ≡ ±∇asc(Ga)(2) mod 4 (5)

が成り立つことを kに関する数学的帰納法により示す.

k = 0の場合, 図式Dは一方の成分が他方の成分に対して上交差のみを持つ
ので, 補題 5.4より, ∆L(−1) = det(L) = 0が成り立つ. 一方で, 補題 5.2より,

∇asc(Ga)(z) = 0. よって, ∇asc(Ga)(2) = 0が成り立つ.

次に k = k′で成り立つと仮定する. ここで, m+2個の実交点を持つ概古典的
結び目図式を任意に取り,その任意の交差をスムージングして得られる2成分絡
み目図式Dに対して, Dが表す絡み目をLとし, Dに対応するGauss diagram

をGとする. またGに任意に基点 aをとり, Gaの arrowのうち基点を含む成分
から基点を含まない成分に向かう arrowの数が k′ + 1の場合を考える. このと
き, Gaの arrowで, 基点を含む成分から基点を含まない成分に向かうものを一
つ選び aとする. aの符号が正の場合, 図式Dの aに対応する交差の上下を入
れ替えて得られる図式をD′, 交差をスムージングして得られる図式をD0とし,

図式D′, D0で表される絡み目と結び目をそれぞれ L′, L0とする. ここで, Lの
Seifert曲面Fを任意にとり,対応するSeifert行列をV ±とする. 定理 3.5と同様
にKの Seifert曲面F をもとにL′, L0の Seifert曲面F−, F0を構成し, 対応する
Seifert行列をV ±

− , V ±
0 とする. ∆′

L(t) = det(tV −
− −V +

− ), ∆0
L(t) = det(tV −

0 −V +
0 )

とする. また, Gaの aの向きと符合を反転させて得られる Gauss diagramを
G′

a, aをスムージングして得られるGauss diagramをG0
aとする.
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Alexander多項式のスケイン関係式に t = −1を代入すると

∆L(−1)−∆L′(−1) = 2∆L0(−1)

が得られる. ここで, G′
aの arrowのうち, 基点を含まない成分から基点を含む

成分に向かう arrowの数は k′であるので, 帰納法の仮定より,

∆L′(−1) ≡ ε′∇asc(G
′
a)(2) mod 4 (ε′ = ±1)

が成り立つ. また, L0はm個の実交点を持つ概古典的な結び目図式を持つの
で, 帰納法の仮定より,

∆L0(−1) ≡ ε′∇asc(G
0
a)(2) mod 8 (ε0 = ±1)

が成り立つ. よって,

∆L(−1) = ∆L′(−1) + 2∆L0(−1)

≡ ε′∇asc(G
′
a)(2) + 2ε0∇asc(G

0
a)(2) mod 4

≡ ε′∇asc(G
′
a)(2) + 2ε0

∑
i≥0

⟨C2i, G
0
a⟩ · 2i mod 4

≡ ε′∇asc(G
′
a)(2) + 2ε0 mod 4

≡ ε′∇asc(G
′
a)(2) + 2ε′ mod 4

≡ ε′(∇asc(G
′
a)(2) + 2∇asc(G

0
a)(2)) mod 4

≡ ε′∇asc(Ga)(2) mod 4

が成り立つ. aの符号が負の場合についても同様のことが成り立つ. よって, 任
意の kについて式 (5)が成り立つことが示された.

以上より, (∗)m+1が示された. よって,任意のnについて (∗)nが成り立つ.

定理 5.6. Gaを概古典的な有向仮想結び目図式に対応する基点付きGauss di-

agramとする. また各 arrowの端点によりGauss diagramの円周をいくつかの
領域に分割する. ここで基点 aを向きに沿って隣接する領域にシフトさせ, 得
られる新しい基点を a′とする. このとき,

⟨C2, Ga⟩ = ⟨C2, Ga′⟩
⟨C′

2, Ga⟩ = ⟨C′
2, Ga′⟩

が成り立つ.
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証明. シフトによって基点が通過した端点を持つ arrowを aとする. aから見
て右に向かって交わる ±コードの数を r±, aから見て左に向かって交わる ±
コードの数を l±とする. また aの符号を εとする. このとき, 基点 aが通過し
た aの端点が arrowheadであった場合, aを基点として aは図 21のように右に
向かって交わる arrowとC2の arrow diagramをなすので, ⟨C2, Ga⟩のうち, aを
含むGaの subdiagramによる寄与は ε(r+ − r−)である.

図 21: aを基点として aと C2の arrow diagramをなす arrow

一方で a′を基点として aは図 22のように左に向かって交わる arrowとC2の
arrow diagramをなすので, ⟨C2, Ga′⟩のうち, aを含むGa′ の subdiagramによ
る寄与は ε(l+ − l−)である.

