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Examples of colloids
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micro meso macro

Atoms·Molecules Colloids Objects
∼ 1 nm 1 ∼ 10 µm 10 µm ∼

Milk : Fat particles in water

https://www.quora.com/If-you-mix-skim-milk-and-whole-milk-will-they-stay-mixed
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Opal : Crystal of silica particles

http://www.luxrender.net/forum/viewtopic.php?f=36&t=12547

Silica

http://www.silicagelmanufacturer.com/white-silica-gel.htm

Micelles : Aggregates of surfactants

https://socratic.org/questions/what-are-micelles
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Bilayers : Two dimensional aggregates of surfactants

http://medical-dictionary.thefreedictionary.com/bilayers

Microemulsions : Droplets stabilized by surfactants

https://www.researchgate.net/publication/215475567 Microemulsion method A novel route to synthesize organic and inorganic nanomaterials 1st Nano Update
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Synthetic polymers :

http://pslc.ws/macrog/property/solpol/ps5.htm

Natural polymers : Proteins, DNAs, RNAs, · · ·

http://www.homebrewtalk.com/showthread.php?t=111819



Inside a cell
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(A cell) = (A space surrounded by membranes, ∼ 10 µm)

+

(Many types of colloids, 1 nm ∼ 1 µm)

Proteins (molecular machines), DNA/RNA (molecular
information strages), Bilayers (molecular frameworks), · · ·

It’s a small colloidal world!



Ingredients of life
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Three major ingredients of life

Nucleic acids : Information
Protein : Functionality
Lipids : Frameworks

All of them are Colloids!



Large interfaces
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Exercise 1：Calculate the total surface area of n colloidal
particles of the diameter d.

Exercise 2：Then calculate the total surface area in 1 l of
colloidal suspension containing 10%(v/v) of colloids of 1 µm
in diameter.

Colloidal suspension



Importance of fluctuation
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Sedimentation equilibrium

hThe number n(h) of colloids at the height h:

n(h)

n(0)
= exp

{
−(m−mw)gh

kBT

}
(1)

m : the mass of a colloid

mw : the mass of water of the same volume with a colloid

= exp

(
−h

λ

)
, (2)

λ =
kBT

(m−mw)g
· · · The hight where n(λ)/n(0) = e−1.

(3)
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Exercise 3：Calulate λ for silica particles of the density
ρ = 2.2 g/cm3 and the radius r below.

r (µm) λ

0.1
1
10
100

When does λ become larger than r?



Summary
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• Colloids are particles of size 1 nm ∼ 10 µm.

• It is mesoscopic world in between micro and macro.

• The interface always plays important role in colloids.

• Also fluctuation is always important in colloidal world.
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Ensemble
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t

x1
Path 1

t

x2
Path 2

t

xN
Path N

One dimensional Brownian motion: N times observation

Ensemble

x1, x2, · · · , xN : samples
Variables change randomly
· · · Random variables

• Each sample is different.

• But statistical properties are
common.

=⇒ No use of deterministic.

=⇒ Need of statistic.
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• Random variable: x1, x2, · · · , xN
• Random process: x(t)

The process that changes every time sampled.

• Ensemble average: Averaged quantity over the ensemble.

⟨x(t)⟩ = 1

N

∑
path

xi(t) (4)

This is different from the time average,

⟨xi⟩time =
1

T

∫ T/2

−T/2
xi(t)dt (5)



Ergodic hypothesis
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The ergodic hypothesis assumes for a safficiently long time,

⟨x⟩ = ⟨x⟩time (6)

, if the system is in a steady state.

All the microstates the system can access has the same
probability to be visited by the system.

Example: An average of a hundreds dice vs. an average of a
die cast a hundred times.

M
ic
ro

st
at
es

1
2
3
4
5
6



The central limit theorem
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Let’s consider the random variables x1(t), x2(t), · · · , xn(t) with
⟨xi⟩ (t) = 0, and its sum,

Xn(t) =
n∑

i=1

xi(t). (7)

Then the mean and variance are

⟨Xn⟩ =

⟨∑
i

xi

⟩
=

∑
i

⟨xi⟩ = 0 (8)

⟨
X2

n

⟩
=

∑
i

⟨
x2i

⟩
≡

∑
i

σ2
i (9)

Exercise 4：Confirm eq. (9).



The central limit theorem
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If x1, x2, · · · , xn are similar random variables, the probability
distribution function P (Xn) becomes a Gaussian distribution,

P (Xn) −−−→
n→∞

1√
2πs2n

exp

(
−X2

n

2s2n

)
(10)

s2n =
∑
i

σ2. (11)

This is called the central limit theorem.



