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Abstract— In this paper, we design a control law for a twin-
rotor helicopter model with considering actuator constraints.
The controller is composed of a state-dependent gain-scheduled
feedback control law and a reference management device. We
show that the proposed control law achieves higher tracking
performance as compared to the standard constant feedback
control law through experimental results.

I. INTRODUCTION

In most of practical control systems such as flight con-
trol systems, there exists saturation limitation on controller
outputs[3], [9]. If a feedback controller designed without
considering such limitation is utilized, the closed-loop sys-
tem may be unstable in the case where large external signal
is added. One way to deal with such a problem is to design a
low-gain controller which does not violate input constraints
for all external signals that will be injected. However, it
is clear that this method results in conservative control
performance.

Recently, for this problem, several control methods that ex-
ploit on-line optimization have been proposed [2], [11], [12].
The state-dependent gain-scheduled control scheme [11],
[12] is one of such methods. In this scheme, a control law
which has a structure that a high-gain control law and a low-
gain control law are interpolated by a scheduling parameter is
utilized. The scheduling parameter is determined by solving
a convex optimization problem on-line. The control law of
[11], [12] is designed based on the polytopic representation
of a saturation function of [7]. As a result, the control law can
achieve large region of attraction even if the plant is unstable.
This method is extended to tracking control problems [13].
However, effectiveness of these methods are evaluated only
through numerical examples of linear systems whose dimen-
sions are small, and have not been confirmed by experiments.
In actual systems, there exist disturbances, nonlinearities,
unmodeled dynamics, and computational delay. These factors
may have seriously harmful effects on control performance.
Therefore, to evaluate the effectiveness of the methods of
[11], [12], [13] by experiments is quite important to put the
methods to practical use.

In this paper, based on the method of [13], we design a
tracking control law for the twin-rotor helicopter model(see
Fig.1)[8], and evaluate the effectiveness of the method
through experiments. The twin-rotor helicopter model has
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dynamics which resembles the dynamics of a VTOL aircraft
and can be used to provide a basis for constructing control
system design methodologies for more general class of
aircrafts. Since the dynamics of this system has nonlinear
characteristic and the system is multi-input, it is generally
difficult to control. Also, since the dynamics is unstable, it
is required to implement with a relatively small sampling pe-
riod. Hence, it is appropriate for evaluating the effectiveness
of the proposed method which requires on-line optimization.
In this paper, for the twin-rotor helicopter model, under
thrust constraints, we design a control law that stabilizes
both altitude and attitude of the system, and makes the
difference between the velocity in the horizontal direction
and the reference velocity as small as possible. Further, we
evaluate the effectiveness of the method through experiments.
Notations: For a diagonal matrix A = diag[a1, · · · , am] >
0 and a vector u ∈ Rm, we define the multivariable
saturation function as ΦA(u) := (φa1(u1), · · · , φam(um))T ,
where φai(ui) := sgn(ui)min{|ui|, ai}. If A = I ,
the subscript will be omitted. For a vector v ∈ Rn,
we denote its Euclidean norm as ‖v‖2 := (vT v)1/2.
For a positive definite matrix P ∈ Rn×n, we denote
E(P, η) :=

{
x ∈ Rn : xT Px ≤ η

}
. For F ∈ Rm×n, we

denote the ith row of F as F (i). Furthermore, we define
L(F, ρ) :=

{
x ∈ Rn : |F (l)x| ≤ ρl, l = 1, · · · , m}

, where
ρ = diag[ρ1, · · · , ρm].

II. PRELIMINARY

In this section, we introduce a polytopic model of a
saturation function of [7]. Let V be the set of m×m diagonal
matrices whose elements are either 1 or 0. There are 2m

elements in V . Suppose that each element of V is labeled
as Ej , j = 1, 2, · · · , 2m, and denote E−

j := I −Ej . Clearly,
E−

j is also an element of V .
Lemma 1: ([7]) Let u, v ∈ Rm. Suppose that |vj | ≤

1, ∀j ∈ [1, m], then Φ(u) can be represented as Φ(u) =∑2m

j=1 λj(Eju + E−
j v), where 0 ≤ λj ≤ 1,

∑2m

j=1 λj = 1.

