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Abstract – In this paper, we propose a design method

of a static anti-windup compensator that guarantees

closed-loop stability and optimizes performance cri-

terion proposed by Teel and Kapoor. Further, we

extend the method to the robust performance prob-

lem. We provide design procedures based on linear

matrix inequality (LMI) representation.

I. INTRODUCTION

Most of practical control systems involve plants whose
actuators are limited by inherent physical constraints.
It is well-known that such limitation can produce signifi-
cant performance degradation called windup phenomena
[1]. An anti-windup scheme [8] is one way to design a
controller that counteracts such undesirable phenomena.
Recently, several systematic design methods of the anti-
windup compensator that guarantees closed-loop stabil-
ity and L2 gain performance (e.g., [10, 11, 13, 16]).

On the other hand, in [14], a rigorous and useful per-
formance criterion for anti-windup control systems was
proposed. The criterion of [14] utilizes the L2 norm of the
output deviation between the fictitious linear system and
anti-windup control system as a measure for estimating
anti-windup performance. It is referred to as the L2 per-
formance criterion in this paper. An important feature
of the criterion is that it enables us to consider rigorously
the behavior of the anti-windup control systems for the
exogenous inputs that do not belong to L2 (e.g., step
signal, sinusoidal signal). So far, in [2, 5, 7, 14, 15], sev-
eral design methods of the dynamic anti-windup compen-
sator were proposed based on the criterion. In the case
of the static anti-windup compensator, a design method
has been presented in [12]. However, since the method
of [12] is based on the line search, it is not easy to ap-
ply to the systems with the high order controller and/or
multivariable systems.

In this paper, we present a design method of the
static anti-windup compensator that optimizes the per-
formance criterion of [14]. We show that the design
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problem can be formulated as a quasi-convex optimiza-
tion problem referred to as the generalized eigenvalue
problem (GEVP) [3]. Hence, it can readily be solved
by using the existing optimization algorithm [3]. Fur-
thermore, we extend the method to the robust perfor-
mance problem. The proposed methods are applicable
to the systems with the high order controller and/or mul-
tivariable systems. The following two numerical exam-
ples are provided to illustrate the effectiveness of the
proposed method: 1) the control problem of the ill-
conditioned multivariable system, 2) the angular velocity
control problem of the 2-mass-spring system.
Notations. We define the saturation function φa(·) and
deadzone function ψa(·) as follows.

φa(v) �
{
a · sgn(v), |v| > a
v, |v| ≤ a

, ψa(v) � v − φa(v)

If a = 1, we shall omit the subscript a. Further, for
a given diagonal matrix A = diag(a1, · · · , an), ai >
0, we define the multivariable saturation function
ΦA(v) � (φa1(v1), · · · , φan(vn))T and multivariable
deadzone function ΨA(v) � (ψa1(v1), · · · , ψan(vn))T . If
A = I, we shall omit the subscript A. For a vector v ∈
Rn, we denote its Euclidean norm as ‖v‖2 � (vT v)1/2.
For a signal v(t) defined on [0,∞), we define its L2

norm as ‖v‖L2 � (
∫ ∞
0
v(t)T v(t)dt)1/2. A signal v(t)

is said to belong to L2, i.e., v ∈ L2, if ‖v‖L2 < ∞.
Fl(S,Δ) � S11 + S12Δ(I − S22Δ)−1S21, where Sij de-
notes a part of S that is partitioned according to the size
of Δ. Further, we shall use

[
A B
C D

]
� C(sI −A)−1B +D

II. PROBLEM FORMULATION

Let us consider the following feedback system without
saturation (see Fig.1).

ylin = P

[
w
ulin

]
, ulin = K

[
r
ylin

]
(1)
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Fig. 1: Linear control system
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Fig. 2: Anti-windup control system

where ulin ∈ Rnu , ylin ∈ Rny , r ∈ Rnr and w ∈ Rnw .
P (s) denotes a plant and is described by

P � [P1, P2] =
[
Ap Bp1 Bp2

Cp Dp1 0

]
(2)

In this paper, we assume that P (s) is asymptotically
stable. K(s) denotes a controller and is described by

K � [K1,K2] =
[
Ac Bc1 Bc2

Cc Dc1 Dc2

]
(3)

In the following, we assume that K(s) has been already
designed so that it guarantees closed-loop stability of the
system (1) and satisfies certain performance specifica-
tions. Next let us consider the following feedback system
with anti-windup compensation (see Fig.2).

