Publications |
1) Alkali Metal Recognition Induced Isomerization of Spiropyrans. M. Inouye*, M. Ueno, T. Kitao, K. Tuchiya. J. Am. Chem. Soc. 112, 8977-8979, (1990). @5.039 Impact Factor 2) Transmission of Recognition Information to Other Sites in a Molecule : Proximity of Two Remote Sites in the Spirobenzopyran by Recognition of Alkali-Metal Cations. M. Inouye*, M. Ueno, T. Kitao. J. Org. Chem. 57, 1639-1641, (1992). @3.029 Impact Factor 3) Alkali-Metal Cation Recognition Induced Isomerization of Spirobenzopyrans and Spironaphtoxazins Possessing a Crown Ring as a Recognition Site : Multifunctional Artificial Receptors. M. Inouye*, M. Ueno, K. Tuchiya, T. Konishi, N. Nakayama, T. Kitao. J. Org. Chem. 57, 5377-5383, (1992). @3.029 Impact Factor 4) Arranging Quaternary Structure of Peptides by Cyclodextin-Guest Inclusion Complex: Sequence-Specific DNA Binding by a Peptide Dimer with Artificial Dimerization Module. M. Ueno, A. Murakami, K. Makino, T. Morii*. J. Am. Chem. Soc. 115, 12575-12576, (1993). @5.365 Impact Factor 5) Recognition of Nonpalindromic DNA Sequence by a Peptide Heterodimer with Artificial Dimerization Module. M. Ueno, M. Sawada, K. Makino, T. Morii*. J. Am. Chem. Soc. 116, 11137-11138, (1994). @5.039 Impact Factor 6) Sequence-Specific DNA Binding by Covalently Constrained Peptide Dimers of the Basic Leucine Zipper Protein GCN4. M. Okagami, M. Ueno, K. Makino, M. Shimomura, I. Saito, T. Morii*, Y. Sugiura. Bioorg. Med. Chem. 3, 777-784, (1995). @2.90 Impact Factor 7) Extensive RNA editing and possible double-stranded structures determining editing sites in the atpB transcripts of hornwort chloroplasts. K. Yoshinaga*, T. Kakehi, Y. Shima, H. Iinuma, T. Masuzawa and M. Ueno. Nucleic Acids Res. 25, 4830-4834, (1997).@ 8.28 Impact Factor 8) Stability of the Dimerization Domain Effects the Cooperative DNA Binding of Short Peptides. Y. Aizawa, Y. Sugiura, M. Ueno, Y. Mori, K. Imoto, K. Makino, T. Morii*. Biochemistry. 38, 4008-4017, (1999). @3.38 Impact Factor@ 9) Schizosaccharomyces pombe taf1+ is required for nitrogen starvation-induced sexual development and entering into dormant G0 state. M. Ueno*, R. Kurokawa, H. Renauld, K. Watanabe, T. Ushimaru, M. Uritani, K. Yoshinaga and Y. Hiraoka. Current Genetics. 38, 307-313, (2001).@ 2.41 Impact Factor 10) Fission yeast Tor1 functions in response to various stresses including nitrogen starvation, high osmolarity, and high temperature. M. Kawai, A. Nakashima, M. Ueno, T. Ushimaru, K. Aiba, H. Doi, M. Uritani*. Current Genetics. 39, 166-174, (2001). @2.41 Impact Factor@ 11) Genes for a Nuclease and a Protease Are Involved in the Drastic Decrease in Cellular RNA Amount in Fission Yeast Cells during Nitrogen Starvation. A. Nakashima, M. Yoshida, K. Nakayama, A. Kato-Furuno, M. Ueno, T. Ushimaru, M. Uritani*. J. Biochem. (Tokyo). 131, 391-398, (2002). @2.72 Impact Factor 12) A novel non-conventional heat shock element regulates expression of MDJ1 encoding a DnaJ homolog in Saccharomyces cerevisiae. T. Tachibana, S. Astumi, R. Shioda, M. Ueno, M. Uritani, and T. Ushimaru*. J. Biol. Chem. 277, 22140-22146, (2002). @4.65 Impact Factor 13) Involvement of a CCAAT-binding complex in the expression of a nitrogen-starvation-specific gene, isp6+, in Schizosaccharomyces pombe. A. Nakashima, M. Ueno, T. Ushimaru, M. Uritani*. Biosci. Biotechnol. Biochem. 66, 2224-2227, (2002).