III. TRACKING CONTROL LAW FOR A INPUT

CONSTRAINED SYSTEM

In this section, we introduce the tracking control algo-
rithms for input constrained systems of [13].



Fig. 1. Twin-rotor helicopter model

A. Problem Formulation

Let us consider the system described by

x(t + 1) = Ax(t) + BΦ(u(t)) + Ew(t) (1)

z(t) = Cx(t) + DΦ(u(t)) + Dww(t) (2)

where x ∈ Rn, u ∈ Rm, w ∈ Rp, z ∈ Rq . w(t) represents a
reference signal. z(t) represents a tracking error.

In Section III-B, we first consider the following problem.
Problem 1: Consider the system (1) and (2). Suppose that

w(t) is generated by

r(t + 1) = Sr(t) (3)

w(t) = r(t) (4)

Further, we assume that the system (3) is neutrally stable
and ‖r(t)‖2 ≤ rmax, ∀t ≥ 0. Design a feedback control law

u(t) = F (t)x(t) + M(t)w(t) (5)

that achieves fast convergence of the signal z(t) and large
region of attraction.

In Section III-B, we show a state-dependent gain-
scheduled feedback control law that achieves the control
objectives of Problem 1. Then, in Section III-C, we extend
the results of Section III-B to the case where r(t) is an
arbitrary time-varying signal.

B. Tracking Control for a Reference Signal Generated by an
Exo-system

We initially introduce the following theorem.
Theorem 1: Consider the system (1)–(4). We suppose that

there exist matrices Π ∈ Rn×p, Γ ∈ Rm×p that satisfy

ΠS = AΠ + BΓ + E (6)

0 = CΠ + DΓ + Dw (7)

Further, we suppose that maxt≥0 |Γ(l)r(t)| < 1, ∀l ∈ [1, m].
For given positive scalars η, γ0, γ1 such that γ0 < γ1

and a matrix R > 0, assume that there exist matrices

Qi, Yi, Zi, (i = 0, 1) that satisfy⎡
⎢⎢⎣

Qi ∗ ∗[
CQi

R
1
2 Yi

]
+ D(EjYi + E−

j Zi) γiI ∗
AQi + B(EjYi + E−

j Zi) 0 Qi

⎤
⎥⎥⎦ > 0

∀i ∈ [0, 1], ∀j ∈ [1, 2m] (8)[
Qi ∗
Z

(l)
i

ρ2
l

η

]
≥ 0, ∀i ∈ [0, 1], ∀l ∈ [1, m] (9)

Q0 < Q1 (10)

where ρl := 1 −maxt≥0 |Γ(l)r(t)|, D := [DT , 0]T and the
symbol ∗ stands for symmetric block in matrix inequalities.
Further, for some constant α ∈ [0, 1], we suppose that ξ(0) ∈
E(P (α), η) where P (α) := Q(α)−1, Q(α) := (1− α)Q0 +
αQ1, ξ := x−Πw. Then, by applying the feedback control
law

u(t) = F (α)x(t) + M(α)w(t) (11)

where F (α) = Y (α)Q(α)−1, Y (α) := (1 − α)Y0 + αY1

and M(α) = Γ−F (α)Π to the system (1)–(4), the relations
ξ(t) ∈ E(P (α), η),∀t ≥ 0, limt→∞ z(t) = 0 and J :=∑∞

t=0 ‖z(t)‖22 < γ(α)η, where z := [zT , uT
e R1/2]T , ue :=

u− Γw, γ(α) := (1− α)γ0 + αγ1 hold.
Proof: See Appendix I.

In this paper, based on Theorem 1, we design a gain
F (1) = Y1Q

−1
1 which makes the region E(P (1), η) large

and a gain F (0) = Y0Q
−1
0 which achieves fast convergence

of the state variable in E(P (0), η) by suitably choosing the
parameters γ0, γ1 and R. Then we construct a control law
(11) by interpolating the obtained gains.

Remark 1: Equations (6) and (7) are the conditions for the
output regulation problem is solvable in the case of linear
systems (see e.g., [10]).

