2020 年前期 幾何学 A 大レポート課題 問 1-16; 100 点満点 (7/22 配布)

大レポート原稿の提出締め切りは 7/28 (火).

キーワード: 多変数関数の微分論の代数化, 可微分多様体.

設定: 大レポート課題全体を通じて $n,n_1,n_2\in\mathbb{Z}_{\geq 0}$ とし, U,U_1,U_2 をそれぞれ $\mathbb{R}^n,\mathbb{R}^{n_1},\mathbb{R}^{n_2}$ の空でない開集合とする. また M を空でない位相空間とし, $\mathcal{LC}(M;\mathbb{R}^n)$ を M の n 次元局所座標系全体のなす集合とする.

1 (10 点満点)

問 1. $(5 点) k \in \mathbb{Z}_{\geq 1}$ とする. 関数

$$f: \mathbb{R}_{>0} \to \mathbb{R}, \ x \mapsto x^{\frac{1}{3}}$$

について, f の k 階導関数

$$f^{(k)}: \mathbb{R}_{>0} \to \mathbb{R}$$

を求めよ (結論のみでよい).

問 2. (5 点) 関数

$$h: \mathbb{R} \to \mathbb{R}, \ x \mapsto x^{\frac{1}{3}}$$

について, h が C^{∞} 級関数でないことの理由を簡潔に述べよ.

- 2 (45 点満点) 以下の定義達はそれぞれ誤りがある. それぞれ正しく修正したものを述べよ (修正した 箇所に印または説明をつけること).
- 問 **3.** (5 点) 各 $p \in U$ について

$$T_p U = \{ \eta \in \mathcal{L}(C^{\infty}(U), \mathbb{R}) \mid \eta(f \cdot g) = \eta(f) \cdot g + f \cdot \eta(g) \text{ for any } f, g \in C^{\infty}(U) \}$$

を U の p における接空間という.

問 **4.** (5 点) $X \in T_nU$ が U 上のベクトル場であるとは, 任意の $f,g \in C^{\infty}(U)$ について,

$$X(f \cdot g) = (Xf) \cdot g + f \cdot (Xg)$$

が成り立つこと.

問 5. (5 点) 写像 $\varphi: U_1 \to U_2$ が C^{∞} 級であるとは、

$$\varphi^*(C^{\infty}(U_1)) \subset C^{\infty}(U_2)$$

となること.

問 6. (5 点) C^{∞} 級写像 $\varphi: U_1 \to U_2$ および点 $p \in U_1$ について,

$$(d\varphi)_p: C^{\infty}(U_1) \to C^{\infty}(U_2), \ \eta \mapsto \eta \circ \varphi^*$$

を φ の p における全微分という.

- 問 7. (5 点) (O, U, u) が M の n 次元局所座標系であるとは、以下を満たすこと:
 - O が M の空でない開集合、
 - U が \mathbb{R}^n の空でない開集合,
 - $u: O \to U$ が全単射連続写像 (ただし O, U の位相はそれぞれ相対位相として定める).
- 問 8. $(5 点) (O, U, u), (O', V, v) \in \mathcal{LC}(M; \mathbb{R}^n)$ が $O \cap O \neq \emptyset$ を満たすとき,

$$\tau_{uv}: O \cap O' \to O \cap O', \ u \mapsto v(u^{-1}(u))$$

を (O, U, \mathbf{u}) から (O', V, \mathbf{v}) への座標変換という.

- 問 9. (5 点) $A_0 \subset \mathcal{LC}(M; \mathbb{R}^n)$ が M の C^{∞} -atlas であるとは, 以下を満たすこと:
 - $\bigcup_{(O,U,\boldsymbol{u})\in\mathcal{A}_0} O=M,$
 - 任意の $(O, U, \boldsymbol{u}) \in \mathcal{A}_0$ について

$$\boldsymbol{u}:O \to U$$

が C^{∞} 級写像.

- 問 10. (5 点) A_0 を M の C^{∞} -atlas とする. $f \in C(M)$ が A_0 上 C^{∞} 級であるとは、任意の $(O, U, \boldsymbol{u}) \in A_0$ について、 $f \circ \boldsymbol{u}^{-1} \in C^{\infty}(O)$ となること.
- 問 11. (5 点) $A \subset \mathcal{LC}(M;\mathbb{R}^n)$ とする. 組 (M,A) が n 次元 C^∞ 級多様体であるとは, M がハウスドルフか つ第二可算公理を満たすこと.

|3|(20 点満点)

問 12. (10 点) $f_1, f_2 \in C^{\infty}(U_2)$ とし、連続写像 $\varphi: U_1 \to U_2$ 、点 $p \in U_1$ を固定する. このとき等式

$$(\varphi^*(f_1+f_2))(p) = (\varphi^*(f_1) + \varphi^*(f_2))(p)$$

の証明として、以下の議論には数か所の不備がある. 適切に修正したものを述べよ (修正した箇所に印または説明をつけること).