@ 1.27 Impact Factor 14) Competition between the Rad50 complex and the Ku heterodimer reveals a role for Exo1 in processing double-strand break, but not telomeres. K. Tomita, A. Matsuura, T. Caspari, A. Carr, Y. Akamatsu, H. Iwasaki, K. Mizuno, K. Ohta, M. Uritani, T. Ushimaru, K. Yoshinaga, and M. Ueno*. Mol. Cell. Biol. 23, 5186-5197, (2003).@ 5.37 Impact Factor 15) Molecular characterization of the Schizosaccharomyces pombe nbs1+ gene involved in DNA repair and telomere maintenance. M. Ueno*, T. Nakazaki, Y. Akamatsu, K. Watanabe, K.Tomita, H. Lindsay, H. Shinagawa and H. Iwasaki. Mol. Cell. Biol. 23, 6553-6563, (2003). 5.37 Impact Factor@ 16) Fission yeast Rhp51 is required for the maintenance of telomere structure in the absence of the Ku heterodimer. T. Kibe, K. Tomita, A. Matsuura, D. Izawa, T. Kodaira, T. Ushimaru, M. Uritani and M. Ueno*. Nucleic Acids Res. 31, 5054-5063, (2003).@ 8.28 Impact Factor 17) A novel allele of fission yeast rad11 that causes defects in DNA repair and telomere length regulation. Y. Ono, K. Tomita, A. Matsuura, T. Nakagawa, H. Masukata, M. Uritani, T. Ushimaru, and M. Ueno* Nucleic Acids Res. 31, 7141-7149, (2003).@ 8.28 Impact Factor 18) Synthesis and crystal structures of metal complexes with 4,5-imidazole-dicarboxylate chelates: self-assembled structures via NH⋅⋅⋅O=C intermolecular hydrogen bonds. E. Shimizu, M. Kondo*, Y. Fuwa, R. Sarker, M. Miyazawa, M. Ueno, T. Naito, K. Maeda, F. Uchida. Inorganic Chemistry Communications. 7, 1191-1194, (2004). @2.02 Impact Factor 19) Fission yeast Arp6 is required for telomere silenging but functions independently of Swi6. M. Ueno*, T. Murase, T. Kibe, N. Ohashi, K. Tomita, Y. Murakami, M. Uritani, T. Ushimaru, M. Harata. Nucleic Acids Res. 32, 736-741, (2004).@ 8.28 Impact Factor 20) Sequence-specific binding of S. pombe His1p to fission yeast telomeric DNA. K. Tomita, M. Uritani, T. Ushimaru, K. Yoshinaga, M. Ueno*. Chem. Biodivers. 19, 1344-1353, (2004). 1.81 Impact Factor 21) Fission yeast Dna2 is required for generation of the telomeric single-strand overhang. K. Tomita, T. Kibe, H. Kang, Y. Seo, M. Uritani, T. Ushimaru and M. Ueno*. Mol. Cell. Biol. 24, 9557-9567, (2004).@ 5.37 Impact Factor 22) Dual DNA recognition codes of a short peptide derived from the basic leucine zipper protein EmBP1. A. Hirata, M. Ueno, Y. Aizawa, K. Ohkubo, T. Morii*, Yoshikawa S. Bioorg. Med. Chem. 13, 3107-3116, (2005). 2.90 Impact Factor 23) A starvation-specific serine protease gene, isp6+, is involved in both autophagy and sexual development in Schizosaccharomyces pombe. A. Nakashima, T. Hasegawa, S. Mori, M. Ueno, S. Tanaka, T. Ushimaru, S. Sato, M. Uritani*. Curr. Genet. 49, 403-413, (2006).@ 2.41 Impact Factor 24) TOR regulates late steps of ribosome maturation in the nucleoplasm via Nog1 in response to nutrients. Y. Honma, A. Kitamura, R. Shioda, H. Maruyama, K. Ozaki, Y. Oda, T. Mini, P. Jens, Y. Maki, K. Yonezawa, E. Hurt, M. Ueno, M. Uritani, M. Hall, and T. Ushimaru*. EMBO. J. 25, 3832-3842, (2006). 9.82 Impact Factor 25) Fission yeast Tor2 links nitrogen signals to cell proliferation and acts downstream of the Rheb GTPase. M. Uritani*, H. Hidaka, Y. Hotta, M. Ueno, T. Ushimaru, T. Toda. Genes Cells. 11, 1367-1379, (2006).@ 2.73 Impact Factor 26) Fission yeast Taz1 and RPA are synergistically required to prevent rapid telomere loss. T. Kibe, Y. Ono, K. Sato and M. Ueno*. Mol. Biol. Cell. 18, 2378-2387, (2007).