Remark 2: We can impose a penalty on all state variables
by replacing the first term of the (2,1) element of eq.(8) with
[QiC

T , Y T
i R1/2, QiS1/2]T and D with D = [D, 0, 0]T ,

where S = ST > 0. In this case, the cost function becomes
J =

∑∞
t=0{‖z(t)‖22 + ξ(t)T Sξ(t)}.

In this section, we show a gain-scheduling algorithm of the
control law (11) which achieves fast convergence of z(t).

Algorithm 1:
Step 0: Set t = 0.
Step 1: Measure x(t) and w(t).
Step 2: Solve minα∈[0,1] α, s.t. ξ(t)T Q(α)−1ξ(t) ≤ η.

Then, set α(t) = α.
Step 3: Apply u(t) = F (α(t))x(t) + M(α(t))w(t) to the

plant (1), (2).
Step 4: t← t + 1 and go to Step 1.

The optimization problem of Step 2 in Algorithm 1 is an
LMI optimization problem (see e.g., [6]). Hence, the problem
can be solved by the interior point method. Alternatively, the
problem can be solved as a simpler eigenvalue problem as
follows. By the Schur complement, ξ(t)T Q(α)−1ξ(t) ≤ η is
equivalent to Q(α)− 1

η ξ(t)ξ(t)T ≥ 0. Further, This condition
can be rewritten as αI ≥ Q(ξ(t)) where Q(ξ(t)) := (Q1 −



PlantReference
Management

u z

x

wr

+
Φ

+

F(  )α

M(  )α

Fig. 2. Feedback System with a Reference Management Device

Q0)−1/2
[

1
η ξ(t)ξ(t)T −Q0

]
(Q1 − Q0)−1/2. Hence, with

considering α ≥ 0, the solution of the optimization problem
of Step 2 can be obtained as α = max [0, λmax (Q(ξ(t)))].

The following theorem can be stated.
Theorem 2: Consider the system (1), (2). Assume that

there exist matrices Π and Γ that satisfy (6) and (7). Further,
assume that maxt≥0 |Γ(l)r(t)| < 1, ∀l ∈ [1, m]. Moreover,
for given positive scalars η, γ0 and γ1, assume that there exist
matrices Qi, Yi, Zi that satisfy (8)–(10). Moreover, assume
that ξ(0) ∈ E(P (1), η). Then by applying Algorithm 1 to
the system (1), (2), z(t) converges to zero as t→∞.

Proof: See Appendix II.

C. Control Law for Arbitrary Time Varying Reference Sig-
nals

In this section, we extend the method of the previous
section to the case where r(t) is an arbitrary time-varying
signal. For example, in human-machine systems [1], [3],
[4], [9], the reference signal needs to be considered as an
arbitrary time-varying signal. In this case, if Algorithm 1 is
carried out with w(t) = r(t), both feasibility of the algorithm
and closed-loop stability may not be guaranteed. Hence, in
this section, we extend the previous control algorithm so that
any time-varying reference signal can be applied. In this case,
it is difficult to guarantee strict asymptotic convergence of
the tracking error. Hence, in this section, we show a control
algorithm that makes the tracking error as small as possible at
each time and guarantees asymptotic convergence in the case
where the reference signal becomes constant after a finite
time. In order to guarantee that the error signal converges
to zero when the reference signal is constant, we make the
following assumption.

Assumption 1: For S = I , there exists a matrix Π that
satisfies (6),(7) and Γ = 0.

This assumption is satisfied if the plant has an integrator.
Further, we make the following assumption.

Assumption 2: For a matrix R > 0 and positive scalars
η, γ0, γ1, where γ0 < γ1, there exist Qi, Yi, Zi that satisfy
(8)–(10).

We assume that the control law (11) has been designed by
using the matrices that satisfy the above assumptions.

In this section, we assume that r(t) ∈ Rp is an arbitrary
time-varying signal. If we simply set w(t) = r(t) and apply
Algorithm 1 to the system, feasibility of the algorithm and
stability of the closed-loop system may not be guaranteed. To
avoid such a situation, we introduce a reference management
mechanism that computes a modified reference signal w(t)
from the signal r(t) (see Fig.2). In the following, we show

a control algorithm that includes the reference management
and the state-dependent gain-scheduling.