Brownian motion & Gaussian distribution
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Let x1, x2, · · ·xn be displacement at the step i of Brownian
motion.

t

x1
x2

x3
x4

x5

Random walk model

⟨xi⟩ = 0 (12)⟨
x2i

⟩
= σ2

i (13)

Then the distribution of Xn =
∑

n xi becomes Gaussian
because of the central limit theorem.
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Exercise 5：Calculate

⟨Xn⟩ =
∫ ∞

−∞
XnP (Xn)dXn (14)

⟨
X2

n

⟩
=

∫ ∞

−∞
X2

nP (Xn)dXn, (15)

with P (Xn) =
1√
2πs2n

exp

(
−X2

n

2s2n

)
(16)

and

∫ ∞

−∞
x2e−αx2

dx =
1

2α

(π
α

)1/2
(17)



Mean square displacement
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If σ2 ≡ σ2
1 = σ2

2 = · · ·σ2
n,

s2n =
∑
i

σ2
i = nσ2. (18)

Then ⟨
X2

n

⟩
= nσ ∝ n (the number of steps). (19)

Then with n = t
∆t , (∆t = Time needed for a step),

⟨
X2

n

⟩
=

σ2

∆t
t ∝ t (20)

= 2Dt, D =
σ2

2∆t
. (21)

D is the diffusion coefficient.
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Exercise 6：Calsulate
⟨
X2

n

⟩
directly from⟨

X2
n

⟩
=

⟨
(x1 + x2 + · · ·+ xn)

2
⟩

(22)

by assuming the independency between xi and xj if i ̸= j.



Correlation function
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For a random process x(t),

ϕ(t0, t) ≡ ⟨x(t)x(t0 + t)⟩time (23)

= lim
T→∞

1

2T

∫ T

−T
xk(t0)x(t0 + t)dt0 (24)

is called the correlation function.

t

t0 t

How much similar is x(t0 + t) with x(t0)?
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Under the ergodic hypothesis, the ensemble average

⟨x(t0)(x(t0 + t))⟩ = 1

N

N∑
k=1

xk(t0)xk(t0 + t) (25)

is the same as ϕ(t). Thus

ϕ(t0, t) = ⟨x(t0)x(t0 + t)⟩ . (26)



Reversibility & Stationarity
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• If the system is in steady state, ϕ(t) does not depend on t0.

ϕ(t0, t) = ϕ(t) = ⟨x(0)x(t)⟩ . (27)

• If the system is reversible, ϕ(t0, t) does not change when
t→ −t.

ϕ(t0, t) = ⟨x(t0)x(t0 + t)⟩ = ⟨x(t0)x(t0 − t)⟩ = ϕ(t0,−t)
(28)

∴ ϕ(t0, t) is an even function of t. (29)

It is impossible to determin the
direction of time from the data like
this.

t

x



Physics of the correlation function
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t

x
t0 t

• t→ 0: Always,

⟨x(t0)x(t0 + t)⟩ =
⟨
x(t0)

2
⟩
> 0. (30)

• t→∞: x(t0) and x(t0 + t) is independent. Therefore,

⟨x(t0)x(t0 + t)⟩ −−−→
t→∞

⟨x(t0)⟩ ⟨x(t0 + t)⟩ = 0 (31)

Thus, ϕ(t0, t) is the reducing function of t.
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t

ϕ(t0, t)

τc

The time at which

ϕ(t0, t)/ϕ(t0, 0) = e−1 (32)

is the correlation time, τc.



Fourier transformation

Power spectrum & Wiener-Khinchin theorem 29 / 70

The Fourier integral or Fourier transform of x(t) is

x(t) =
1

2π

∫ ∞

−∞
x̂(ω)eiωtdω (33)

x̂(ω) : The Fourier transform or spectral composition. (34)

Since x(t) is real, x∗(t) = x(t).
Exercise 7：Then show the relation,

x̂∗(ω) = x̂(−ω). (35)



Problem of divergence

Power spectrum & Wiener-Khinchin theorem 30 / 70

Inverse Fourier transform of x(t) gives

x̂(ω) =

∫ ∞

−∞
x(t)e−iωtdt. (36)

But this will sometimes diverge, because x(t) always has a
value. So it is necessary to define xT (t) as

xT (t) =

{
x(t) −T ≤ t ≤ T

0 otherwise
(37)

then its inverse Fourier transform

x̂T (ω) =

∫ ∞

−∞
xT (t)e

−iωtdt. (38)

does not diverge.