@ 6.028 Impact Factor 27) The ergosterol biosynthesis inhibitor zaragozic acid promotes vacuolar degradation of the tryptophan permease Tat2p in yeast. K. Daicho, H. Maruyama, A. Suzuki, M. Ueno, M. Uritani, T. Ushimaru*. Biochim. Biophys. Acta. 1768, 1681-1690, (2007). 4.66 Impact Factor 28) Rpd3/HDAC complex is present at the URS1 cis-element with hyperacetylated histone H3. M. Yukawa, K. Yo, H. Hasegawa, M. Ueno, and E. Tsuchiya*. Biosci. Biotechnol. Biochem. 73, 378-384, (2009).@ 1.27 Impact Factor 29) Sorting defects of the tryptophan permease Tat2 in an erg2 yeast mutant. K. Daicho, N. Makino, T. Hiraki, M. Ueno, M. Uritani, F. Abe, T. Ushimaru*. FEMS Microbiol Lett. 298, 218-227, (2009) .@ 2.05 Impact Factor 30jRoles of DNA repair proteins in telomere maintenance.@ M. Ueno*. Biosci. Biotechnol. Biochem. 74, 1-6, (2010). 1.27 Impact Factor 31) Expression of Mutant RPA in Human Cancer Cells Causes Telomere Shortening. Y. Kobayashi, K. Sato, T. Kibe, H. Seimiya, A. Nakamura, M. Yukawa, E. Tsuchiya, and M. Ueno*. Biosci. Biotechnol. Biochem. 74, 382-385, (2010). 1.27 Impact Factor 32) A novel method for screening cell-cycle blockers as candidates for anti-tumor reagents by using yeast as a screening tool. E. Tsuchiya*, M. Yukawa, M. Ueno, K. Kimura, H. Takahashi.@ Biosci. Biotechnol. Biochem. 74, 411-414, (2010). 1.27 Impact Factor 33) Fission yeast Pot1 and RecQ helicase are required for efficient chromosome segregation. K. Takahashi, R. Imano, T. Kibe, H. Seimiya, Y. Muramatsu, N. Kawabata, G. Tanaka, Y. Matsumoto, T. Hiromoto, Y. Koizumi, N. Nakazawa, M. Yanagida, M. Yukawa, E. Tsuchiya and M. Ueno*. Mol. Cell. Biol. 31, 495-506, (2011). 6.06 Impact Factor 34) A double mutant between fission yeast telomerase and RecQ helicase is sensitive to thiabendazole, an anti-microtubule drug. S. Ukimori, N. Kawabata, H. Shimada, R. Imano, K. Takahashi, M. Yukawa, E. Tsuchiya, and M. Ueno*. Biosci. Biotechnol. Biochem. 76, 264-269, (2012). 1.27 Impact Factor 35) APC/C-Cdh1-dependent anaphase and telophase progression during mitotic slippage. K. Toda, K. Naito, S. Mase, M. Ueno, M. Uritani M, A. Yamamoto A, T. Ushimaru*. Cell Div. 7, 4, (2012). 3.47 Impact Factor 36) Fission Yeast RecQ Helicase Rqh1 Is Required for the Maintenance of Circular Chromosomes. T. Nanbu, K. Takahashi, J. M. Murray, N. Hirata, S. Ukimori, M. Kanke, H. Masukata, M. Yukawa, E. Tsuchiya and M. Ueno*. Mol. Cell. Biol. 33, 1175-1187, (2013). 6.06 Impact Factor 37) Rad51-dependent aberrant chromosome structures at telomeres and rDNA activate the spindle assembly checkpoint. A. Nakano, K. Masuda, T. Hiromoto, K. Takahashi, Y. Matsumoto, G. K. A. Habib, A. G. G. Darwish, M. Yukawa, E. Tsuchiya, and M. Ueno*. Mol. Cell. Biol. 34, 1389–1397, (2014). 6.06 Impact Factor 38) SUMOylation regulates telomere length by targeting Tpz1Tpp1 to modulate shelterin-Stn1 interaction in fission yeast. K. Miyagawa, R. S. Low, V. Santosa, H. Tsuji, B. A. Moser, S. Fujisawa, J. Harland, O. N. Raguimova, A. Go, M. Ueno, A. Matsuyama, M. Yoshida, T. M. Nakamura, and K. Tanaka*. Proc. Natl. Acad. Sci. USA. 111, 5950-5955, (2014). 9.74 Impact Factor 39) Genetic and metabolomic dissection of the ergothioneine and selenoneine biosynthetic pathway in the fission yeast, S. pombe, and construction of an overproduction system. T. Pluskal, M. Ueno and M. Yanagida* PLOS ONE. 9, e97774, (2014). 