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Examples of colloids

micro meso macro
Atoms-Molecules Colloids Objects
~ 1 nm 1~ 10 pm 10 pm ~

Milk : Fat particles in water

https:/ /www.quora.com/If-you-mix-skim-milk-and-whole-milk-will-they-stay-mixed
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What are colloids?

Opal : Crystal of silica particles
Silica

http://www.silicagelmanufacturer.com/white-silica-gel.htm

http://www.luxrender.net /forum/viewtopic.php?f=36&t=12547

Micelles : Aggregates of surfactants
Micelle

Hydrophilic head

Buzzle.com

https:/ /socratic.org/questions /what-are-micelles
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Bilayers : Two dimensional aggregates of surfactants

Hydrophilic head groups

) 5 Hydrophobic tails

http://medical-dictionary.thefreedictionary.com/bilayers

Microemulsions : Droplets stabilized by surfactants

WT@
NN

water

&

) https.//www.researchgate.net/publication/215475567,Microemulsion,method,A,novel,route,to,synthesize,m@a
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Synthetic polymers :

http://pslc.ws/macrog/property/solpol /ps5.htm

Natural polymers : Proteins, DNAs, RNAs, - --

a-amylase Hordeum vulgare
(barley)

Randorm cail

http://www.homebrewtalk.com/showthread.php?t=111819
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Inside a cell

(A cell) = (A space surrounded by membranes, ~ 10 um)
+
(Many types of colloids, 1 nm ~ 1 um)

Proteins (molecular machines), DNA/RNA (molecular
information strages), Bilayers (molecular frameworks), - - -

It's a small colloidal world!
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Ingredients of life

Three major ingredients of life

Nucleic acids : Information
Protein . Functionality
Lipids . Frameworks

All of them are Colloids!
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Large interfaces

Exercise 1 . Calculate the total surface area of n colloidal
particles of the diameter d.

Exercise 2 © Then calculate the total surface area in 1 [ of
colloidal suspension containing 10%(v/v) of colloids of 1 um
in diameter.

Colloidal suspension
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Importance of fluctuation

Sedimentation equilibrium

The number n(h) of colloids at the height h: }h
n(h) (m —my)gh

N g 1
n(0) exp{ kpT (1)

m : the mass of a colloid

My : the mass of water of the same volume with a colloid

— exp (—%) , @)

.-+ The hight where n()\)/n(0) = e~ L.
(3)
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Exercise 3 : Calulate A for silica particles of the density
p = 2.2 g/cm? and the radius r below.

(pm) | A
1

When does A become larger than r7?
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Summary

Colloids are particles of size 1 nm ~ 10 pum.
It is mesoscopic world in between micro and macro.
The interface always plays important role in colloids.

Also fluctuation is always important in colloidal world.
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Ensemble
One dimensional Brownian motion: N times observation

L1 Path 1 e Each sample is different.

e But statistical properties are

t common.

= No use of deterministic.

xQM Path 2 — Need of statistic.
\ /\/\

AW
\/‘ \/ \/ \ Ensemble

T1,%o, -+ ,TN: samples
Variables change randomly

N
A\ Path N --- Random variables
\ /\ N AN /t

IVAGASAY

Definitions & theorems
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e Random variable: z{,x9, -+ , 2N
e Random process: z(t)
The process that changes every time sampled.

e Ensemble average: Averaged quantity over the ensemble.

(a(t)) = 5 3 wi(t) )

path
This is different from the time average,
1 [T/2
@ame =7 [ lt)dt (5

—T/2

Definitions & theorems
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Ergodic hypothesis

The ergodic hypothesis assumes for a safficiently long time,
<$> = <l‘>time (6)
, if the system is in a steady state.

All the microstates the system can access has the same
probability to be visited by the system.

