Presentation


  国際発表:

  1. Mariko Yamamura, Mineaki Ohishi & Hirokazu Yanagihara.
    Spatio-temporal adaptive fused Lasso for proportion data.
    The 13th KES International Conference on Intelligent Decision Technologies, Invited Session: Spatial Data Analysis and Sparse Estimation.
    KES Virtual Conference Centre. 2021/6/14 -- 16.
  2. Mineaki Ohishi, Kensuke Okamura, Yoshimichi Itoh & Hirokazu Yanagihara.
    Optimizations for categorizations of explanatory variables in linear regression via generalized fused Lasso.
    The 13th KES International Conference on Intelligent Decision Technologies, Invited Session: Spatial Data Analysis and Sparse Estimation.
    KES Virtual Conference Centre. 2021/6/14 -- 16. (Video).
  3. Keisuke Fukui, Mineaki Ohishi, Mariko Yamamura & Hirokazu Yanagihara.
    A fast optimization method for additive model via partial generalized ridge regression.
    The 12th KES International Conference on Intelligent Decision Technologies, Invited Session: High-Dimensional Data Analysis and Its Applications.
    KES Virtual Conference Centre. 2020/6/17 -- 19.
  4. Mineaki Ohishi, Hirokazu Yanagihara & Hirofumi Wakaki.
    Optimization of generalized Cp criterion for selecting ridge parameters in generalized ridge regression.
    The 12th KES International Conference on Intelligent Decision Technologies, Invited Session: High-Dimensional Data Analysis and Its Applications.
    KES Virtual Conference Centre. 2020/6/17 -- 19. (Video).
  5. Mineaki Ohishi & Hirokazu Yanagihara.
    A fast algorithm for solving model selection criterion minimization problem in generalized ridge.
    IMS - Asia Pacific Rim Meeting 2018, Contributed Paper Sessions.
    National University of Singapore. 2018/6/26 -- 29. (Oral).
  6. Mineaki Ohishi & Hirokazu Yanagihara.
    Equivalence under optimal regularization parameters between generalized ridge and adaptive-Lasso estimates in linear regression with orthogonal explanatory variables.
    Hiroshima Statistics Study Group seminars.
    Radiation Effects Research Foundation, Hiroshima. 2017/11/24. (Oral).
  7. Mineaki Ohishi & Hirokazu Yanagihara.
    Equivalence between adaptive-Lasso and generalized ridge estimates in linear regression with orthogonal explanatory variables after optimizing regularization parameters.
    Capital Normal University-Hiroshima University Joint conference on Mathematics.
    Capital Normal University, Beijing, China. 2017/9/21 -- 22. (Oral).

  国内発表 (学会):