Algorithm 2:
Step 0: Set t = 0 and α(−1) = 1.
Step 1: Measure x(t) and r(t).
Step 2: If x(t)−Πr(t) ∈ E(P (α(t− 1)), η), then set

w(t) = r(t) and go to Step 4. Otherwise, go to
Step 3.

Step 3: Solve minw̃∈Rp ‖r(t)− w̃‖22, s.t.
[x(t)−Πw̃]T Q(α(t− 1))−1[x(t)−Πw̃] ≤ η.
Then, set α(t) = α(t− 1), w(t) = w̃ and go to
Step 5.

Step 4: Solve minα∈[0,1] α, s.t. ξ(t)T Q(α)−1ξ(t) ≤ η.
Then, set α(t) = α.

Step 5: Apply u(t) = F (α(t))x(t) + M(α(t))w(t) to the
plant (1), (2).

Step 6: t← t + 1 and go to Step 1.
In the above algorithm, Step2 and Step 3 represent the

reference management mechanism that compute the modified
reference signal w(t) from the original reference signal r(t).

Remark 3: The optimization problem of Step 3 in Algo-
rithm 2 is a quadratic optimization problem with respect to
w̃. Hence, this problem can be easily solved.

Theorem 3: Consider the system (1), (2). Assume that
there exists w̃ ∈ Rp that satisfies x(0) − Πw̃ ∈ E(P (1), η).
Then by applying Algorithm 2 to the system (1), (2), feasibil-
ity of the algorithm is guaranteed for all times. Moreover, if
r(t) = r̄,∀t ≥ Tr, limt→∞ w(t) = r̄ and limt→∞ z(t) = 0
hold.

Proof: See Appendix III.

IV. TRACKING CONTROL OF A TWIN-ROTOR

HELICOPTER MODEL

In this section, based on the method of the previous
section, we design a tracking controller for the twin-rotor
helicopter model, and verify the effectiveness of the method
by experiments. In Section IV-A, we show the equation of
motion of the twin-rotor helicopter model. Then, in Section
IV-B, we design a tracking controller. In Section IV-C, we
show the experimental results.

A. Mathematical Model

The equation of motion of the system shown in Figs.3–4
is described by

ẋ = F(x) + G(x)ũ (12)

ũ = Ξ1(x)u− g (13)

u = Ξ2f̃ (14)

where x := [vx, y1, y2, θ1, θ2]T , g := [Mg
L2

cos y1, 0]T ,
ũ, u, f̃ ∈ R2 and

F(x) :=

⎡
⎢⎢⎢⎢⎣

L1
L2

Mg tan θ1 cos y1

y2

0
θ2

− sin θ1 cos θ1(v2
x − y2

2)

⎤
⎥⎥⎥⎥⎦ , G(x) :=

⎡
⎢⎢⎢⎢⎣
L1 tan θ1 0

0 0
L2 0
0 0
0 L3

⎤
⎥⎥⎥⎥⎦

Ξ1(x) :=
[

cos θ1 0
0 1

]
, Ξ2 :=

[
1 1
lr −lr

]
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Fig. 3. Experimental apparatus of the twin-rotor helicopter system
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x1[rad] denotes the angle of the actuator part in the hori-
zontal direction, vx(:= ẋ1)[rad/s] denotes the velocity in the
horizontal direction, y1[rad] denotes the angle in the vertical
direction, θ1[rad] is the pitch angle, u1[N] is the lift force,
u2[N] is the rotary force (see Fig.4). f̃ [N] denotes the thrust
generated by the rotors, and is given by

f̃ = aũv (15)

where ũv[V] is the input signal to the motor driver and
a = diag[a1, a2] is the conversion factor. The signal ũv is
computed by

ũv = ΦvmaxI(uv) (16)

where uv[V] is the control signal, vmax is the maximum
value of ũv. The parameters of the experimental appara-
tus are L1 = 2.6553kg−1m−1, L2 = 2.7018kg−1m−1,
L3 = 179.0718kg−1m−2, M = 0.4739m−1, m̄ =0.158kg,
lr =0.188m, vmax = 5.5V, a1 = 0.2729N/V, a2 =
0.2846N/V.

Note that, in the above mathematical model, the friction
force of the rotation part and the air resistance are omitted.