Micro states

Example: An average of a hundreds dice vs. an average of a
die cast a hundred times.
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The central limit theorem

Let's consider the random variables z1(t), z2(t), - - , zy(t) with
(x;) (t) = 0, and its sum,

Xa(t) = 3 ai(t). (7)
=1

Then the mean and variance are

(Xa) = <Z> =Y (@) =0 ®)

(Xy=2_(zt) =3 dt (9)

Exercise 4 : Confirm eq. (9).
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The central limit theorem

If 1,29, ,x, are similar random variables, the probability
distribution function P(X,,) becomes a Gaussian distribution,

1 X2
P(X,) —— -2 1
) e T eo(-55) 0

5%2202. (11)

This is called the central limit theorem.

Definitions & theorems
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Brownian motion & Gaussian distribution

Let x1,x9, -z, be displacement at the step ¢ of Brownian
motion.

Random walk model

Iy

Then the distribution of X,, = " x; becomes Gaussian
because of the central limit theorem.
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Exercise 5 . Calculate
oo
(Xn) :/ X, P(X,)dX,
—00

(X72) = / X2P(X,)dX,,

1 X2
with P(X,) = exp <Z>
\/2ms? 25,
[oe] 1/2
and / 220 gy = 1 <E) /
oo 2 \«

Brownian motion
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Mean square displacement

— 52 —
fo?=02=02=---0

Then

(X?2) =no ocn (the number of steps).

Then with n = &, (At = Time needed for a step),

2 —_
(X;) = Att ot

—9Dt, D=

0_2

2At
D is the diffusion coefficient.

Brownian motion

(18)

(19)

(20)

(21)
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Exercise 6 : Calsulate <X12L> directly from
<X§> = <(£L‘1 —l—x2+--'+mn)2> (22)

by assuming the independency between z; and z; if i # j.
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Correlation function

For a random process z(t),
¢(t07 t) = <1’(t)$(t0 + t)>time

1 T
= 1' R
Jim o /_T:ck(tg)x(to—i-t)dtg

is called the correlation function.

—
AVAUN FANEASn NIV, t
A% v J - \%

How much similar is x(tg + t) with z(to)?

Correlation function

(23)

(24)
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Under the ergodic hypothesis, the ensemble average

N
(z(to)(z(to + 1)) Za:k (to)zk(to +1)  (25)
Ni=
is the same as ¢(t). Thus
o(to, t) = (z(to)x(to + 1)) . (26)
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Reversibility & Stationarity

o If the system is in steady state, ¢(t) does not depend on t.
¢(to,t) = o(t) = (x(0)x(t)) . (27)

o |f the system is reversible, ¢(tg,t) does not change when
t— —t.

¢(to, ) = (z(to)z(to + 1)) = (z(to)z(to — 1)) = P(to, —1)
&(to,t) is an even function of t. (29)

It is impossible to determin the
direction of time from the data like

this.
t
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Physics of the correlation function

x

to

—rd

AWAV.VYN Ly
MV VYV NV

o t — (0: Always,
(z(to)x(to + 1)) = (x(t0)?) > 0. (30)
e t — oo: x(tg) and x(tg + t) is independent. Therefore,

(z(to)z(to + 1)) —— (2(to)) (z(to + 1)) =0 (31)

t—o00

Thus, ¢(to,t) is the reducing function of ¢.

Correlation function
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é(to,t)

The time at which

b(to,t)/d(t0,0) = e} (32)

is the correlation time, 7.

Tc
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Fourier transformation

The Fourier integral or Fourier transform of z(t) is

x(t) ! /Oo #(w)e™tdw

:% .

Z(w) : The Fourier transform or spectral composition.

Since z(t) is real, x*(t) = z(t).
Exercise 7 : Then show the relation,

¥ (w) = #(—w).

Power spectrum & Wiener-Khinchin theorem

(33)

(34)

(35)
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Problem of divergence

Inverse Fourier transform of x(t) gives
S .
(w) = / 2(t)e— L. (36)
—00

But this will sometimes diverge, because x(t) always has a
value. So it is necessary to define xp(t) as

w(t) —T<t<T
zr(t) = 37
r(t) {0 otherwise (37)
then its inverse Fourier transform
Oo .
B (w) = / sr (et dt. (38)
— o0

does not diverge.