y = P

[
w
u

]
, u = Φ(ũ), ũ = K̃

⎡
⎣ r

y
u− ũ

⎤
⎦ (4)

where u, ũ ∈ Rnu and y ∈ Rny . The state equation of
K̃(s) is given by

K̃ � [K1,K2,K3] =
[
Ac Bc1 Bc2 Λ1

Cc Dc1 Dc2 Λ2

]
(5)

We assume that the transfer functions K1 and K2 of (5)
are equal to those of (3). The constant matrices Λ1 and
Λ2 are introduced to attenuate the windup phenomena
and referred to as the static anti-windup compensator.
This type of two parameters anti-windup compensator
was first proposed in [8]. In this paper, we consider the
following problem.

Problem 1 Consider the linear control system (1) and
the anti-windup control system (4). Find the matrices
Λ1 and Λ2 that minimize γ under the following inequality
constraint.

‖y − ylin‖L2 ≤ γ‖Ψ(ulin)‖L2 (6)
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Fig. 3: Subsystem for closed-loop stability

It should be noted that ‖Ψ(ulin)‖L2 is bounded when
ulin of the system (1) converges to the linear region of
the saturation function. Hence, in this case, from (6),
the plant output y(t) of the anti-windup control system
(4) converges to the plant output ylin(t) of the linear sys-
tem (1) as t→ ∞. Moreover, note that ‖Ψ(ulin)‖L2 can
be bounded even in the case where the reference signal
r(t) does not belong to L2 (e.g., step signal, sinusoidal
signal). Eq.(6) was first introduced in [14] as a perfor-
mance criterion for anti-windup control systems, and it
is referred to as the L2 anti-windup performance crite-
rion in this paper. In the next section, we will explicitly
derive γ of (6).

III. UPPERBOUND OF L2 PERFORMANCE

The error system between the linear system (1) and
the anti-windup control system (4) can be described by

y − ylin = −P2(G+ I)d (7)
ũ− ulin = −Gd, d = ũ− Φ(ũ) = Ψ(ũ) (8)

where G(s) � (I − K2P2)−1(K2P2 + K3). Then we in-
troduce the following lemma.

Lemma 1 [5] For any F = diag[f1, · · · , fnu ] > 0 and
x, y ∈ Rn, where ΨF (x), y ∈ L2[0,T ), the following in-
equality holds .

‖ΨF (x+ y)‖L2[0,T ) ≤ ‖ΨF (x)‖L2[0,T ) + ‖y‖L2[0,T) (9)

Proof) For any fi > 0 and xi, yi ∈ R, the following
inequality clearly holds.

|ψfi(xi + yi)| ≤ |ψfi(xi)| + |yi| (10)

Then, squaring both sides of the inequality (10) and
adding them for i = 1, · · · , nu and applying Schwartz’s
inequality, we obtain

‖ΨF (x+ y)‖2
2 ≤ ‖ΨF (x)‖2

2 + ‖y‖2
2 + 2‖ΨF (x)‖2‖y‖2 (11)

Furthermore, integrating both sides of (11) over [0, T )
and applying Schwartz’s inequality again, (9) can be ob-
tained. �

Then, the following theorem can be derived by apply-
ing the technique used to prove the theorem in [5] to the
control system of this paper.
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Fig. 4: Equivalent system

Theorem 1 Consider the system (7), (8). For a given
F = diag[f1, · · · , fnu ] > 0, if there exist Λ1 and Λ2 that
satisfy

‖F (G+ I) − I‖∞ < 1 (12)

Further, provided that Ψ(ulin) ∈ L2, then the following
inequality holds.

‖y − ylin‖L2 ≤ ‖F‖‖P2(G+ I)‖∞
1 − ‖F (G+ I) − I‖∞ ‖Ψ(ulin)‖L2 (13)

Proof) The closed-loop system (8) (depicted in Fig.3) can
be transformed to that of Fig.4 by performing equivalent
transformations on the block diagram. Now we define
q � Fulin−{F (G+I)−I}d. Then, by using d = Ψ(ũ) =
ΨF (q) and applying Lemma 1 to the system of Fig.4, we
have

‖d‖L2[0,T) = ‖ΨF (Fulin − {F (G+ I) − I}d)‖L2[0,T)

≤ ‖ΨF (Fulin)‖L2[0,T ) + ‖{F (G+ I) − I}d‖L2[0,T)

≤ ‖ΨF (Fulin)‖L2[0,T ) + ‖F (G+ I) − I‖∞‖d‖L2[0,T)

