複雑液体・ソフトマター論： コロイドの物理 Physics of colloidal worlds

ST
広島大総合科

May 29， 2018

Overview

Introduction

What are colloids?
Cells as a colloidal world
Nature of colloids
Summary
Stochastic process
Definitions \& theorems
Brownian motion
Correlation function
Power spectrum \& Wiener-Khinchin theorem
Langevin equation
Derivation
Mean square displacement
Spectra of fluctuation
Fokker-Planck equation
Derivation
Diffusion equation

Outline

Introduction

What are colloids?
Cells as a colloidal world
Nature of colloids
Summary

Stochastic process

Definitions \& theorems
Brownian motion
Correlation function
Power spectrum \& Wiener-Khinchin theorem

Langevin equation

Derivation
Mean square displacement
Spectra of fluctuation
Fokker-Planck equation
Derivation
Diffusion equation

Examples of colloids

micro	meso	macro
Atoms•Molecules	Colloids	Objects
$\sim 1 \mathrm{~nm}$	$1 \sim 10 \mu \mathrm{~m}$	$10 \mu \mathrm{~m} \sim$

Milk: Fat particles in water

https://www.quora.com/If-you-mix-skim-milk-and-whole-milk-will-they-stay-mixed

Opal : Crystal of silica particles

Silica

http://www.silicagelmanufacturer.com/white-silica-gel.htm
http://www.luxrender.net/forum/viewtopic.php?f=36\&t=12547

Micelles: Aggregates of surfactants Micelle

https://socratic.org/questions/what-are-micelles

Bilayers: Two dimensional aggregates of surfactants

http://medical-dictionary.thefreedictionary.com/bilayers

Microemulsions: Droplets stabilized by surfactants

[^0]
Synthetic polymers :

http://pslc.ws/macrog/property/solpol/ps5.htm

Natural polymers: Proteins, DNAs, RNAs, ...

http://www.homebrewtalk.com/showthread.php?t=111819

Inside a cell

$(A$ cell $)=(A$ space surrounded by membranes, $\sim 10 \mu \mathrm{~m})$

$$
\begin{aligned}
& \qquad+ \\
& \qquad \text { (Many types of colloids, } 1 \mathrm{~nm} \sim 1 \mu \mathrm{~m} \text {) } \\
& \text { Proteins (molecular machines), DNA/RNA (molecular } \\
& \text { information strages), Bilayers (molecular frameworks), } \cdots
\end{aligned}
$$

> It's a small colloidal world!

Ingredients of life

Three major ingredients of life
Nucleic acids : Information
Protein : Functionality
Lipids : Frameworks

All of them are Colloids!

Large interfaces

Exercise 1: Calculate the total surface area of n colloidal particles of the diameter d.

Exercise 2 : Then calculate the total surface area in $1 l$ of colloidal suspension containing $10 \%(\mathrm{v} / \mathrm{v})$ of colloids of $1 \mu \mathrm{~m}$ in diameter.

Colloidal suspension

Importance of fluctuation

Sedimentation equilibrium
The number $n(h)$ of colloids at the height h :

$$
\begin{equation*}
\frac{n(h)}{n(0)}=\exp \left\{-\frac{\left(m-m_{w}\right) g h}{k_{B} T}\right\} \tag{1}
\end{equation*}
$$

m : the mass of a colloid
m_{w} : the mass of water of the same volume with a colloid $=\exp \left(-\frac{h}{\lambda}\right)$,
$\lambda=\frac{k_{B} T}{\left(m-m_{w}\right) g} \cdots$ The hight where $n(\lambda) / n(0)=\mathrm{e}^{-1}$.
(3)

Exercise 3: Calulate λ for silica particles of the density $\rho=2.2 \mathrm{~g} / \mathrm{cm}^{3}$ and the radius r below.

$r(\mu \mathrm{~m})$	λ
0.1	
1	
10	
100	

When does λ become larger than r ?

Summary

- Colloids are particles of size $1 \mathrm{~nm} \sim 10 \mu \mathrm{~m}$.
- It is mesoscopic world in between micro and macro.
- The interface always plays important role in colloids.
- Also fluctuation is always important in colloidal world.

Outline

Ensemble

One dimensional Brownian motion: N times observation

\vdots

- Each sample is different.
- But statistical properties are common.
\Longrightarrow No use of deterministic.
\Longrightarrow Need of statistic.

Ensemble
$x_{1}, x_{2}, \cdots, x_{N}$: samples
Variables change randomly
... Random variables

- Random variable: $x_{1}, x_{2}, \cdots, x_{N}$
- Random process: $x(t)$

The process that changes every time sampled.