Power spectrum & Wiener-Khinchin theorem 30/ 70



Spectrum of the correlation function

The definition of ¢(t) (under the stationarity assumption) is

T
6(t) = lim — / pr(to)wh(to + £)dto.

T—00 2T -T

Exercise 8 : Show the relation

b(t) = — /OO lim — [ (w)]? et dw,

- % S T1—>o<> 2T
using
1 [ "
xp(t) = / Tr(w)e™dw
2 J_

Power spectrum & Wiener-Khinchin theorem

(39)

(40)

(41)

(42)
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Power spectrum

The power spectrum or spectrum density is defined as

Then
o(t) = L /oo J(w)e™!dw
DY . ’
On the other hand, by Fourier inverse transform

J(w) = /_ T p(t)eitdt.

Power spectrum & Wiener-Khinchin theorem
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Wiener-Khinchin theorem

Thus there is a relation

Fourier transform
o(t) >~ J(w). (46)

Fourier inverse transform

This is called Wiener-Khinchin theorem.

Exercise 9 : Express ¢(0) = (x?) using J(w).

Exercise 10 : Show that J(w) is real.

Power spectrum & Wiener-Khinchin theorem 33/70
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Equation of motion for Brownian motion

Let's consider one-dimensional Brownian motion.

(1) solvent
— . o
2 & Oo QO g (; X
particle
The equation of motion is
dv
mo = F(t)+ f(¢) (47)
F(t) : External force (48)
f(t) : Force exerted by solvent (49)

f(t) : Approximated as a random function of ¢ £(t)

.. Random variable

Derivation



Force exerted by solvent

f(t) can be splitted into two parts

ft) = =Cu+ (1) (50)
—(v : Viscous resistance - - - dissipation (51)
f'(t) : Random force - - fluctuation. (52)

Both come from the interaction to solvent molecules.

.. Strong correlation between dissipation and fluctuation
—> the fluctuation-dissipation theorem

Derivation
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Langevin equation

Then the equation of motion amounts to

dv

mo = F(t) = ¢v+ f'(t). (53)

This is called the Langevin equation. It is a stochastic
differential equation.

Derivation 37 /70



Random walk model

Let (t) to be the position of the particle at ¢, and

do _
it ~ "
2(0) =0 .. (z(t)) =0
(') =
(zf') = (:1: (f'y =10 - No correlation
F(t) = 0.
Then the Langevin equation becomes
dv
moy = —Cu+ f'(t).

Mean square displacement
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Multiply = to both sides and transform,

mx% — _Cavtaf'(#) (60)

n{ -t = e, @

Then take the ensemble average of both sides,

d
dt m<v2> =— + {zf'(t)). (62)

Mean square displacement 39 /70



With the equipartition law,

m<'[)2> _ k;BT (63)
2 2
and
<l’f’> =0, (64)
the equation is simplified to
d
m— (xv) = kT — ( (zv) . (65)

dt

Exercise 11 : Solve Eq. (65) under the initial condition, (x(0)) = 0.
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With
(@) = 5 (). (66)

the solution of Eq. (65) is

1d kpT o
§£<m2>:%<l—et/>,7:%. (67)

Exercise 12 : Solve Eq. (67) under the initial condition, (2%(0)) = 0.
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The solution of Eq. (67) is

(z%(t)) = 2k?T {t—7<1—e7t/7>}, T:%. (68)

Exercise 13 : Calculate the limit of Eq. (68) when ¢ < 7 (the short
time limit).

Exercise 14 : Calculate the limit of Eq. (68) when ¢ > 7 (the long
time limit).
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In the short time limit (¢t < 7),
2

() = 2

@20 = "%Tt (70)

_ ksl

.. In this regime, the particle moves ballistically with the thermal
velocity,

d kT
—_ — 2 —_ —
Veh = g (x?) .