≤ ‖F‖
1 − ‖F (G+ I) − I‖∞ ‖Ψ(ulin)‖L2[0,T )

(14)

To derive the last inequality of (14), we used the inequal-
ity (12) and the fact ΨF (Fulin) = FΨ(ulin). Since the
inequality (14) still holds even if T → ∞ and Ψ(ulin) ∈
L2, the left hand side of the inequality (14) is bounded
even if T → ∞. Finally, letting T → ∞ in (14) and
using (7), we obtain (13). �

From (13), γ of (6) can be obtained as γn �
‖F‖‖P2(G + I)‖∞/(1 − ‖F (G + I) − I‖∞). Since the
dead zone function ΨF (·) lies inside the sector [0, 1], the
global asymptotic stability of the system of Fig.4 is guar-
anteed in the case where (12) holds. This implies that
the condition that Ap must be Hurwitz is necessary to
obtain a solution that satisfies (12).

IV. DESIGN METHOD

In this section, we provide a method to solve Prob-
lem 1 based on the results of Theorem 1. Firstly, we
introduce positive scalars δ, μ such that

‖F (G+ I) − I‖∞ < δ, ‖P2(G+ I)‖∞ < μ (15)

and δ < 1. Then, by applying the bounded real lemma,
(15) can be transformed into the following matrix in-
equality constraints.
⎡
⎣ AQ+QAT QCT B

CQ −δI D
BT DT −δI

⎤
⎦ < 0, Q = QT > 0 (16)

⎡
⎣ AR +RAT RCT

y B
CyR −μI 0
BT 0 −μI

⎤
⎦ < 0, R = RT > 0 (17)

where

A �
�

Ac Bc2Cp

Bp2Cc Ap + Bp2Dc2Cp

�
,B �

�
Λ1

Bp2(I + Λ2)

�

C � �
FCc FDc2Cp

�
, Cy �

�
0 Cp

�

and D � F (Λ2 + I) − I. Note that (16) and (17) are
LMIs with respect to the variables Λ1,Λ2, Q,R, δ, μ.

By using δ and μ of (15), the upperbound of γn can be
derived as γn < ‖F‖μ/(1 − δ). Moreover, we introduce
a positive scalar λ such that ‖F‖μ/(1 − δ) < λ. Then,
Problem 1 can be reduced to the following optimization
problem.

Problem 2 For a given F > 0, find Λ1 and Λ2 that
minimize λ under the constraints λ(1 − δ) > ‖F‖μ, 1 −
δ > 0, (16) and (17).

Problem 2 is a quasi-convex optimization problem re-
ferred to as the generalized eigenvalue problem (GEVP)
[3]. Hence, it can efficiently be solved by using the nu-
merical optimization algorithm [6].

Note 1 If we treat F as one of the decision variables,
the inequality (16) becomes the bilinear matrix inequality
constraint. Thus, in this paper, we treat F as the fixed
parameter. In this note, we show a guideline for choosing
F . In the scalar case, the condition (12) requires that the
Nyquist plot of G(jω) remains in the circle whose center
is (1/f − 1, 0) and diameter is 1/f . By choosing a small
value as f , the restriction on the size of G(jω) can be
relaxed. Hence we can expect that the upperbound of γn

can be made small by choosing sufficiently small value
as f . Similarly, in the multi-input case, we can expect
that the upperbound of γn can be made small by choosing
F = fI, f � 1.

Note 2 Problem 2 may produce a solution Λ2 such that
det(I + Λ2) ≈ 0, which is problematic in practical situa-
tions, since ũ = (I + Λ2)−1[Ccxc +Dc1r +Dc2y + Λ2u]
from (4), (5). In this note, we show a simple method for
avoiding such a problem. We assume that the matrix F
is chosen as F = fI. Then the condition (16) implies
DDT < δ2I, which also implies that the eigenvalues of
I+Λ2 is located in the circle whose center is (1/f, 0) and



diameter is 1/f in the complex plane. Then we introduce
the following LMI condition.

(Λ2 + I) + (Λ2 + I)T − 2σI > 0 (18)

where σ ≥ 0 is a scalar. The condition (18) guarantees
that the eigenvalues of I + Λ2 is located in Ωc � {z ∈
C : Re{z} > σ} where C denotes the complex plane, and
ensures σnu < det(I + Λ2). Hence, the problem men-
tioned above can easily be avoided by solving Problem 2
with (18).