B. Controller Design

In this section, for the mathematical model derived in
the previous section, we design a controller that stabilizes
in y and θ directions, and makes the difference between
the reference signal r and vx as small as possible. In
the following, firstly, we show a method of reducing the
controlled system (12)–(16) to the standard form (1),(2).
Then, we design a controller based on the method of the
previous section.

We linearize (12) at x = 0, and discretize the linearized
dynamics with the sampling period T = 5ms, and obtain

x(t + 1) = Adx(t) + Bdũ(t) (17)

f

g

+
ΦvmaxI

+
Ξ-1a-1

uIuO

Ψ(   )uI

f
^

uvuv~u~
ΦfmaxIa-1

g

+
-

Ξ-1a-1

Ξa

Fig. 5. Equivalent Transformation
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where Ad := exp(AcT ), Bd :=
∫ T

0
exp(Acτ)dτBc and

Ac := ∂F/∂x|x=0, Bc := G(0). We define uv as

uv := a−1
(
f̂ + Ξ(x)−1g

)
(18)

f̂ := ΦfmaxI(f) (19)

where Ξ(x) := Ξ1(x)Ξ2, fmax := min[fmax,1, fmax,2],
fmax,i := ai [vmax −Mg/(2aiL2 cos θmax)] and f ∈ R2.
θmax is the maximum value of |θ|, f is the desired thrust of
the rotor. We make the following assumption.

Assumption 3: For vmax and θmax, the relation
Mg/(2aiL2 cos θmax) ≤ vmax holds.

The above assumption guarantees that the rotors of the
twin-rotor system have enough capacity for flying. We set
θ1max = 0.578rad. In this case, the following relation holds.

ũ = Ξ(x)f̂ (20)

In the following, we explain about this. We define uo :=
ũv − a−1Ξ(x)−1g, uI := a−1f̂ , Ψ(uI) := ΦVmaxI(uI +
a−1Ξ(x)−1g)−a−1Ξ(x)−1g. Then, the input/output relation-
ship between f and ũ (which is described by eqs.(13)–(16),
(18)–(19)) can be rewritten as

ũ = Ξ(x)auo, uo = Ψ(uI) (21)

uI := a−1f̂ and eq.(19) (see.Fig.5). On the
other hand, from the relation a−1Ξ(x)−1g =
a−1Mg cos y1/(2L2 cos θ1)[1, 1]T and Assumption 3,
the nonlinear element Ψ(uI) becomes the asymmetric
saturation nonlinearity as shown in Fig.6. Therefore, when
we use fmax defined above, the signal uI always remains
in the linear region of Ψ(uI). As a result, since the relation
uo = uI holds, we can conclude that eq.(20) holds. Eq.(19)
can be rewritten as

f̂ = fmaxũ, ũ = Φ(u), u = f−1
maxf (22)

From the above discussion, we choose the coefficient
matrices of (1) as A = Ad, B = BdΞ(0)fmax, E = 0.
Further, since we consider the tracking control problem of
vx, we choose z := w − y, y := vx. For this system, we
apply the design method of Section III-A. The solutions of
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eqs.(6), (7) are Π = [1, 0, 0, 0, 0]T and Γ = [0, 0]T . We
obtain the matrices that satisfy the LMI conditions (8)–
(10) with γ0 = 16, γ1 = 260, R = 0.1I, η = 1,S =
diag[0.01, 1.5, 0.1, 1, 0.1] numerically. We utilize the ex-
tended cost function in Remark 2. The control algorithm
is implemented in the digital computer (Intel Core2 3GHz,
2GB RAM) by using Matlab/xPC Target.

Remark 4: Note that the actual control signal uv is com-
puted from (18), (19) and the third equation of (22).

