Home
Profile
Career
Presentation
Paper
Award & Grant
Link
Presentation
‘Û”•\:
-
Mariko Yamamura, Mineaki Ohishi & Hirokazu Yanagihara.
Spatio-temporal adaptive fused Lasso for proportion data.
The 13th KES International Conference on Intelligent Decision Technologies,
Invited Session: Spatial Data Analysis and Sparse Estimation.
KES Virtual Conference Centre.
2021/6/14 -- 16.
-
Mineaki Ohishi, Kensuke Okamura, Yoshimichi Itoh & Hirokazu Yanagihara.
Optimizations for categorizations of explanatory variables in linear regression via generalized fused Lasso.
The 13th KES International Conference on Intelligent Decision Technologies,
Invited Session: Spatial Data Analysis and Sparse Estimation.
KES Virtual Conference Centre.
2021/6/14 -- 16.
(Video).
-
Keisuke Fukui, Mineaki Ohishi, Mariko Yamamura & Hirokazu Yanagihara.
A fast optimization method for additive model via partial generalized ridge regression.
The 12th KES International Conference on Intelligent Decision Technologies,
Invited Session: High-Dimensional Data Analysis and Its Applications.
KES Virtual Conference Centre.
2020/6/17 -- 19.
-
Mineaki Ohishi, Hirokazu Yanagihara & Hirofumi Wakaki.
Optimization of generalized Cp criterion for selecting ridge parameters in generalized ridge regression.
The 12th KES International Conference on Intelligent Decision Technologies,
Invited Session: High-Dimensional Data Analysis and Its Applications.
KES Virtual Conference Centre.
2020/6/17 -- 19.
(Video).
-
Mineaki Ohishi & Hirokazu Yanagihara.
A fast algorithm for solving model selection criterion minimization problem in generalized ridge.
IMS - Asia Pacific Rim Meeting 2018,
Contributed Paper Sessions.
National University of Singapore.
2018/6/26 -- 29.
(Oral).
-
Mineaki Ohishi & Hirokazu Yanagihara.
Equivalence under optimal regularization parameters between generalized ridge and adaptive-Lasso estimates in linear regression with orthogonal explanatory variables.
Hiroshima Statistics Study Group seminars.
Radiation Effects Research Foundation, Hiroshima.
2017/11/24.
(Oral).
-
Mineaki Ohishi & Hirokazu Yanagihara.
Equivalence between adaptive-Lasso and generalized ridge estimates in linear regression with orthogonal explanatory variables after optimizing regularization parameters.
Capital Normal University-Hiroshima University Joint conference on Mathematics.
Capital Normal University, Beijing, China.
2017/9/21 -- 22.
(Oral).
‘“à”•\ (Šw‰ï):
-
‘åΕôôE‰ª‘ºŒ’‰îEˆÉ“¡‰Ã“¹Eú匴G˜a.
Generalized fused Lasso‚É‚æ‚éà–¾•Ï”‚̃JƒeƒSƒŠ‚ÌÅ“K‰».
2021”N“x“ŒvŠÖ˜AŠw‰ï˜A‡‘å‰ï,
‹óŠÔ“Œv.
ƒIƒ“ƒ‰ƒCƒ“.
2021/9/5 -- 9.
(Ξһ).
-
‘åΕôôEŽR‘º–ƒ—ŽqEú匴G˜a.
ƒƒWƒXƒeƒBƒbƒN‰ñ‹Aƒ‚ƒfƒ‹‚É‚¨‚¯‚é generalized fused Lasso ‚ÌÀ•W~‰º–@.
‘æ15‰ñ“ú–{“ŒvŠw‰ït‹GW‰ï,
ƒ|ƒXƒ^[ƒZƒbƒVƒ‡ƒ“.
ƒIƒ“ƒ‰ƒCƒ“.
2021/3/8 -- 13.
(ƒ|ƒXƒ^[).
—DG”•\ÜE“ŒvŒŸ’èƒZƒ“ƒ^[’·ÜŽóÜ.