V. ROBUST PERFORMANCE CASE

In the preceding sections, we have treated the design
problem for the case where the plant model has no un-
certainty, namely, the nominal performance case. In this
section, we extend the results to the case where the plant
uncertainty exists. We assume that the perturbed plant
model P̃ (s) is given by

P̃ (s) � [P̃1, P̃2] = (I +W (s)Δ(s))P (s) (19)

where P (s) represents a nominal plant model, and whose
state equation is given by (2). Δ(s) ∈ RH∞ repre-
sents multiplicative uncertainty that satisfies ‖Δ‖∞ ≤ 1.
W (s) ∈ RH∞ represents a weighting function. In the
following, for simplicity, we will restrict the class of W (s)
to the constant matrix W (s) = ε−1I. But, it is possible
to extend the following results to the general dynamic
case. Moreover, we assume that the linear feedback sys-
tem (1) with the perturbed plant (19) is robustly stable.

We formulate the robust performance design problem
as follows.

Problem 3 Consider the linear control system (1) and
the anti-windup control system (4), where P (s) is re-
placed with P̃ (s). Find the matrices Λ1 and Λ2 that
minimize γ under the constraint (6).

From Theorem 1, the following corollary can readily
be derived.

Corollary 1 For a given F = diag[f1, · · · , fnu ] > 0, if
there exist Λ1,Λ2 that satisfy ‖F (G̃+I)−I‖∞ < 1, where
G̃(s) � (I−K2P̃2)−1(K2P̃2+K3). Further, provided that
Ψ(ulin) ∈ L2, then the condition (6) holds with γ = γr �
‖F‖‖P̃2(G̃+ I)‖∞/(1 − ‖F (G̃+ I) − I‖∞).

In the following, we provide a method to solve Prob-
lem 3 based on Corollary 1. We introduce positive scalars
δ, μ such that

‖F (G̃+ I) − I‖∞ < δ, ‖P̃2(G̃+ I)‖∞ < μ (20)

and δ < 1. It is well-known that to obtain an exact solu-
tion to this type of robust performance conditions is not
simple [18]. Hence, we derive sufficient conditions that
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Fig. 5: y(t) (dashed:unconstrained, solid:with AWC, dash-
dot:w/o AWC)
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Fig. 6: ũ(t) (dashed:unconstrained, solid:with AWC, dash-
dot:w/o AWC)

can be expressed as LMIs. Firstly, (20) can be rewritten
as

‖Fl(M,Δ)‖∞ < δ, ‖Fl(N,Δ)‖∞ < μ (21)

where M(s) � Cm(sI − A)−1B + Dm, N(s) � Cn(sI −
A)−1B + Dn and

A � A, B �

�
Λ1 ε−1Bc2

Bp2(I + Λ2) ε−1Bp2Dc2

�

Cm �

�
FCc FDc2Cp

0 Cp

�
, Cn �

�
0 Cp

0 Cp

�

Dm �

�
F (Λ2 + I) − I ε−1FDc2

0 0

�
, Dn �

�
0 ε−1I
0 0

�

Then, from the results on μ-analysis [18], sufficient con-
ditions of (21) are given by
����M

�
δ−1I 0

0 I

�����
∞

< 1,

����N

�
μ−1I 0

0 I

�����
∞

< 1 (22)

Then by applying the bounded real lemma and Schur
complements, (22) can equivalently be converted to

[
Am + δBm2BT

m2 Bm1

BT
m1 −δI

]
< 0, Q = QT > 0 (23)

[
An + μBn2BT

n2 Bn1

BT
n1 −μI

]
< 0, R = RT > 0 (24)
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Fig. 7: 2-mass-spring system

where

�m (�, δ) �

�
A� + �AT

�CT
m

Cm� −δI

�

� n (�, μ) �

�
A� + �AT

�CT
n

Cn� −μI

�

�
�m1 (Λ1, Λ2), �m2

�
�

�
B
Dm

�

�
�n1 (Λ1, Λ2), �n2

�
�

�
B
Dn

�

and nm � nc + np + nu + ny, nn � nc + np + 2ny,
Bm1 ∈ Rnm×nu , Bm2 ∈ Rnm×ny , Bn1 ∈ Rnn×nu , Bn2 ∈
Rnn×ny . Note that (23) and (24) are the LMIs with
respect to the variables Λ1,Λ2,Q,R, μ, δ.