Q/vth

Mean square displacement 43 /70
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In the long time limit (¢ > 7),

(1)) = 2%k T

¢

(22(t)) o< t indicates diffusive motion (= the random walk model).

t. (72)

diffusive.

ballistic

Mean square displacement 44 /70



Einstein relation

If compared with the result from the random walk model,
(z%(t)) = 2Dt, (73)

the Einstein relation is obtained,

T
p= kel (74)
¢
D : Characteristics of fluctuation (75)
¢ : Characteristics of dissipation (76)

.. This relation is one of fluctuation-dissipation theorem.

Mean square displacement 45 / 70



Spectrum of velocity fluctuation
Let F'(t) =0,

m— = —Cv + f'(t). (77)

Multiply ©v(0) and average,

m & w(O)u(t) = ~C O + (O (1) (78)
Il
(0(0)) (7/(1)) = 0

Cdey
Som d (b, (79)

¢y = (v(0)v(t)) : velocity correlation function (80)

Exercise 15 © Solve Eq. (79) with (v2(0)) = kpT'/m (equipartition law).
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Thus the velocity correlation function is

_ kBTeit/Ta Te = T (81)

by =2 :

Since ¢, (t) = ¢p(—1),

kBT _ /-
Py = %e [tl/7e (82)

The spectrum of v, J,(w), can be obtained using
Wiener-Khinchin theorem,

inverse Fourier
bu(t) < : = Jy(w) (83)
Fourier
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Tu(w) = /_ T pu(t)emitdt (84)

Exercise 16 : Solve Eq. (84) using Euler’s formula,

e = cos + isin 6. (85)
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Debye relaxation spectrum

2kpT 1
Jo(w) = f T4a?? (86)
Jp(w)

FWHM

Spectra of fluctuation 49 / 70



Spectrum of random force
Fourier transform v(t), f'(t),

i uutdw

2w
i / zwtd (87)
o w

Exercise 17 * Substitute Egs. (87) into the Langevin equation
(F(t) = 0) and obtain the relation between © and f’.
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From the relation,

f/

O et e (%)

the power spectrum can be obtained,

£r(2 J ,(w)
(w) = [?] limw + ¢|%  |imw + ¢|? (89)
Exercise 18 © Using
2kpT 1

P == T )

calculate Jy (w).
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White spectrum
Jf/(w) = 2CkBT (91)

Iy (w)

const. ] ] )
It is also called white noise.

Exercise 19 : Calculate the correlation function, (f'(0)f'(t)),
using the definition of ¢ function,

5(t) = — / " ety (92)

:% .
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(f0)f'(t)) = 2¢kpTd(t) (93)

¢p(t)

7. =0  No correlation except ¢ = 0.
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Transition probability

Let's consider the transition probability, P(z,t|xo)dz.

Lo dx x4+ dx
Initial condition:
P(z,0|z¢) = 6(x — x0) (94)

Derivation 55 / 70



Markov process

The Markov process:

If each step of a random process depends only on the
state a step ago, the process is the Markov process.

Then,

P(z,t+ At’xo) = / P((L‘, At’x’)P(x/’ﬂxo)dx” (95)

—00

which is called Chapman-Kolmogorov equation.

; z' At
t At

Derivation 56 / 70



Kramers-Maoyal expansion

When At < 1, the left-hand side of Eq. (95) can be
expanded,

P(z,t|xg) + %i)At = / P(z, At|lx — Ax)P(x — Az, t|zg)dAx,
(96)

with a change of variables, Ax = x — 2/, where Az < 1 for
At < 1.

Derivation 57 /70



Expansion of P(z, At|x — Az)P(x — Az, t|xo) around
x4+ Ax yields,

P(x,At|lz — Az)P(x — Az t|1:0)

Z n! —— P(x + Az, At|z)P(z, t|zo)

Exercise 20 : Confirm Eq. (97).