-
—é–Ø—T–çE‘åΕôôE¬“c—½–çEú匴G˜a.
Best subset selection in multivariate linear regressions via discrete first-order algorithms.
2019”N“x“ŒvŠÖ˜AŠw‰ï˜A‡‘å‰ï,
ƒ‚ƒfƒ‹‘I‘ðE³‘¥‰»–@.
Ž ‰ê‘åŠw•FªƒLƒƒƒ“ƒpƒX.
2019/9/8 -- 12.
-
•ŸˆäŒh—CE‘åΕôôE¬“c—½–çE‰ª‘ºŒ’‰îEˆÉ“¡‰Ã“¹Eú匴G˜a.
Variable selection method for nonparametric varying coefficient model via group lasso penalty.
2019”N“x“ŒvŠÖ˜AŠw‰ï˜A‡‘å‰ï,
‹óŠÔ“Œvˆê”Ê.
Ž ‰ê‘åŠw•FªƒLƒƒƒ“ƒpƒX.
2019/9/8 -- 12.
-
‘åΕôôE•ŸˆäŒh—SE‰ª‘ºŒ’‰îEˆÉ“¡‰Ã“¹Eú匴G˜a.
Estimation of geographically varying coefficient model via group fused Lasso.
2019”N“x“ŒvŠÖ˜AŠw‰ï˜A‡‘å‰ï,
ƒRƒ“ƒyƒeƒBƒVƒ‡ƒ“ƒZƒbƒVƒ‡ƒ“.
Ž ‰ê‘åŠw•FªƒLƒƒƒ“ƒpƒX.
2019/9/8 -- 12.
(Ξһ).
-
‘åΕôôE•ŸˆäŒh—SE‰ª‘ºŒ’‰îEˆÉ“¡‰Ã“¹Eú匴G˜a.
ƒ}ƒ“ƒVƒ‡ƒ“‚Ì’À—¿‚ɑ΂·‚é’nˆæŒø‰Ê‚Ì„’è–@‚Ì”äŠr.
s“®Œv—ÊŠw‰ï‰ªŽR’nˆæ•”‰ï‘æ71‰ñŒ¤‹†‰ïE‘æ172‰ñ‰ªŽR“ŒvŒ¤‹†‰ï.
‰ªŽR—‰È‘åŠw.
2019/3/16.
(Ξһ).
—DGÜŽóÜ.
-
‘åΕôôE•ŸˆäŒh—SE‰ª‘ºŒ’‰îEˆÉ“¡‰Ã“¹Eú匴G˜a.
Fused Lasso‚ð—p‚¢‚½’nˆæ•ª—Þ `ƒ}ƒ“ƒVƒ‡ƒ“‚Ì’À—¿‚ɑ΂·‚é’nˆæŒø‰Ê‚̃‚ƒfƒŠƒ“ƒO`.
2018”N“x“ŒvŠÖ˜AŠw‰ï˜A‡‘å‰ï,
ƒRƒ“ƒyƒeƒBƒVƒ‡ƒ“ƒZƒbƒVƒ‡ƒ“.
’†‰›‘åŠwŒãŠy‰€ƒLƒƒƒ“ƒpƒX.
2018/9/9 -- 13.
(Ξһ).
-
‘åΕôô.
Fused Lasso‚É‚æ‚éƒ}ƒ“ƒVƒ‡ƒ“’À—¿‚Ì’nˆæŒø‰ÊƒNƒ‰ƒXƒ^ƒŠƒ“ƒO.
s“®Œv—ÊŠw‰ï‰ªŽR’nˆæ•”‰ï‘æ67‰ñŒ¤‹†‰ïE‘æ167‰ñ‰ªŽR“ŒvŒ¤‹†‰ï.
‰ªŽR—‰È‘åŠw.
2018/3/17.
(Ξһ).
—DGÜŽóÜ.
-
‘åΕôôE•ŸˆäŒh—SE‰ª‘ºŒ’‰îEˆÉ“¡‰Ã“¹Eú匴G˜a.
Clustering of regional effects in apartment rents by fused Lasso.