- Ensemble average: Averaged quantity over the ensemble.

$$
\begin{equation*}
\langle x(t)\rangle=\frac{1}{N} \sum_{\text {path }} x_{i}(t) \tag{4}
\end{equation*}
$$

This is different from the time average,

$$
\begin{equation*}
\left\langle x_{i}\right\rangle_{\text {time }}=\frac{1}{T} \int_{-T / 2}^{T / 2} x_{i}(t) d t \tag{5}
\end{equation*}
$$

Ergodic hypothesis

The ergodic hypothesis assumes for a safficiently long time,

$$
\begin{equation*}
\langle x\rangle=\langle x\rangle_{\text {time }} \tag{6}
\end{equation*}
$$

, if the system is in a steady state.

All the microstates the system can access has the same probability to be visited by the system.

Example: An average of a hundreds dice vs. an average of a die cast a hundred times.

The central limit theorem

Let's consider the random variables $x_{1}(t), x_{2}(t), \cdots, x_{n}(t)$ with $\left\langle x_{i}\right\rangle(t)=0$, and its sum,

$$
\begin{equation*}
X_{n}(t)=\sum_{i=1}^{n} x_{i}(t) \tag{7}
\end{equation*}
$$

Then the mean and variance are

$$
\begin{align*}
\left\langle X_{n}\right\rangle & =\left\langle\sum_{i} x_{i}\right\rangle=\sum_{i}\left\langle x_{i}\right\rangle=0 \tag{8}\\
\left\langle X_{n}^{2}\right\rangle & =\sum_{i}\left\langle x_{i}^{2}\right\rangle \equiv \sum_{i} \sigma_{i}^{2} \tag{9}
\end{align*}
$$

Exercise 4 : Confirm eq. (9).

The central limit theorem

If $x_{1}, x_{2}, \cdots, x_{n}$ are similar random variables, the probability distribution function $P\left(X_{n}\right)$ becomes a Gaussian distribution,

$$
\begin{align*}
P\left(X_{n}\right) & \xrightarrow[n \rightarrow \infty]{ } \frac{1}{\sqrt{2 \pi s_{n}^{2}}} \exp \left(-\frac{X_{n}^{2}}{2 s_{n}^{2}}\right) \tag{10}\\
\quad s_{n}^{2} & =\sum_{i} \sigma^{2} \tag{11}
\end{align*}
$$

This is called the central limit theorem.

Brownian motion \& Gaussian distribution

Let $x_{1}, x_{2}, \cdots x_{n}$ be displacement at the step i of Brownian motion.

Random walk model

$$
\begin{align*}
\left\langle x_{i}\right\rangle & =0 \tag{12}\\
\left\langle x_{i}^{2}\right\rangle & =\sigma_{i}^{2} \tag{13}
\end{align*}
$$

Then the distribution of $X_{n}=\sum_{n} x_{i}$ becomes Gaussian because of the central limit theorem.

Exercise 5 : Calculate

$$
\begin{align*}
& \left\langle X_{n}\right\rangle=\int_{-\infty}^{\infty} X_{n} P\left(X_{n}\right) d X_{n} \tag{14}\\
& \left\langle X_{n}^{2}\right\rangle=\int_{-\infty}^{\infty} X_{n}^{2} P\left(X_{n}\right) d X_{n} \tag{15}\\
& \text { with } P\left(X_{n}\right)=\frac{1}{\sqrt{2 \pi s_{n}^{2}}} \exp \left(-\frac{X_{n}^{2}}{2 s_{n}^{2}}\right) \tag{16}\\
& \text { and } \int_{-\infty}^{\infty} x^{2} \mathrm{e}^{-\alpha x^{2}} d x=\frac{1}{2 \alpha}\left(\frac{\pi}{\alpha}\right)^{1 / 2} \tag{17}
\end{align*}
$$

Mean square displacement

$$
\begin{align*}
& \text { If } \sigma^{2} \equiv \sigma_{1}^{2}=\sigma_{2}^{2}=\cdots \sigma_{n}^{2} \\
& \qquad s_{n}^{2}=\sum_{i} \sigma_{i}^{2}=n \sigma^{2} \tag{18}
\end{align*}
$$

Then

$$
\begin{equation*}
\left\langle X_{n}^{2}\right\rangle=n \sigma \propto n \text { (the number of steps). } \tag{19}
\end{equation*}
$$

Then with $n=\frac{t}{\Delta t},(\Delta t=$ Time needed for a step $)$,

$$
\begin{align*}
\left\langle X_{n}^{2}\right\rangle & =\frac{\sigma^{2}}{\Delta t} t \propto t \tag{20}\\
& =2 D t, \quad D=\frac{\sigma^{2}}{2 \Delta t} \tag{21}
\end{align*}
$$

D is the diffusion coefficient.