By using δ and μ of (20), the upperbound of γr can be
derived as γr < ‖F‖μ/(1 − δ). Moreover, we introduce
a positive scalar λ such that ‖F‖μ/(1 − δ) < λ. Then
Problem 3 can be reduced to the following optimization
problem.

Problem 4 For a given F > 0, find Λ1 and Λ2 that
minimize λ under the constraints λ(1 − δ) > ‖F‖μ, 1 −
δ > 0, (23) and (24).

Problem 4 is also a GEVP. Hence it can efficiently be
solved by using the numerical optimization algorithm.

VI. NUMERICAL EXAMPLES

A. Example 1 (Multivariable system)

Let us consider the numerical example of [4]. P (s)
and K(s) are given by

P1 = 0, P2 =
1

10s+ 1

[
15 40
12 30

]

K1 =
10s+ 1

s

[
1/3 0
0 −1/10

]
, K2 = −K1

For the above system, we designed Λ1 and Λ2 by solving
Problem 2 with the condition (18) where σ = 0.5 and
F = 0.01I .

Fig.5 and Fig.6 show the responses of the system for
r(t) = [0.6, 0.4]T , (t ≥ 0). Although the plant outputs of
the system without anti-windup compensation become
unbounded (dash-dot), the outputs of the system with
the proposed anti-windup compensator (solid) are fairly
close to those of the linear system (dashed).
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Fig. 8: y(t) (dashed:unconstrained, solid:with AWC, dash-
dot:w/o AWC)
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Fig. 9: ũ(t) (dashed:unconstrained, solid:with AWC, dash-
dot:w/o AWC)

B. Example 2 (2-mass-spring system)

Let us consider a 2-mass-spring system depicted in
Fig.7. u is the motor torque [Nm], w is the disturbance
torque [Nm], ω1 and ω2 are the angular velocity of the
motor and that of the load respectively [rad/s]. J1 and
J2 are the moment of inertia of the motor and that of
the load respectively. B1 and B2 are the coefficients of
viscous friction of the motor and that of the load respec-
tively. K is the coefficient of elasticity of the spring. In
this example, J1 = J2 = 0.01 [kgm2], B1 = B2 = 0.001
[Nms/rad] and K = 50 [Nm/rad]. The state equation of
the system in Fig.7 is given by

ẋp =

�
� 0 1 −1

−K/J1 −B1/J1 0
K/J2 0 −B2/J2

�
	xp

+

�
� 0

0
−1/J2

�
	w +

�
� 0

1/J1

0

�
	u (25)

and y = [0 0 1]xp, where xp = [θ, ω1, ω2]T . The poles
of the system (25) are (−0.05 ± 100j,−0.1). For this
plant, we designed a two degree of freedom controller
K(s) by using the single step approach of [9] with the
desired closed-loop transfer function M0(s) and the loop
shaping weighting function W (s) as M0(s) = 1002/(s2 +
200s + 1002),W (s) = 10(0.01s + 1)/s. Moreover, we
chose ρ = 5. Then we designed Λ1 and Λ2 by solving
Problem 2 with the condition (18) where σ = 0.5 and
F = 0.01.
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Fig. 10: y(t) (solid: r(t) = 150, dash-dot: r(t) = 100, dashed:
r(t) = 50)
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Fig. 11: ũ(t) (solid: r(t) = 150, dash-dot: r(t) = 100, dashed:
r(t) = 50)

Fig.8 and Fig.9 show the responses of the system for
r(t) = 20, (t ≥ 0) and w(t) = 0, (t ≥ 0). Although
the output y(t) of the system without anti-windup com-
pensation shows oscillatory behavior (dash-dot), that
of the system with the proposed anti-windup compen-
sator shows good performance (solid). Fig.10 and Fig.11
show the responses of the system with the proposed anti-
windup compensator for r(t) = 150 (solid), r(t) = 100
(dash-dot) and r(t) = 50 (dashed). In all cases, the anti-
windup compensator completely suppresses the over-
shoot, and the plant output y(t) tracks each reference
signal. Fig.12 and Fig.13 show the responses of the sys-
tem for r(t) = 20, (t ≥ 0) and w(t) = 0.6, (t ≥ 0). We
can see that the proposed anti-windup compensator ef-
fectively attenuates the destructive effect of the step dis-
turbance (solid).

VII. CONCLUSION

In this paper, we have presented the design methods
of the static anti-windup compensator that optimizes L2

performance. Both the nominal performance problem
and robust performance problem can be reduced to the
GEVP. Hence the problems can efficiently be solved by
using the numerical optimization algorithm.
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