‘æ12‰ñ“ú–{“ŒvŠw‰ït‹GW‰ï,
ƒ|ƒXƒ^[ƒZƒbƒVƒ‡ƒ“.
‘ˆî“c‘åŠw‘ˆî“cƒLƒƒƒ“ƒpƒX.
2018/3/4.
(ƒ|ƒXƒ^[).
-
‘åΕôôEú匴G˜a.
Equivalence between adaptive-Lasso and generalized ridge estimates in linear regression with orthogonal explanatory variables after optimizing regularization parameters.
2017”N“x“ŒvŠÖ˜AŠw‰ï˜A‡‘å‰ï,
ƒRƒ“ƒyƒeƒBƒVƒ‡ƒ“ƒZƒbƒVƒ‡ƒ“.
“ìŽR‘åŠw–¼ŒÃ‰®ƒLƒƒƒ“ƒpƒX.
2017/9/3 -- 6.
(Ξһ).
-
‘åΕôô.
’¼Œð‚·‚éà–¾•Ï”‚̉º‚Å‚ÌüŒ`‰ñ‹Aƒ‚ƒfƒ‹‚É‚¨‚¯‚éˆê”ʉ»ƒŠƒbƒWŒ^L2ƒyƒiƒ‹ƒeƒB‚ÆAdaptive-LassoŒ^L1ƒyƒiƒ‹ƒeƒB‚Å‚ÌÅ“K‚ȉñ‹AŒW”‚Ì“¯“™«.
s“®Œv—ÊŠw‰ï‰ªŽR’nˆæ•”‰ï‘æ63‰ñŒ¤‹†‰ïE‘æ163‰ñ‰ªŽR“ŒvŒ¤‹†‰ï.
‰ªŽR—‰È‘åŠw.
2017/3/18.
(Ξһ).
—DGÜŽóÜ.
-
‘åΕôôEú匴G˜a.
Equivalence between optimized regression coefficients by adaptive-Lasso type L1 penalty and generalized ridge type L2 penalty in linear regression with orthogonal explanatory variables.
‘æ11‰ñ“ú–{“ŒvŠw‰ït‹GW‰ï,
ƒ|ƒXƒ^[ƒZƒbƒVƒ‡ƒ“.
ôŒ¤‹†‘åŠw‰@‘åŠw.
2017/3/5.
(ƒ|ƒXƒ^[).
-
‘åΕôôEú匴G˜aE“¡‰zNj.
ˆê”ʉ»ƒŠƒbƒW‰ñ‹A‚É‚¨‚¯‚郊ƒbƒWƒpƒ‰ƒ[ƒ^‘I‘ð‚Ì‚½‚ß‚Ìî•ñ—Ê‹K€Å¬‰»–â‘è‚̉ð͉ð.
2016”N“x“ŒvŠÖ˜AŠw‰ï˜A‡‘å‰ï,
ƒ‚ƒfƒ‹‘I‘ð.
‹à‘ò‘åŠwŠpŠÔƒLƒƒƒ“ƒpƒX.
2016/9/4 -- 7.
(Ξһ).
‘“à”•\ (‚»‚Ì‘¼):
-
ú匴G˜aE‘åΕôôE‰ª‘ºŒ’‰îEˆÉ“¡‰Ã“¹EŽá–ØG•¶.
ˆê”ʉ»Group Fused LassoÅ“K‰»‚Ì‚½‚߂̃xƒNƒgƒ‹·•ªƒmƒ‹ƒ€Œ^”±‘¥•t‚«“ñŽŸŒ`Ž®‚ÌŬ‰»ƒAƒ‹ƒSƒŠƒYƒ€.
2021”N“x‹à—jƒZƒ~ƒi[,
L“‡“ŒvƒOƒ‹[ƒv.
L“‡‘åŠw.
2021/11/26.
-
‘åΕôôEŽR‘º–ƒ—ŽqEú匴G˜a.
Generalized fused LassoƒƒWƒXƒeƒBƒbƒN‰ñ‹A‚ÌÅ“K‰»‚ÆŽž‹óŠÔ•ªÍ.