Exercise 6: Calsulate $\left\langle X_{n}^{2}\right\rangle$ directly from

$$
\begin{equation*}
\left\langle X_{n}^{2}\right\rangle=\left\langle\left(x_{1}+x_{2}+\cdots+x_{n}\right)^{2}\right\rangle \tag{22}
\end{equation*}
$$

by assuming the independency between x_{i} and x_{j} if $i \neq j$.

Correlation function

For a random process $x(t)$,

$$
\begin{align*}
\phi\left(t_{0}, t\right) & \equiv\left\langle x(t) x\left(t_{0}+t\right)\right\rangle_{\text {time }} \tag{23}\\
& =\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} x_{k}\left(t_{0}\right) x\left(t_{0}+t\right) d t_{0} \tag{24}
\end{align*}
$$

is called the correlation function.

How much similar is $x\left(t_{0}+t\right)$ with $x\left(t_{0}\right)$?

Under the ergodic hypothesis, the ensemble average

$$
\begin{equation*}
\left\langle x\left(t_{0}\right)\left(x\left(t_{0}+t\right)\right)\right\rangle=\frac{1}{N} \sum_{k=1}^{N} x_{k}\left(t_{0}\right) x_{k}\left(t_{0}+t\right) \tag{25}
\end{equation*}
$$

is the same as $\phi(t)$. Thus

$$
\begin{equation*}
\phi\left(t_{0}, t\right)=\left\langle x\left(t_{0}\right) x\left(t_{0}+t\right)\right\rangle . \tag{26}
\end{equation*}
$$

Reversibility \& Stationarity

- If the system is in steady state, $\phi(t)$ does not depend on t_{0}.

$$
\begin{equation*}
\phi\left(t_{0}, t\right)=\phi(t)=\langle x(0) x(t)\rangle . \tag{27}
\end{equation*}
$$

- If the system is reversible, $\phi\left(t_{0}, t\right)$ does not change when $t \rightarrow-t$.

$$
\begin{equation*}
\phi\left(t_{0}, t\right)=\left\langle x\left(t_{0}\right) x\left(t_{0}+t\right)\right\rangle=\left\langle x\left(t_{0}\right) x\left(t_{0}-t\right)\right\rangle=\phi\left(t_{0},-t\right) \tag{28}
\end{equation*}
$$

$\therefore \quad \phi\left(t_{0}, t\right)$ is an even function of t.

It is impossible to determin the direction of time from the data like this.

Physics of the correlation function

- $t \rightarrow 0$: Always,

$$
\begin{equation*}
\left\langle x\left(t_{0}\right) x\left(t_{0}+t\right)\right\rangle=\left\langle x\left(t_{0}\right)^{2}\right\rangle>0 \tag{30}
\end{equation*}
$$

- $t \rightarrow \infty: x\left(t_{0}\right)$ and $x\left(t_{0}+t\right)$ is independent. Therefore,

$$
\begin{equation*}
\left\langle x\left(t_{0}\right) x\left(t_{0}+t\right)\right\rangle \underset{t \rightarrow \infty}{\longrightarrow}\left\langle x\left(t_{0}\right)\right\rangle\left\langle x\left(t_{0}+t\right)\right\rangle=0 \tag{31}
\end{equation*}
$$

Thus, $\phi\left(t_{0}, t\right)$ is the reducing function of t.

The time at which

$$
\begin{equation*}
\phi\left(t_{0}, t\right) / \phi\left(t_{0}, 0\right)=\mathrm{e}^{-1} \tag{32}
\end{equation*}
$$

is the correlation time, τ_{c}.

Fourier transformation

The Fourier integral or Fourier transform of $x(t)$ is

$$
\begin{equation*}
x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \hat{x}(\omega) \mathrm{e}^{i \omega t} d \omega \tag{33}
\end{equation*}
$$

$\hat{x}(\omega)$: The Fourier transform or spectral composition.

Since $x(t)$ is real, $x^{*}(t)=x(t)$.
Exercise 7: Then show the relation,

$$
\begin{equation*}
\hat{x}^{*}(\omega)=\hat{x}(-\omega) . \tag{35}
\end{equation*}
$$

Problem of divergence

Inverse Fourier transform of $x(t)$ gives

$$
\begin{equation*}
\hat{x}(\omega)=\int_{-\infty}^{\infty} x(t) \mathrm{e}^{-i \omega t} d t \tag{36}
\end{equation*}
$$

But this will sometimes diverge, because $x(t)$ always has a value. So it is necessary to define $x_{T}(t)$ as

$$
x_{T}(t)= \begin{cases}x(t) & -T \leq t \leq T \tag{37}\\ 0 & \text { otherwise }\end{cases}
$$

then its inverse Fourier transform

$$
\begin{equation*}
\hat{x}_{T}(\omega)=\int_{-\infty}^{\infty} x_{T}(t) \mathrm{e}^{-i \omega t} d t \tag{38}
\end{equation*}
$$

does not diverge.