図 22: a′を基点として aと C2の arrow diagramをなす arrow

概古典的結び目図式の性質 (Proposition 2.4)より, いずれの場合でも aを含
む subdiagramの寄与は一致する. 基点 aが通過した aの端点が arrowtailで
あった場合, aを含む C2の arrow diagramは, 基点 a, a′のいずれについても存
在しないので aを含むGa, Ga′の subdiagramによる寄与はどちらも 0となる.
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また, aを含まない subdiagramの寄与は, 基点のシフトの前後で変わらない.

よって, ⟨C2, Ga⟩ = ⟨C2, Ga′⟩が成り立つ.

⟨C′
2, Ga⟩, ⟨C′

2, Ga′⟩についても同様のことが示される.

定理 5.7. Gを概古典的な有向仮想結び目図式に対応するGauss diagramとす
る. また, Gの円周上に任意に基点 aをとる. このとき,

⟨C2, Ga⟩ = ⟨C′
2, Ga⟩ (6)

が成り立つ.

証明. Gaの arrowの数 nに関する数学的帰納法を用いて示す.

n = 0の場合, Gaは arrowを持たないので, ⟨C2, Ga⟩ = ⟨C′
2, Ga⟩ = 0.

次に n = kの場合に成り立つと仮定する. このとき, k+ 1本の arrowをもつ
概古典的な結び目図式に対応するGauss diagram, および任意に選んだ基点 a

について, 式 (6)が成り立つことを, Gaのwarping degree dに関する数学的帰
納法を用いて示す.

d = 0の場合, 補題 5.1より, ⟨C2, Ga⟩ = ⟨C′
2, Ga⟩ = 0が成り立つ. 次に d = d′

の場合に成り立つと仮定する. このとき, warping degree d′+1のGauss diagram

Gaに対して, 向きに沿って基点からGaの円周を動いたとき, 先に arrowhead

を通過するような arrow aを 1つ選ぶ. Gaの aの向きと符合を反転させて得
られるGauss diagramをG′

a, aをスムージングして得られるGauss diagramを
G0

aとする. aの符号を εとし, この arrowに対応する交差に関するスケイン関
係式を変形すると以下を得る.

⟨C2, Ga⟩ = ⟨C2, G
′
a⟩+ ε⟨C1, G

0
a⟩

ここで,帰納法の仮定より, ⟨C2, G
′
a⟩ = ⟨C′

2, G
′
a⟩が成り立つ. また, ⟨C1, G

0
a⟩, ⟨C′

1, G
0
a⟩

はそれぞれ aから見て右 (左)に向かって交わる arrowの符号の和である. 元の
結び目図式が概古典的であるのでこれらは一致する. よって,

⟨C2, Ga⟩ = ⟨C2, G
′
a⟩+ ε⟨C1, G

0
a⟩

= ⟨C′
2, G

′
a⟩+ ε⟨C′

1, G
0
a⟩

= ⟨C′
2, Ga⟩

が成り立つ. 以上より,任意のdおよびnについて成り立つことが示された.

定理 5.6より, ⟨C2, •⟩, ⟨C′
2, •⟩はそれぞれ基点によらないことがわかる. した

がって, 概古典的な結び目K, およびK の任意の概古典的な結び目図式Dに
対して, Dを表すGauss diagramに任意に基点 aをとり,

v2,1(K) := ⟨C2, Ga⟩, v2,2(K) := ⟨C′
2, Ga⟩
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とすると, v2,1, v2,2は仮想結び目の virtual isotopyに関する不変量としてwell-

definedである. また, 定理 5.7より, 古典的な場合と同様に v2,1 = v2,2 が成り
立つことがわかる. よって,

v2(K) := v2,1(K) = v2,2(K)

は古典的な場合の自然な拡張とみなせる.

このことと, 定理 5.5を合わせて以下を得る.

系 5.8. Kを概古典的な有向仮想結び目とする. このとき,

det(K) ≡

{
±1 mod 8, (v2(K) ≡ 0 mod 2)

±3 mod 8, (v2(K) ≡ 1 mod 2)

が成り立つ.

以下に 5交点以下の概古典的な結び目の det(K)と v2(K)を示す. ここで結
び目の命名はGreen’s table [12]のものを用いた.

K det(K) v2(K)

3.6 3 1

4.9 3 −1

4.105 5 1

4.108 5 −1

5.2012 1 0

5.2025 1 0

5.2080 1 0

5.2133 3 −1

5.2160 3 1

5.2331 1 2

5.2426 9 2

5.2433 11 1

5.2437 7 2

5.2439 7 0

5.2445 5 3
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6 考察と今後の展望
6.1 チェッカーボード彩色可能な結び目への拡張
今回示した結果の多くは, 条件を上手く調整すればチェッカーボード彩色可
能な結び目についても成り立つことがいえる. 例えば, 補題 5.1はチェッカー
ボード彩色可能な結び目図式に対応するGauss diagramに関しても成り立つ.