C. Experimental Results

Figs.7–9 show the experimental results in the case where
Algorithm 2 is carried out. The reference signal is r(t) =
2rad/s, ∀t ≥ 3s. It can be seen that the modified reference
signal w(t) is generated just after the step reference signal
is added. This implies that, if Algorithm 1 is utilized, the
algorithm becomes infeasible at t = 3s. From Fig.7, it can be
seen that y(t) tracks r(t), although the relatively small steady
state error occurs. This steady state error may occur due to
the friction force of the rotation part and the air resistance
which are disregarded at the controller design. Figs.10–11
show the results in the case where the constant low gain
feedback u(t) = F (1)x(t) + M(1)w(t) is utilized (namely,
in the case where Algorithm 2 is performed with α = 1). In
this case, the larger tracking error occurs as compared with
the case of the gain-scheduled feedback.
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V. CONCLUSIONS

In this paper, we have designed a tracking control law
for the twin-rotor helicopter model based on the method of
[13]. We have explained the input transformation to reduce
the dynamics of the system to the standard form. Further,
we have implemented the control algorithm in the digital
computer, and evaluated the effectiveness of the method
by experiments. As a result, we have confirmed that the
proposed control algorithm can be applied to this class
of a mechanical system even if the modeling error and
computational delay exist. Further, we have confirmed that
the gain-scheduled control law can achieve higher tracking
control performance as compared with the constant low-gain
feedback.
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APPENDIX I
PROOF OF THEOREM 1

From (1), (3), (4), (6), (11), we obtain

ξ(t + 1) = Aξ(t) + BΨ(F (α)ξ(t)) (23)

where Ψ(F (α)ξ) := Φ(F (α)ξ + Γw) − Γw. In the
following, we first show that if ξ ∈ L(H(α), ρ) and
maxt≥0 |Γ(l)r(t)| < 1, ∀l ∈ [1, m], Ψ(F (α)ξ) can
be represented as Ψ(F (α)ξ) =

∑2m

j=1 λj{EjF (α) +
E−

j H(α)}ξ, where H(α) := Z(α)Q(α)−1, Z(α) :=
(1 − α)Z0 + αZ1 and ρ := diag[ρ1, · · · , ρm]. If ξ ∈
L(H(α), ρ) and maxt≥0 |Γ(l)r(t)| < 1, ∀l ∈ [1, m], then
|H(α)(l)ξ + Γ(l)w| ≤ 1, ∀l ∈ [1, m]. Hence, in this
case, the relation Φ(F (α)ξ +Γw) =

∑2m

j=1 λj{Ej(F (α)ξ +
Γw) + E−

j (H(α)ξ + Γw)} holds (see Lemma 1 in Ap-
pendix). Therefore, we can show that Ψ(F (α)ξ) =∑2m

j=1 λj{EjF (α) + E−
j H(α)}ξ. By using this relation, if

ξ(t) ∈ L(H(α), ρ) and maxt≥0 |Γ(l)r(t)| < 1, ∀l ∈ [1, m],
the close-loop system (1), (3) and (11) can be rewritten as

ξ(t + 1) = A(λ(t))ξ(t) (24)

where A(λ) :=
∑2m

j=1 λjAj , Aj := A + B{EjF (α) +
E−

j H(α)}. On the other hand, from the definition, the signal
z can be rewritten as

z = Cx + DΦ(u) + Dww (25)

where C := [CT , F (α)T R
1
2 ]T , Dw := [DT

w , (M(α) −
Γ)TR

1
2 ]T . It can be verified that the matrices Π and Γ that

satisfy (6) and (7) also satisfy

CΠ + DΓ + Dw = 0. (26)

From (25), (26) and (11) if ξ(t) ∈ L(H(α), ρ) and
maxt≥0 |Γ(l)r(t)| < 1, ∀l ∈ [1, m], the signal z(t) can be
represented as

z(t) = C(λ(t))ξ(t) (27)

where C(λ) :=
∑2m

j=1 λjCj , Cj := C + D{EjF (α) +
E−

j H(α)}. From (24) and (27), in the ξ-coordinate system,
the feedback system can be regarded as the system without
exogenous input. In the following, we prove Theorem 1
based on this representation.