Spectrum of the correlation function

The definition of $\phi(t)$ (under the stationarity assumption) is

$$
\begin{equation*}
\phi(t)=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} x_{T}\left(t_{0}\right) x_{T}^{*}\left(t_{0}+t\right) d t_{0} \tag{39}
\end{equation*}
$$

Exercise 8 : Show the relation

$$
\begin{equation*}
\phi(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \lim _{T \rightarrow \infty} \frac{1}{2 T}\left|\hat{x}_{T}(\omega)\right|^{2} \mathrm{e}^{i \omega t} d \omega \tag{40}
\end{equation*}
$$

using

$$
\begin{align*}
x_{T}(t) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} \hat{x}_{T}(\omega) \mathrm{e}^{i \omega t} d \omega \tag{41}\\
\delta\left(\omega-\omega^{\prime}\right) & =\lim _{T \rightarrow \infty} \frac{1}{2 \pi} \int_{-T}^{T} \mathrm{e}^{i\left(\omega-\omega^{\prime}\right) t} d t \tag{42}
\end{align*}
$$

Power spectrum

The power spectrum or spectrum density is defined as

$$
\begin{equation*}
J(\omega)=\lim _{T \rightarrow \infty} \frac{1}{2 T}\left|\hat{x}_{T}(\omega)\right|^{2} \tag{43}
\end{equation*}
$$

Then

$$
\begin{equation*}
\phi(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} J(\omega) \mathrm{e}^{i \omega t} d \omega \tag{44}
\end{equation*}
$$

On the other hand, by Fourier inverse transform

$$
\begin{equation*}
J(\omega)=\int_{-\infty}^{\infty} \phi(t) \mathrm{e}^{-i \omega t} d t \tag{45}
\end{equation*}
$$

Wiener-Khinchin theorem

Thus there is a relation

This is called Wiener-Khinchin theorem.

Exercise 9 : Express $\phi(0)=\left\langle x^{2}\right\rangle$ using $J(\omega)$.
Exercise 10 : Show that $J(\omega)$ is real.

Outline

Introduction

What are colloids?
Cells as a colloidal world
Nature of colloids
Summary

Stochastic process

Definitions \& theorems
Brownian motion
Correlation function
Power spectrum \& Wiener-Khinchin theorem

Langevin equation

Derivation
Mean square displacement
Spectra of fluctuation
Fokker-Planck equation
Derivation
Diffusion equation

Equation of motion for Brownian motion

Let's consider one-dimensional Brownian motion.

The equation of motion is

$$
\begin{align*}
m \frac{d v}{d t} & =F(t)+f(t) \tag{47}\\
F(t) & : \text { External force } \tag{48}\\
f(t) & : \text { Force exerted by solvent }
\end{align*}
$$

$f(t)$: Approximated as a random function of t
\therefore Random variable

Force exerted by solvent

$f(t)$ can be splitted into two parts

$$
\begin{align*}
f(t) & =-\zeta v+f^{\prime}(t) \tag{50}\\
-\zeta v & : \text { Viscous resistance } \cdots \text { dissipation } \\
f^{\prime}(t) & : \text { Random force } \cdots \text { fluctuation. }
\end{align*}
$$

Both come from the interaction to solvent molecules.
\therefore Strong correlation between dissipation and fluctuation \longrightarrow the fluctuation-dissipation theorem

Langevin equation

Then the equation of motion amounts to

$$
\begin{equation*}
m \frac{d v}{d t}=F(t)-\zeta v+f^{\prime}(t) \tag{53}
\end{equation*}
$$

This is called the Langevin equation. It is a stochastic differential equation.

Random walk model

Let $x(t)$ to be the position of the particle at t, and

$$
\begin{align*}
\frac{d x}{d t} & =v \tag{54}\\
x(0) & =0 \quad \therefore\langle x(t)\rangle=0 \tag{55}\\
\left\langle f^{\prime}(t)\right\rangle & =0 \tag{56}\\
\left\langle x f^{\prime}\right\rangle & =\langle x\rangle\left\langle f^{\prime}\right\rangle=0 \quad \because \text { No correlation } \tag{57}\\
F(t) & =0 \tag{58}
\end{align*}
$$

Then the Langevin equation becomes

$$
\begin{equation*}
m \frac{d v}{d t}=-\zeta v+f^{\prime}(t) \tag{59}
\end{equation*}
$$