議論:

左辺 =
$$(\varphi^*(f_1 + f_2))(p)$$

= $(f_1 + f_2)(\varphi(p))$ (∵ φ^* の定義)
= $f_1(\varphi(p)) + f_2(\varphi(p))$ (∵ f_1, f_2 の線型性)
= $(\varphi^*(f_1))(p) + (\varphi^*(f_2))(p)$ (∵ φ^* 0定義)
= $(\varphi^*(f_1) + \varphi^*(f_2))(p)$ (∵ $\varphi^*(f_1), \varphi^*(f_2)$ の線型性)
= 右辺.

問 13. (10 点) $\eta_1,\eta_2\in T_pU_1$ とし, C^∞ 級写像 $\varphi:U_1\to U_2$ および点 $p\in U_1$ を固定する. このとき等式

$$(d\varphi)_p(\eta_1 + \eta_2) = (d\varphi)_p(\eta_1) + (d\varphi)_p(\eta_2)$$

の証明として、以下の議論には数か所の不備がある. 適切に修正したものを述べよ (修正した箇所に印または説明をつけること).

議論: $f \in C^{\infty}(U_2)$ を任意にとる. 以下を示せばよい:

| 示すこと
$$((d\varphi)_p(\eta_1+\eta_2))(f)=((d\varphi)_p(\eta_1)+(d\varphi)_p(\eta_2))(f).$$

左辺 =
$$((d\varphi)_p(\eta_1 + \eta_2))(f)$$

= $((\eta_1 + \eta_2) \circ \varphi^*)(f)$ (∵ 全微分の定義)
= $(\eta_1 + \eta_2) \circ (\varphi^*(f))$
= $(\eta_1 \circ (\varphi^*(f))) + (\eta_2 \circ (\varphi^*(f)))$ (∵ 汎関数の和の定義)
= $(\eta_1 \circ \varphi^*)(f)) + (\eta_2 \circ \varphi^*)(f)$
= $((d\varphi)_p(\eta_1))(f) + ((d\varphi)_p(\eta_2))(f)$ (∵ 全微分の定義)
= $((d\varphi)_p(\eta_1) + (d\varphi)_p(\eta_2))(f)$ (∵ 汎関数の和の定義)
= 右辺.

4 (25 点満点)

以下, $M=\{x\in\mathbb{R}^3\mid x_1^2+x_2^2-x_3^2=1\}\subset\mathbb{R}^3$ とおく. また $(O_1^+,U_1^+,\boldsymbol{u}_1^+),\;(O_1^-,U_1^-,\boldsymbol{u}_1^-),\;(O_2^+,U_2^+,\boldsymbol{u}_2^+),\;(O_2^-,U_2^-,\boldsymbol{u}_2^-)\in\mathcal{LC}(M;\mathbb{R}^2)$ を以下のように定める:

•
$$O_1^+ = \{x \in M \mid x_1 > 0\}, U_1^+ = \{u \in \mathbb{R}^2 \mid u_1^2 - u_2^2 < 1\}, u_1^+ : O_1^+ \to U_1^+, x \mapsto (x_2, x_3).$$

$$\bullet \ O_1^- = \{x \in M \mid x_1 < 0\}, \ U_1^- = \{u \in \mathbb{R}^2 \mid u_1^2 - u_2^2 < 1\}, \ \boldsymbol{u}_1^- : O_1^- \to U_1^-, \ x \mapsto (x_2, x_3).$$

•
$$O_2^+ = \{x \in M \mid x_2 > 0\}, \ U_2^+ = \{u \in \mathbb{R}^2 \mid u_1^2 - u_2^2 < 1\}, \ u_2^+ : O_2^+ \to U_2^+, \ x \mapsto (x_1, x_3).$$

•
$$O_2^- = \{x \in M \mid x_2 < 0\}, \ U_2^- = \{u \in \mathbb{R}^2 \mid u_1^2 - u_2^2 < 1\}, \ u_2^- : O_2^- \to U_2^-, \ x \mapsto (x_1, x_3).$$

また

$$\mathcal{A}_0 = \{(O_1^+, U_1^+, \boldsymbol{u}_1^+), (O_1^-, U_1^-, \boldsymbol{u}_1^-), (O_2^+, U_2^+, \boldsymbol{u}_2^+), (O_2^-, U_2^-, \boldsymbol{u}_2^-)\} \subset \mathcal{LC}(M; \mathbb{R}^2)$$

とおく.

問 14. (5点) M の絵を描け.

問 15. (10 点) このとき

$$O_1^+ \cup O_1^- \cup O_2^+ \cup O_2^- = M$$

となることを示せ.

問 16. (10 点) $(O,U,\boldsymbol{u})=(O_1^-,U_1^-,\boldsymbol{u}_1^-),$ $(O',V,\boldsymbol{v})=(O_2^+,U_2^+,\boldsymbol{u}_2^+)$ とおく. このとき座標変換 $\tau_{\boldsymbol{u}\boldsymbol{v}}$ を求めよ (定義域, 値域もそれぞれ明示的に求めること).