  1. 大石峰暉・山村麻理子・蛹エ宏和.
    ロジスティック回帰モデルにおける generalized fused Lasso の座標降下法.
    第15回日本統計学会春季集会, ポスターセッション.
    オンライン. 2021/3/8 -- 13. (ポスター).
    優秀発表賞・統計検定センター長賞受賞.
  2. 鈴木裕也・大石峰暉・小田凌也・蛹エ宏和.
    Best subset selection in multivariate linear regressions via discrete first-order algorithms.
    2019年度統計関連学会連合大会, モデル選択・正則化法.
    滋賀大学彦根キャンパス. 2019/9/8 -- 12.
  3. 福井敬佑・大石峰暉・小田凌也・岡村健介・伊藤嘉道・蛹エ宏和.
    Variable selection method for nonparametric varying coefficient model via group lasso penalty.
    2019年度統計関連学会連合大会, 空間統計一般.
    滋賀大学彦根キャンパス. 2019/9/8 -- 12.
  4. 大石峰暉・福井敬祐・岡村健介・伊藤嘉道・蛹エ宏和.
    Estimation of geographically varying coefficient model via group fused Lasso.
    2019年度統計関連学会連合大会, コンペティションセッション.
    滋賀大学彦根キャンパス. 2019/9/8 -- 12. (口頭).
  5. 大石峰暉・福井敬祐・岡村健介・伊藤嘉道・蛹エ宏和.
    マンションの賃料に対する地域効果の推定法の比較.
    行動計量学会岡山地域部会第71回研究会・第172回岡山統計研究会.
    岡山理科大学. 2019/3/16. (口頭).
    優秀賞受賞.
  6. 大石峰暉・福井敬祐・岡村健介・伊藤嘉道・蛹エ宏和.
    Fused Lassoを用いた地域分類 〜マンションの賃料に対する地域効果のモデリング〜.
    2018年度統計関連学会連合大会, コンペティションセッション.
    中央大学後楽園キャンパス. 2018/9/9 -- 13. (口頭).
  7. 大石峰暉.
    Fused Lassoによるマンション賃料の地域効果クラスタリング.
    行動計量学会岡山地域部会第67回研究会・第167回岡山統計研究会.
    岡山理科大学. 2018/3/17. (口頭).
    優秀賞受賞.
  8. 大石峰暉・福井敬祐・岡村健介・伊藤嘉道・蛹エ宏和.
    Clustering of regional effects in apartment rents by fused Lasso.
    第12回日本統計学会春季集会, ポスターセッション.
    早稲田大学早稲田キャンパス. 2018/3/4. (ポスター).
  9. 大石峰暉・蛹エ宏和.
    Equivalence between adaptive-Lasso and generalized ridge estimates in linear regression with orthogonal explanatory variables after optimizing regularization parameters.
    2017年度統計関連学会連合大会, コンペティションセッション.
    南山大学名古屋キャンパス. 2017/9/3 -- 6. (口頭).
  10. 大石峰暉.
    直交する説明変数の下での線形回帰モデルにおける一般化リッジ型L2ペナルティとAdaptive-Lasso型L1ペナルティでの最適な回帰係数の同等性.
    行動計量学会岡山地域部会第63回研究会・第163回岡山統計研究会.
    岡山理科大学. 2017/3/18. (口頭).
    優秀賞受賞.
  11. 大石峰暉・蛹エ宏和.
    Equivalence between optimized regression coefficients by adaptive-Lasso type L1 penalty and generalized ridge type L2 penalty in linear regression with orthogonal explanatory variables.
    第11回日本統計学会春季集会, ポスターセッション.
    政策研究大学院大学. 2017/3/5. (ポスター).
  12. 大石峰暉・蛹エ宏和・藤越康祝.
    一般化リッジ回帰におけるリッジパラメータ選択のための情報量規準最小化問題の解析解.
    2016年度統計関連学会連合大会, モデル選択.
    金沢大学角間キャンパス. 2016/9/4 -- 7. (口頭).

  国内発表 (その他):

  1. 大石峰暉・山村麻理子・蛹エ宏和.
    Generalized fused Lassoロジスティック回帰の最適化と時空間分析.
    2021年度金曜セミナー, 広島統計グループ.
    広島大学. 2021/7/2. (オンライン).
  2. 鈴木裕也・大石峰暉・小田凌也・蛹エ宏和.
    多変量線形回帰におけるdiscrete first-order algorithmを用いた変数選択法の提案.
    2019年度金曜セミナー, 広島統計グループ.
    広島大学. 2019/12/20.
  3. 大石峰暉・福井敬祐・岡村健介・伊藤嘉道・蛹エ宏和.
    偏りのある空間データに対する空間効果の推定法.
    統計サマーセミナー2019.
    国民宿舎ひびき, 福岡. 2019/8/5 -- 8. (口頭).
  4. 大石峰暉・福井敬祐・岡村健介・伊藤嘉道・蛹エ宏和.
    generalized Lassoを用いた地域効果のクラスタリング.
    2018年度金曜セミナー, 広島統計グループ.
    広島大学. 2019/2/8. (口頭).
  5. 大石峰暉.
    罰則付き推定法の正則化パラメータ最適化.
    統計サマーセミナー2017.
    鬼怒川パークホテルズ, 栃木. 2017/8/5 -- 8. (口頭).
  6. 大石峰暉・蛹エ宏和.
    リッジパラメータ選択のためのGCV最小化問題における罰則項の比較.
    Bayes Inference and Its Related Topics 研究会, RIMS共同研究.
    京都大学数理解析研究所. 2017/3/6 -- 8. (口頭).
  7. 大石峰暉・蛹エ宏和・藤越康祝.
    一般化リッジ回帰におけるリッジパラメータ選択のための情報量規準最小化問題.
    2016年度金曜セミナー, 広島統計グループ.
    広島大学. 2016/12/16. (口頭).
  8. 大石峰暉.
    主成分回帰におけるLassoのチューニングパラメータ選択のためのGCV最小化問題.
    研究集会 "統計的推論における最近の展開".
    宮島コーラルホテル, 広島. 2016/12/4 -- 5. (口頭).