Multiply x to both sides and transform,

$$
\begin{align*}
m x \frac{d v}{d t} & =-\zeta x v+x f^{\prime}(t) \tag{60}\\
\therefore m\left\{\frac{d}{d t}(x v)-v^{2}\right\} & =-\zeta x v+x f^{\prime}(t) . \tag{61}
\end{align*}
$$

Then take the ensemble average of both sides,

$$
\begin{equation*}
m \frac{d}{d t}\langle x v\rangle-m\left\langle v^{2}\right\rangle=-\zeta\langle x v\rangle+\left\langle x f^{\prime}(t)\right\rangle \tag{62}
\end{equation*}
$$

With the equipartition law,

$$
\begin{equation*}
\frac{m\left\langle v^{2}\right\rangle}{2}=\frac{k_{B} T}{2} \tag{63}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\langle x f^{\prime}\right\rangle=0, \tag{64}
\end{equation*}
$$

the equation is simplified to

$$
\begin{equation*}
m \frac{d}{d t}\langle x v\rangle=k_{B} T-\zeta\langle x v\rangle . \tag{65}
\end{equation*}
$$

Exercise 11 : Solve Eq. (65) under the initial condition, $\langle x(0)\rangle=0$.

With

$$
\begin{equation*}
\langle x v\rangle=\frac{1}{2} \frac{d}{d t}\left\langle x^{2}\right\rangle, \tag{66}
\end{equation*}
$$

the solution of Eq. (65) is

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}\left\langle x^{2}\right\rangle=\frac{k_{B} T}{\zeta}\left(1-\mathrm{e}^{-t / \tau}\right), \tau=\frac{m}{\zeta} . \tag{67}
\end{equation*}
$$

Exercise 12 : Solve Eq. (67) under the initial condition, $\left\langle x^{2}(0)\right\rangle=0$.

The solution of Eq. (67) is

$$
\begin{equation*}
\left\langle x^{2}(t)\right\rangle=\frac{2 k_{B} T}{\zeta}\left\{t-\tau\left(1-\mathrm{e}^{-t / \tau}\right)\right\}, \tau=\frac{m}{\zeta} \tag{68}
\end{equation*}
$$

Exercise 13: Calculate the limit of Eq. (68) when $t \ll \tau$ (the short time limit).

Exercise 14: Calculate the limit of Eq. (68) when $t \gg \tau$ (the long time limit).

In the short time limit $(t \ll \tau)$,

$$
\begin{align*}
\left\langle x^{2}(t)\right\rangle & =\frac{k_{B} T}{\zeta \tau} t^{2} \tag{69}\\
\therefore \quad \sqrt{\left\langle x^{2}(t)\right\rangle} & =\sqrt{\frac{k_{B} T}{m}} t \tag{70}
\end{align*}
$$

\therefore In this regime, the particle moves ballistically with the thermal velocity,

$$
\begin{equation*}
v_{\mathrm{th}}=\frac{d}{d t} \sqrt{\left\langle x^{2}\right\rangle}=\frac{k_{B} T}{m} . \tag{71}
\end{equation*}
$$

In the long time limit $(t \gg \tau)$,

$$
\begin{equation*}
\left\langle x^{2}(t)\right\rangle=\frac{2 k_{B} T}{\zeta} t \tag{72}
\end{equation*}
$$

$\left\langle x^{2}(t)\right\rangle \propto t$ indicates diffusive motion ($=$ the random walk model).

Einstein relation

If compared with the result from the random walk model,

$$
\begin{equation*}
\left\langle x^{2}(t)\right\rangle=2 D t \tag{73}
\end{equation*}
$$

the Einstein relation is obtained,

$$
\begin{equation*}
D=\frac{k_{B} T}{\zeta} \tag{74}
\end{equation*}
$$

D : Characteristics of fluctuation
$\zeta:$ Characteristics of dissipation
\therefore This relation is one of fluctuation-dissipation theorem.

Spectrum of velocity fluctuation

$$
\text { Let } F(t)=0 \text {, }
$$

$$
\begin{equation*}
m \frac{d v}{d t}=-\zeta v+f^{\prime}(t) \tag{77}
\end{equation*}
$$

Multiply $v(0)$ and average,

$$
\begin{align*}
m \frac{d}{d t}\langle v(0) v(t)\rangle=-\zeta\langle v(0) v(t)\rangle+\left\langle v(0) f^{\prime}(t)\right\rangle \tag{78}\\
\| \\
\langle v(0)\rangle\left\langle f^{\prime}(t)\right\rangle=0
\end{align*}
$$

Exercise 15 : Solve Eq. (79) with $\left\langle v^{2}(0)\right\rangle=k_{B} T / m$ (equipartition law).