Derivation
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oP
° P _— =
. P(x,t|zo) + 5 At

e (_l)n on 0o .
> — aan(aj,t]:co)/ (Az)"P(x + Az, At|lz)dAz.

n=0 —o©

At n =0,

Pla, t]z0) / Pz + Az, Atlz)dAz = P(z, t|ny).  (98)

—00

=1

Derivation 59 /70



Then,

AP = (=1)" on
722( )

or ~ 2 a1 g (P Hro) (99)
an(m)zAligloAit /_ (Az)"P(z + Az, At|lz)dAz  (100)
v <(AAxt)n> (101)

((Azx)™)--- nth moment of Axz.

This is called Kramers-Moyal expansion.

Exercise 21 : Confirm Eq. (99).

Derivation
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Fokker-Planck equation

When a change of z is induced by many random events (such
as diffusion), P(z,t|zp) becomes Gaussian for the central
limit theorem. Then

ap, =0 (n>3). (102)
Then
oP 0 1 0%
Simplified a lot!

Derivation
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1st and 2nd moment

Calculate a1, g using the Langevin equation:

d?z dzx

mog + CE = F(x,t) + f'(t).

Assuming (inertia) < (viscous resistance),

de 1 1,

Then integrate both sides,

t+At dac 1 t+At 1 t+AL
dt’:/ F(z,t dt’+/ f
[wr=g [ Fwtare g [

A B

Derivation

(104)

(105)

t)dt'.

(106)
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L A=z(t+ At) —x(t) = Ax (107)

1
B = F(zt)AL (108)
(assuming F'(x,t) is slowly changing.)
Then
1 1 t+At
Az = EF(:c,t)At + C/ (@t (109)
t

Exercise 22 : Calculate a1 and a9 using Eq. (109).

Derivation
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a=—¢ (110)
@_Q%T (111)

Then with P = P(z,t|zg),

oP 0 (F 1 0% [(2kgT
or_2 (<p>+26x2( : P). (112)

Using the Einstein relation,

ot ox

oP o (0P F
Do (G~ g?)-

(113)

This is called the Fokker-Planck equation.

Exercise 23 : Confirm Eq. (113).
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Diffusion equation
Let

p(x,t)dx : Probability to find a particle at x ~ = + dz at t,

(114)
then p(z,t) is the normalized density, and
p(z,1) = / Pla, t|20)p(z0, 0)dzg (115)

where p(x0,0) is the initial density. Time derivative yields,

dp oP
(%—/ B p(z0,0)dzo (116)

Exercise 24 © Substitute the Fokker-Planck equation and
simplify Eq. (116).

Diffusion equation
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Answer:

op 0 (0p F
o~ Por (83: k:BTp> (117)

Thus p itself is the Fokker-Planck equation. This is called
diffusion equation.
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Flux

The flux, 7, is defined as
ap 0j
—_ = -, 11
ot ox (118)

This is called Continuity equation. Using 7, the diffusion
equation is rewritten as

. P dlnp
== | —kgT F. 11
= (w5t + ) ()

Diffusion force External force

Thus, the flux is proportional to (density)x (force).
Exercise 25 : Confirm Eq. (119).

Diffusion equation
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If F'is a potential force,

ou

F=—— 12
5 (120)
with the potential U. Then
. p 0
j=—>7—U+kpTlhp), (121)
¢ Oz
where
w=U-+kgTlnp (122)

is the chemical potential. Thus the flux is proportial to the
chemical potential gradient.

Exercise 26 : Confirm Eq. (121).

Diffusion equation
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Stationary state
When U(z,t) = U(x), the stationary state (0p/0t = 0) is
given by

op p oU
o + TBT% =0. (123)

Exercise 27 : Solve Eq. (123) to calculate the stationary
density distribution p(z).

Diffusion equation
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Answer:

U
p o< exp (—M) (124)
Then
= L9 (4 kpTnp) =0 (125)
I="¢as BT Inp) = 0.

Thus there is no flux in the stationary state.

Diffusion equation 70 / 70
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