In the following, we first show that the condition (9)
implies that E(P (α), η) ⊆ L(H(α), ρ). From (9), we have[

Q(α) ∗
Z(α)(l) ρ2

l

η

]
≥ 0, ∀l ∈ [1, m] (28)

Then, by substituting Z(α)(l) = H(α)(l)Q(α) for (28)
and performing a congruence transformation with block-

(t)

(t+1)

(           ,η)(t)(      )

(        ,η)(   ) 

(               ,η)(t)(      )

Fig. 12. Invariant set

diag[Q(α)−1, 1] and substituting Q(α)−1 = P (α), and
applying Schur complement, we have

1
ρ2

l

H(α)(l)T H(α)(l) ≤ 1
η
P (α), ∀l ∈ [1, m] (29)

Equation (29) implies that E(P (α), η) ⊆ L(H(α), ρ).
Then, we show that the relations ξ(t) ∈ E(P (α), η),∀t ≥

0 and limt→∞ z(t) = 0 and J < γ(α)η hold. By carrying
out the similar procedures used to derive (28) to (8), and
substituting Z(α) = H(α)Q(α) and Y (α) = F (α)Q(α)
for the resulting inequality, and performing a congruence
transformation with block-diag[Q(α)−1, I, I], and multiply-
ing the resulting inequality by λj(t), and summing them up
for j = 1, · · · , 2m, we have⎡

⎣ P (α) ∗ ∗
C(λ(t)) γ(α)I ∗
A(λ(t)) 0 P (α)−1

⎤
⎦ > 0 (30)

By applying Schur complement to (30), and multiplying the
resulting inequality from the left by ξ(t)T and from the right
by ξ(t), and using (24) and (27), we have

V (ξ(t + 1))− V (ξ(t)) < − 1
γ(α)

‖z(t)‖22 (31)

where V (ξ) := ξT P (α)ξ. From (31), we can conclude that
if ξ(0) ∈ E(P (α), η) then

V (ξ(t)) < V (ξ(0)) ≤ η, ∀t ≥ 0 (32)

Equation (32) implies that ξ(t) ∈ E(P (α), η), ∀t ≥ 0.
On the other hand, the nonlinearity Ψ(F (α)ξ(t)) can be
represented as Ψ(F (α)ξ(t)) =

∑2m

j=1 λj(t){EjF (α) +
E−

j H(α)}ξ(t) if ξ(t) ∈ L(H(α), ρ) and
maxt≥0 |Γ(l)r(t)| < 1, ∀l ∈ [1, m]. From (29) and
(32), we can state that if the conditions in Theorem 1
hold, the relation ξ(t) ∈ L(H(α), ρ), ∀t ≥ 0 holds. From
(31), since ξ(t) → 0, (t → ∞), z(t) → 0, (t → ∞) holds.
Moreover, from (31) and (32),

∑∞
t=0 ‖z(t)‖22 < γ(α)η

holds.

APPENDIX II
PROOF OF THEOREM 2

In the following, we initially show that by applying
Algorithm 1 α(t) monotonically decreases until the condition
α(t) ≤ ε holds. We assume that at time t the optimization
problem of Step 2 in Algorithm 1 is feasible. In this case, it
is clear that ξ(t) ∈ E(P (α(t)), η) holds. When the control
signal u(t) = F (α(t))x(t) + M(α(t))w(t) is applied to the



system (1), ξ(t)T P (α(t))ξ(t) > ξ(t + 1)T P (α(t))ξ(t + 1)
holds from Theorem 1. Hence, for some scalar κ < 1,
ξ(t + 1) ∈ E(P (α(t))/κ, η) holds (see Fig.12). In the
following, we show that the relation E(P (α(t))/κ, η) ⊂
E(P (β), η) ⊂ E(P (α(t)), η) holds for a scalar β such that
κα(t) < β < α(t).

• E(P (β), η) ⊂ E(P (α(t)), η):
Since Q0 < Q1 and β < α(t) hold from the assump-
tion, we obtain 0 < (α(t)− β)(Q1−Q0). This implies
that E(P (β), η) ⊂ E(P (α(t), η).

• E(P (α(t))/κ, η) ⊂ E(P (β), η):
From the assumption, κα(t) < β < α(t) holds. Further,
since κ < 1 and α(t) ≤ 1, (1−κ)α(t) ≤ (1−κ) holds.
Hence, α(t) ≤ κα(t) + (1 − κ) holds. Therefore, we
obtain κα(t) < β < κα(t)+(1−κ). From this relation
and Q0 < Q1, we have 0 < [(1−κ)−(β−κα(t))]Q0+
[β − κα(t)]Q1. This implies that E(P (α(t))/κ, η) ⊂
E(P (β), η).