Thus the velocity correlation function is

$$
\begin{equation*}
\phi_{v}=\frac{k_{B} T}{m} \mathrm{e}^{-t / \tau_{c}}, \tau_{c}=\frac{m}{\zeta} \tag{81}
\end{equation*}
$$

Since $\phi_{v}(t)=\phi_{v}(-t)$,

$$
\begin{equation*}
\phi_{v}=\frac{k_{B} T}{m} \mathrm{e}^{-|t| / \tau_{c}} \tag{82}
\end{equation*}
$$

The spectrum of $v, J_{v}(\omega)$, can be obtained using Wiener-Khinchin theorem,

$$
\begin{equation*}
\phi_{v}(t) \stackrel{\text { inverse Fourier }}{\rightleftharpoons \text { Fourier }} J_{v}(\omega) \tag{83}
\end{equation*}
$$

$$
\begin{equation*}
J_{v}(\omega)=\int_{-\infty}^{\infty} \phi_{v}(t) \mathrm{e}^{-i \omega t} d t \tag{84}
\end{equation*}
$$

Exercise 16 : Solve Eq. (84) using Euler's formula,

$$
\begin{equation*}
\mathrm{e}^{i \theta}=\cos \theta+i \sin \theta \tag{85}
\end{equation*}
$$

Debye relaxation spectrum

$$
\begin{equation*}
J_{v}(\omega)=\frac{2 k_{B} T}{\zeta} \frac{1}{1+\omega^{2} \tau_{c}^{2}} \tag{86}
\end{equation*}
$$

Spectrum of random force

Fourier transform $v(t), f^{\prime}(t)$,

$$
\begin{align*}
v(t) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} \hat{v}(\omega) \mathrm{e}^{i \omega t} d \omega \\
f^{\prime}(t) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} \hat{f}^{\prime}(\omega) \mathrm{e}^{i \omega t} d \omega \tag{87}
\end{align*}
$$

Exercise 17 : Substitute Eqs. (87) into the Langevin equation $(F(t)=0)$ and obtain the relation between \hat{v} and \hat{f}^{\prime}.

From the relation,

$$
\begin{equation*}
\hat{v}=\frac{\hat{f}^{\prime}}{i m \omega+\zeta} \tag{88}
\end{equation*}
$$

the power spectrum can be obtained,

$$
\begin{equation*}
J_{v}(\omega)=|\hat{v}|^{2}=\frac{\left|\hat{f}^{\prime}\right|^{2}}{|i m \omega+\zeta|^{2}}=\frac{J_{f^{\prime}}(\omega)}{|i m \omega+\zeta|^{2}} \tag{89}
\end{equation*}
$$

Exercise 18 : Using

$$
\begin{equation*}
J_{v}(\omega)=\frac{2 k_{B} T}{\zeta} \frac{1}{1+\omega^{2} \tau_{c}^{2}} \tag{90}
\end{equation*}
$$

calculate $J_{f^{\prime}}(\omega)$.

White spectrum

$$
\begin{equation*}
J_{f^{\prime}}(\omega)=2 \zeta k_{B} T \tag{91}
\end{equation*}
$$

It is also called white noise.

Exercise 19 : Calculate the correlation function, $\left\langle f^{\prime}(0) f^{\prime}(t)\right\rangle$, using the definition of δ function,

$$
\begin{equation*}
\delta(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \mathrm{e}^{i \omega t} d \omega \tag{92}
\end{equation*}
$$

$$
\left\langle f^{\prime}(0) f^{\prime}(t)\right\rangle=2 \zeta k_{B} T \delta(t)
$$

Outline

Introduction

What are colloids?
Cells as a colloidal world
Nature of colloids
Summary
Stochastic process
Definitions \& theorems
Brownian motion
Correlation function
Power spectrum \& Wiener-Khinchin theorem
Langevin equation
Derivation
Mean square displacement
Spectra of fluctuation
Fokker-Planck equation
Derivation
Diffusion equation

Transition probability

Let's consider the transition probability, $P\left(x, t \mid x_{0}\right) d x$.

$$
t \begin{array}{ccc}
t=0 & & t=t \\
\hline x_{0} & d x & x+d x
\end{array}
$$

Initial condition:

$$
\begin{equation*}
P\left(x, 0 \mid x_{0}\right)=\delta\left(x-x_{0}\right) \tag{94}
\end{equation*}
$$

Markov process

The Markov process:
If each step of a random process depends only on the state a step ago, the process is the Markov process.

Then,

$$
\begin{equation*}
P\left(x, t+\Delta t \mid x_{0}\right)=\int_{-\infty}^{\infty} P\left(x, \Delta t \mid x^{\prime}\right) P\left(x^{\prime}, t \mid x_{0}\right) d x^{\prime} \tag{95}
\end{equation*}
$$

which is called Chapman-Kolmogorov equation.