3.73 Impact Factor 40) 3,6-Epidioxy-1,10-bisaboladiene inhibits G1 -specific transcription through Swi4/Swi6 and Mbp1/Swi6 via the Hog1 stress pathway in yeast. 41) Long G2 accumulates recombination intermediates and disturbs chromosome segregation at dysfunction telomere in S. pombe. 42) RSC Chromatin-Remodeling Complex Is Important for Mitochondrial Function in Saccharomyces cerevisiae. Imamura, Y., Yu. F., Nakamura, M., Chihara, Y., Okane, K., Sato, M., Kanai, M., Hamada, R., Ueno, M., Yukawa, M., Tsuchiya, E*. 43) The essential function of Rrs1 in ribosome biogenesis is conserved in budding and fission yeasts. 44) The yeast chromatin remodeler Rsc1-RSC complex is required for transcriptional activation of autophagy-related genes and inhibition of the TORC1 pathway in response to nitrogen starvation. 45) Fission yeast Exo1 and Rqh1-Dna2 redundantly contribute to resection of uncapped telomeres. 46) A diffusion model for the coordination of DNA replication in Schizosaccharomyces pombe. 47jFission yeast strains with circular chromosomes require the 9-1-1 checkpoint complex for the viability in response to the anti-cancer drug 5-fluorodeoxyuridine. Shamim HM, Minami Y, Tanaka D, Ukimori S, Murray JM, *Ueno, M. PLoS One. 12. e0187775. (2017). 48) Chromosome passenger complex is required for the survival of cells with ring chromosomes in fission yeast. Habib AGK, Sugiura K, *Ueno, M. PLoS One. 13. e0190523. (2018). 49) Mutation in fission yeast phosphatidylinositol 4-kinase Pik1 is synthetically lethal with defect in telomere protection protein Pot1. Sugihara A., Nguyen LC, Shamim HM, Iida T, Mai T, Takegawa K, Senda M, Jida S, *Ueno, M. Biochem. Biophys. Res. Commun. 19. 1284-1290. (2018). 50) C. Fujiwara, Y. Muramatsu, M. Nishii, K. Tokunaka, H. Tahara, M. Ueno, T. Yamori, Y. Sugimoto and H. Seimiya* (2018). Cell-based chemical fingerprinting identifies telomeres and lamin A as modifiers of DNA damage response in cancer cells. Scientific Report. 8 Article number 14827. 51) Reliable imaging of ATP in living budding and fission yeast Masakatsu Takaine, Masaru Ueno, Kenji Kitamura, Hiromi Imamura, Satoshi Yoshida J. Cell Sci. jcs.230649. 132. 1-11. (2019). 52) Spindle pole body movement is affected by glucose and ammonium chloride in fission yeast Hiroaki Ito; Takeshi Sugawara; Soya Shinkai; Satoshi Mizukawa; Ayaka Kondo; Hisamichi Senda; Kengo Sawai; Koki Ito; Sayaka Suzuki; Masakatsu Takaine; Satoshi Yoshida; Hiromi Imamura; Kenji Kitamura; Toshinori Namba; Shin-ichi Tate; *Ueno, M. Biochem. Biophys. Res. Commun. 511. 820-825. (2019).
53) 3,3f-Diindolylmethane induces apoptosis and autophagy in fission yeast Parvaneh Emami, Masaru Ueno PLOS ONE, 16(12): e0255758. , 2021
54) The fission yeast bromodomain protein Bdf2 is required for growth of cells with circular chromosomes Misaki Yasuda, Ahmed G K Habib, Kanako Sugiura, Hossain Mohammad Shamim, Masaru Ueno Biosci Biotechnol Biochem, (2022) 86(2):224-230
55 Aberrant association of chromatin with nuclear periphery induced by Rif1 leads to mitotic defect. Kanoh Y, Ueno M, Hayano M, Kudo S, Masai H. Life Sci Alliance. 2023 Feb 7;6(4):e202201603. doi: 10.26508/lsa.202201603. Print 2023 Apr. PMID: 36750367
56 . Biomolecules 2023 Feb 15;13(2):370. doi: 10.3390/biom13020370. Exploring Genetic Interactions with Telomere Protection Gene pot1 in Fission Yeast Masaru Ueno
|