From the above discussion, we can conclude that for
a scalar β such that κα(t) < β < α(t), the relation
E(P (α(t))/κ, η) ⊂ E(P (β), η) ⊂ E(P (α(t)), η) holds (see
Fig.12). Then we set α(t + 1) = β. In this case, it is
clear that ξ(t + 1) ∈ E(P (α(t + 1)), η) holds. Namely, the
optimization problem of Step 3 in Algorithm 1 is feasible at
t + 1, and the solution α(t + 1) satisfies α(t + 1) < α(t).
The same arguments also hold for t+2, t+3, · · ·. Therefore,
α(t) decreases monotonically. Further, α(t) is bounded from
below by zero. Hence, there exists some time T such that
the condition α(T ) = 0 holds. It can be verified that a
contradiction occurs if there is not such a time T . After the
time T , the control law u(t) = F (α(T ))x(t)+M(α(T ))w(t)
is applied to the system (1), (2). In this case, from Theorem 1,
ξ(t) converges to zero as t→∞. As a result, z(t) converges
to zero as t→∞

APPENDIX III
PROOF OF THEOREM 3

We first show that feasibility of Algorithm 2 is guaranteed
for all time. In Algorithm 2, if the condition x(0)−Πr(0) ∈
E(P (1), η) holds, the optimization problem of Step 4 is
solved to update α. It is clear that there exists a solution
α that satisfies α ≤ 1. Otherwise, if the condition x(0) −
Πr(0) ∈ E(P (1), η) does not hold, the optimization problem
of Step 3 is solved to compute the modified reference signal
w̃. The existence of the solution w̃ is guaranteed from the
assumption. Hence, we can conclude that there exists a pair
of solutions α(0) and w(0).

By applying u(0) = F (α(0))x(0) + M(α(0))w(0) with
α(0), w(0) obtained from Step3 or Step4 to (1), (2), the in-
equality (x(1)−Πw(0))T P (α(0))(x(1)−Πw(0)) ≤ (x(0)−
Πw(0))T P (α(0))(x(0) − Πw(0)) holds from Theorem 2.
Therefore, x(1) − Πw(0) ∈ E(P (α(0)), η) holds. This
implies that there exists a pair of solutions α(1), w(1) at
t = 1. The same arguments also hold for t ≥ 2. Therefore,
we can conclude that feasibility of Algorithm 2 is guaranteed
for all time.

(t)(      ) ηΠ (t)−(               ) Π (t)−(               )
Τ <

(t)(      ) ηΠ (t)−(               ) Π (t)−(               )
Τ <

(t)

(t+1)

Π (t)
Π (t+1) Π

2

1

(t+1)(            ) η−(                   )Π (t+1) Τ
<−(                   )Π (t+1)

Fig. 13. Graphical Interpretation of Algorithm 2 in case of n = 2 and
p = 1

Then we show that if r(t) = r̄,∀t ≥ Tr, the relations
limt→∞ w(t) = r̄ and limt→∞ z(t) = 0 hold. Let us
consider the case where the condition x(t) − Πw(t) ∈
E(P (α(t)), η) holds but the equality w(t) = r̄ does not hold
for a time t ≥ Tr (Note that z(t) converges to zero if the
equality w(t) = r̄ holds from Theorem 2). In this case, at
Step3, a modified reference signal w(t) = r̄ is computed and
the scheduling parameter is chosen as α(t) = α(t − 1). By
applying u(t) = F (α(t))x(t) + M(α(t))w(t) to the system,
the relation x(t + 1) − Πw(t) ∈ E(P (α(t)), ηκ) holds for
some positive scalar κ < 1 (see Fig.13). Then, at time t+1,
if the equality w(t + 1) = r̄ does not hold, a modified
reference signal w(t+1) = r̄ is computed and the scheduling
parameter is chosen as α(t + 1) = α(t) at Step 3. In this
case, since x(t + 1)−Πw(t) ∈ E(P (α(t)), ηκ), Πw(t + 1)
can be chosen so that ‖Πr̄−Πw(t)‖2 decreases (see Fig.13).
Hence, by repeating this process, x(t)−Πr̄ ∈ E(P (α(t)), η)
holds for some time. As a result, limt→∞ w(t) = r̄ and
limt→∞ z(t) = 0 hold.