Kramers-Moyal expansion

When $\Delta t \ll 1$, the left-hand side of Eq. (95) can be expanded,

$$
\begin{equation*}
P\left(x, t \mid x_{0}\right)+\frac{\partial P}{\partial t} \Delta t=\int_{-\infty}^{\infty} P(x, \Delta t \mid x-\Delta x) P\left(x-\Delta x, t \mid x_{0}\right) d \Delta x \tag{96}
\end{equation*}
$$

with a change of variables, $\Delta x=x-x^{\prime}$, where $\Delta x \ll 1$ for $\Delta t \ll 1$.

Expansion of $P(x, \Delta t \mid x-\Delta x) P\left(x-\Delta x, t \mid x_{0}\right)$ around $x+\Delta x$ yields,

$$
\begin{align*}
& P(x, \Delta t \mid x-\Delta x) P\left(x-\Delta x, t \mid x_{0}\right)= \\
& \qquad \sum_{n=0}^{\infty} \frac{(-\Delta x)^{n}}{n!} \frac{\partial^{n}}{\partial x^{n}} P(x+\Delta x, \Delta t \mid x) P\left(x, t \mid x_{0}\right) \tag{97}
\end{align*}
$$

Exercise 20 : Confirm Eq. (97).

$$
\begin{aligned}
& \therefore P\left(x, t \mid x_{0}\right)+\frac{\partial P}{\partial t} \Delta t= \\
& \quad \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} \frac{\partial^{n}}{\partial x^{n}} P\left(x, t \mid x_{0}\right) \int_{-\infty}^{\infty}(\Delta x)^{n} P(x+\Delta x, \Delta t \mid x) d \Delta x .
\end{aligned}
$$

At $n=0$,

$$
\begin{equation*}
P\left(x, t \mid x_{0}\right) \int_{-\infty}^{\infty} P(x+\Delta x, \Delta t \mid x) d \Delta x=P\left(x, t \mid x_{0}\right) \tag{98}
\end{equation*}
$$

$$
=1
$$

Then,

$$
\begin{aligned}
& \frac{\partial P}{\partial t}= \\
& \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n!} \frac{\partial^{n}}{\partial x^{n}}\left[\alpha_{n}(x) P\left(x, t \mid x_{0}\right)\right] \\
& \begin{aligned}
\alpha_{n}(x) & =\lim _{\Delta t \rightarrow 0} \frac{1}{\Delta t} \int_{-\infty}^{\infty}(\Delta x)^{n} P(x+\Delta x, \Delta t \mid x) d \Delta x \\
& =\lim _{\Delta t \rightarrow 0} \frac{\left\langle(\Delta x)^{n}\right\rangle}{\Delta t} \\
& \left\langle(\Delta x)^{n}\right\rangle \cdots n \text {th moment of } \Delta x .
\end{aligned}
\end{aligned}
$$

This is called Kramers-Moyal expansion.

Exercise 21 : Confirm Eq. (99).

Fokker-Planck equation

When a change of x is induced by many random events (such as diffusion), $P\left(x, t \mid x_{0}\right)$ becomes Gaussian for the central limit theorem. Then

$$
\begin{equation*}
\alpha_{n}=0(n \geq 3) \tag{102}
\end{equation*}
$$

Then

$$
\begin{equation*}
\frac{\partial P}{\partial t}=-\frac{\partial}{\partial x}\left(\alpha_{1} P\right)+\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}}\left(\alpha_{2} P\right) \tag{103}
\end{equation*}
$$

Simplified a lot!

1st and 2nd moment

Calculate α_{1}, α_{2} using the Langevin equation:

$$
\begin{equation*}
m \frac{d^{2} x}{d t^{2}}+\zeta \frac{d x}{d t}=F(x, t)+f^{\prime}(t) \tag{104}
\end{equation*}
$$

Assuming (inertia) \ll (viscous resistance),

$$
\begin{equation*}
\frac{d x}{d t}=\frac{1}{\zeta} F(x, t)+\frac{1}{\zeta} f^{\prime}(t) . \tag{105}
\end{equation*}
$$

Then integrate both sides,

$$
\int_{t}^{t+\Delta t} \frac{d x}{d t} d t^{\prime}=\frac{1}{\zeta} \int_{t}^{t+\Delta t} F\left(x, t^{\prime}\right) d t^{\prime}+\frac{1}{\zeta} \int_{t}^{t+\Delta t} f^{\prime}\left(t^{\prime}\right) d t^{\prime}
$$

$$
\begin{align*}
\therefore \mathrm{A}= & x(t+\Delta t)-x(t)=\Delta x \tag{107}\\
\mathrm{~B}= & \frac{1}{\zeta} F(x, t) \Delta t . \tag{108}\\
& \quad \text { (assuming } F(x, t) \text { is slowly changing.) }
\end{align*}
$$