また, 補題 5.2の等式はmod 2で考えることで成り立つ. 補題 5.3, 5.4に関し
ても証明がそのまま流用できる. よって, 色彩行列に関してスケイン関係式に
準ずる関係が成り立てば, 定理 5.5もまた成り立つことが予想される. 定理 5.6,

5.7はmod 2で成り立つことが証明を上手く調整することで示される. よって,

v2(K) mod 2はチェッカーボード彩色可能な結び目の不変量としてwell-defined

となる.

例 6.1. チェッカーボード彩色可能であるが概古典的でない仮想結び目の例と
してK = 4.90が挙げられる. Kは図 23のチェッカーボード彩色可能な仮想結
び目図式Dを持つ. また, 各実交点 c1, . . . , c4, long arc a1, . . . , a4を図 23のよ
うにラベル付けする.

図 23: 4.90のチェッカーボード彩色可能な仮想結び目図式
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このとき色彩行列B(D)は

B(D) =


1 −1 0 0

1 0 0 −1

2 0 −1 −1

2 −1 −1 0


となる. これを用いて determinantを計算すると det(K) = 1となる.

一方Dは図 24で表されるGauss diagram Gを持つ.

図 24: 4.90の図式Dに対応するGauss diagram

ここで, 基点 a, bについて ⟨C2, Ga⟩ = ⟨C2, Gb⟩ = 0, ⟨C′
2, Ga⟩ = −2, ⟨C′

2, Gb⟩ =
−4と全てmod 2で 0となる. これらは主定理の結果と一致する.

注意. 概古典性の判定について次のことが成り立つ.

定理 ([3, Theorem 8.3]). 仮想結び目Kがmod p 概古典的であるとき, Kの任
意の最小交点図式はmod p Alexander numberableである.

よって, 仮想結び目Kが概古典的であるかを判定するには, 最小交点の図式
について確認すれば十分である. 図 23で示した図式はGreen’s tableの最小交
点のものであり, Alexander numberableでないので 4.90は概古典的でないこ
とがわかる.

6.2 directed Alexander多項式との比較
本稿では, 古典的なAlexander多項式の拡張として概古典的な仮想結び目に
関する Alexander多項式を定めた. これは概古典的結び目K に対して, K の
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Seifert曲面 F と, そこから得られる Seifert行列 V +, V − を用いて, ∆K(t) =

det(tV − − V +)として計算されるのだった. 一方, この定義とは別に次のよう
な拡張がBoden等によって導入された ([2]).

∇±
K,F (t) := det(t

1
2V ± − t−

1
2 (V ±)⊤)

これらを directed Alexander多項式といい, 特に∇+
K,F (t)を up Alexander多項

式, ∇−
K,F (t)を down Alexander多項式という. これらの値はF の選び方に依存

する. また, Alexander多項式, 特に determinantに関連する重要な不変量とし
て Arf不変量が存在した. Arf不変量は古典的な場合, Seifert行列により表さ
れる 2次形式から定まるのだった. Chrisman, Mukherjeeはこれを概古典的結
び目の V +, V −を用いて拡張した ([8]). ここで V +, V −から求まるArfは一致
することが示されている.

古典的結び目の Arf不変量の重要な性質として, slice obstructionをなすと
いうものがあった. sliceおよび concordanceの概念は仮想結び目に対して拡
張できる. Boden等により導入された前述の Arfは virtual slicenessに関する
obstructionをなす.

一方で, 古典的結び目のArf不変量の性質の一つとして, Conway多項式の 2

次の係数 v2(K)とmod 2で一致するというものがあった. しかし, 本稿で拡張
した v2(K) mod 2とBoden等によるArfは一般には一致しない. よって, 概古
典的結び目のレベルでは, slice obstructionとしての Arfと v2(K) mod 2とし
てのArfは一致しないことがわかる.

例 6.2. K = 6.87548とする. このときKは図25のようなSeifert曲面Fを持つ
([7]). また,図のようにH1(F ;Z/2Z)の基底を選び, 2次形式qK,F : H1(F ;Z/2Z) →
Z/2Z を qK,F (x) ≡ ℓk(x+, x) mod 2 で定める. このとき, Arf(qK,F ) ≡ 1

mod 2となる.

図 25: 6.87548の Seifert surface
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一方で, Kの概古典的な結び目図式のGauss diagramとして図 26のような
ものが存在する. このGauss diagramをもとに v2を計算すると v2(K) = −2と
なる.

図 26: 6.87548のGauss diagram
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