2021”N“x‹à—jƒZƒ~ƒi[,
L“‡“ŒvƒOƒ‹[ƒv.
L“‡‘åŠw.
2021/7/2.
(ƒIƒ“ƒ‰ƒCƒ“).
-
—é–Ø—T–çE‘åΕôôE¬“c—½–çEú匴G˜a.
‘½•Ï—ÊüŒ`‰ñ‹A‚É‚¨‚¯‚édiscrete first-order algorithm‚ð—p‚¢‚½•Ï”‘I‘ð–@‚Ì’ñˆÄ.
2019”N“x‹à—jƒZƒ~ƒi[,
L“‡“ŒvƒOƒ‹[ƒv.
L“‡‘åŠw.
2019/12/20.
-
‘åΕôôE•ŸˆäŒh—SE‰ª‘ºŒ’‰îEˆÉ“¡‰Ã“¹Eú匴G˜a.
•΂è‚Ì‚ ‚é‹óŠÔƒf[ƒ^‚ɑ΂·‚é‹óŠÔŒø‰Ê‚Ì„’è–@.
“ŒvƒTƒ}[ƒZƒ~ƒi[2019.
‘–¯hŽÉ‚Ђт«, •Ÿ‰ª.
2019/8/5 -- 8.
(Ξһ).
-
‘åΕôôE•ŸˆäŒh—SE‰ª‘ºŒ’‰îEˆÉ“¡‰Ã“¹Eú匴G˜a.
generalized Lasso‚ð—p‚¢‚½’nˆæŒø‰Ê‚̃Nƒ‰ƒXƒ^ƒŠƒ“ƒO.
2018”N“x‹à—jƒZƒ~ƒi[,
L“‡“ŒvƒOƒ‹[ƒv.
L“‡‘åŠw.
2019/2/8.
(Ξһ).
-
‘åΕôô.
”±‘¥•t‚«„’è–@‚̳‘¥‰»ƒpƒ‰ƒ[ƒ^Å“K‰».
“ŒvƒTƒ}[ƒZƒ~ƒi[2017.
‹S“{ìƒp[ƒNƒzƒeƒ‹ƒY, “È–Ø.
2017/8/5 -- 8.
(Ξһ).
-
‘åΕôôEú匴G˜a.
ƒŠƒbƒWƒpƒ‰ƒ[ƒ^‘I‘ð‚Ì‚½‚ß‚ÌGCVŬ‰»–â‘è‚É‚¨‚¯‚é”±‘¥€‚Ì”äŠr.
Bayes Inference and Its Related Topics Œ¤‹†‰ï,
RIMS‹¤“¯Œ¤‹†.
‹ž“s‘åŠw”—‰ðÍŒ¤‹†Š.
2017/3/6 -- 8.
(Ξһ).
-
‘åΕôôEú匴G˜aE“¡‰zNj.
ˆê”ʉ»ƒŠƒbƒW‰ñ‹A‚É‚¨‚¯‚郊ƒbƒWƒpƒ‰ƒ[ƒ^‘I‘ð‚Ì‚½‚ß‚Ìî•ñ—Ê‹K€Å¬‰»–â‘è.
2016”N“x‹à—jƒZƒ~ƒi[,
L“‡“ŒvƒOƒ‹[ƒv.
L“‡‘åŠw.
2016/12/16.
(Ξһ).
-
‘åΕôô.
Žå¬•ª‰ñ‹A‚É‚¨‚¯‚éLasso‚̃`ƒ…[ƒjƒ“ƒOƒpƒ‰ƒ[ƒ^‘I‘ð‚Ì‚½‚ß‚ÌGCVŬ‰»–â‘è.
Œ¤‹†W‰ï "“Œv“I„˜_‚É‚¨‚¯‚éŋ߂̓WŠJ".
‹{“‡ƒR[ƒ‰ƒ‹ƒzƒeƒ‹, L“‡.
2016/12/4 -- 5.
(Ξһ).