Then

$$
\begin{equation*}
\Delta x=\frac{1}{\zeta} F(x, t) \Delta t+\frac{1}{\zeta} \int_{t}^{t+\Delta t} f^{\prime}\left(t^{\prime}\right) d t^{\prime} \tag{109}
\end{equation*}
$$

Exercise 22 : Calculate α_{1} and α_{2} using Eq. (109).

$$
\begin{align*}
\alpha_{1} & =\frac{F(x, t)}{\zeta} \tag{110}\\
\alpha_{2} & =\frac{2 k_{B} T}{\zeta} \tag{111}
\end{align*}
$$

Then with $P=P\left(x, t \mid x_{0}\right)$,

$$
\begin{equation*}
\frac{\partial P}{\partial t}=-\frac{\partial}{\partial x}\left(\frac{F}{\zeta} P\right)+\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}}\left(\frac{2 k_{B} T}{\zeta} P\right) \tag{112}
\end{equation*}
$$

Using the Einstein relation,

$$
\begin{equation*}
\frac{\partial P}{\partial t}=D \frac{\partial}{\partial x}\left(\frac{\partial P}{\partial x}-\frac{F}{k_{B} T} P\right) \tag{113}
\end{equation*}
$$

This is called the Fokker-Planck equation.
Exercise 23 : Confirm Eq. (113).

Diffusion equation

Let
$\rho(x, t) d x$: Probability to find a particle at $x \sim x+d x$ at t,
then $\rho(x, t)$ is the normalized density, and

$$
\begin{equation*}
\rho(x, t)=\int_{-\infty}^{\infty} P\left(x, t \mid x_{0}\right) \rho\left(x_{0}, 0\right) d x_{0} \tag{115}
\end{equation*}
$$

where $\rho\left(x_{0}, 0\right)$ is the initial density.Time derivative yields,

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}=\int_{-\infty}^{\infty} \frac{\partial P}{\partial t} \rho\left(x_{0}, 0\right) d x_{0} \tag{116}
\end{equation*}
$$

Exercise 24 : Substitute the Fokker-Planck equation and simplify Eq. (116).

Answer:

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}=D \frac{\partial}{\partial x}\left(\frac{\partial \rho}{\partial x}-\frac{F}{k_{B} T} \rho\right) \tag{117}
\end{equation*}
$$

Thus ρ itself is the Fokker-Planck equation. This is called diffusion equation.

Flux

The flux, j, is defined as

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}=-\frac{\partial j}{\partial x} \tag{118}
\end{equation*}
$$

This is called Continuity equation. Using j, the diffusion equation is rewritten as

$$
\begin{align*}
j=\frac{\rho}{\zeta} & \left(-k_{B} T \frac{\partial \ln \rho}{\partial x}+F\right) \tag{119}\\
& \text { Diffusion force External force }
\end{align*}
$$

Thus, the flux is proportional to (density) \times (force).
Exercise 25 : Confirm Eq. (119).

If F is a potential force,

$$
\begin{equation*}
F=-\frac{\partial U}{\partial x} \tag{120}
\end{equation*}
$$

with the potential U. Then

$$
\begin{equation*}
j=-\frac{\rho}{\zeta} \frac{\partial}{\partial x}\left(U+k_{B} T \ln \rho\right) \tag{121}
\end{equation*}
$$

where

$$
\begin{equation*}
\mu=U+k_{B} T \ln \rho \tag{122}
\end{equation*}
$$

is the chemical potential. Thus the flux is proportial to the chemical potential gradient.

Exercise 26 : Confirm Eq. (121).

Stationary state

When $U(x, t)=U(x)$, the stationary state $(\partial \rho / \partial t=0)$ is given by

$$
\begin{equation*}
\frac{\partial \rho}{\partial x}+\frac{\rho}{k_{B} T} \frac{\partial U}{\partial x}=0 \tag{123}
\end{equation*}
$$

Exercise 27 : Solve Eq. (123) to calculate the stationary density distribution $\rho(x)$.

Answer:

$$
\begin{equation*}
\rho \propto \exp \left(-\frac{U}{k_{B} T}\right) \tag{124}
\end{equation*}
$$

Then

$$
\begin{equation*}
j=-\frac{\rho}{\zeta} \frac{\partial}{\partial x}\left(U+k_{B} T \ln \rho\right)=0 \tag{125}
\end{equation*}
$$

Thus there is no flux in the stationary state.

[^0]: What are colloids? https://www.researchgate.net/publication/215475567_Microemulsion_method_A_novel_route_to_synthesize_orga