Spectrum of the correlation function

Power spectrum & Wiener-Khinchin theorem 31 / 70

The definition of ϕ(t) (under the stationarity assumption) is

ϕ(t) = lim
T→∞

1

2T

∫ T

−T
xT (t0)x

∗
T (t0 + t)dt0. (39)

Exercise 8：Show the relation

ϕ(t) =
1

2π

∫ ∞

−∞
lim
T→∞

1

2T
|x̂T (ω)|2 eiωtdω, (40)

using

xT (t) =
1

2π

∫ ∞

−∞
x̂T (ω)e

iωtdω (41)

δ(ω − ω′) = lim
T→∞

1

2π

∫ T

−T
ei(ω−ω′)tdt. (42)



Power spectrum
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The power spectrum or spectrum density is defined as

J(ω) = lim
T→∞

1

2T
|x̂T (ω)|2 . (43)

Then

ϕ(t) =
1

2π

∫ ∞

−∞
J(ω)eiωtdω. (44)

On the other hand, by Fourier inverse transform

J(ω) =

∫ ∞

−∞
ϕ(t)e−iωtdt. (45)



Wiener-Khinchin theorem

Power spectrum & Wiener-Khinchin theorem 33 / 70

Thus there is a relation

ϕ(t)
Fourier transform

GGGGGGGGGGGGGGGGGGGGGGBFGGGGGGGGGGGGGGGGGGGGGG

Fourier inverse transform
J(ω). (46)

This is called Wiener-Khinchin theorem.

Exercise 9：Express ϕ(0) =
⟨
x2

⟩
using J(ω).

Exercise 10：Show that J(ω) is real.
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Equation of motion for Brownian motion

Derivation 35 / 70

Let’s consider one-dimensional Brownian motion.

x

←→
x(t) solvent

particle

The equation of motion is

m
dv

dt
= F (t) + f(t) (47)

F (t) : External force (48)

f(t) : Force exerted by solvent (49)

f(t) : Approximated as a random function of t
∴ Random variable

f(t)

t



Force exerted by solvent
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f(t) can be splitted into two parts

f(t) = −ζv + f ′(t) (50)

−ζv : Viscous resistance · · · dissipation (51)

f ′(t) : Random force · · · fluctuation. (52)

Both come from the interaction to solvent molecules.

∴ Strong correlation between dissipation and fluctuation
−→ the fluctuation-dissipation theorem



Langevin equation
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Then the equation of motion amounts to

m
dv

dt
= F (t)− ζv + f ′(t). (53)

This is called the Langevin equation. It is a stochastic
differential equation.



Random walk model

Mean square displacement 38 / 70

Let x(t) to be the position of the particle at t, and

dx

dt
= v (54)

x(0) = 0 ∴ ⟨x(t)⟩ = 0 (55)⟨
f ′(t)

⟩
= 0 (56)⟨

xf ′⟩ = ⟨x⟩ ⟨f ′⟩ = 0 ∵ No correlation (57)

F (t) = 0. (58)

Then the Langevin equation becomes

m
dv

dt
= −ζv + f ′(t). (59)
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Multiply x to both sides and transform,

mx
dv

dt
= −ζxv + xf ′(t) (60)

∴ m

{
d

dt
(xv)− v2

}
= −ζxv + xf ′(t). (61)

Then take the ensemble average of both sides,

m
d

dt
⟨xv⟩ −m

⟨
v2
⟩
= −ζ ⟨xv⟩+

⟨
xf ′(t)

⟩
. (62)
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With the equipartition law,

m
⟨
v2
⟩

2
=

kBT

2
(63)

and ⟨
xf ′⟩ = 0, (64)

the equation is simplified to

m
d

dt
⟨xv⟩ = kBT − ζ ⟨xv⟩ . (65)

Exercise 11：Solve Eq. (65) under the initial condition, ⟨x(0)⟩ = 0.
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With

⟨xv⟩ = 1

2

d

dt

⟨
x2

⟩
, (66)

the solution of Eq. (65) is

1

2

d

dt

⟨
x2

⟩
=

kBT

ζ

(
1− e−t/τ

)
, τ =

m

ζ
. (67)

Exercise 12：Solve Eq. (67) under the initial condition,
⟨
x2(0)

⟩
= 0.
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The solution of Eq. (67) is

⟨
x2(t)

⟩
=

2kBT

ζ

{
t− τ

(
1− e−t/τ

)}
, τ =

m

ζ
. (68)

Exercise 13：Calculate the limit of Eq. (68) when t≪ τ (the short
time limit).

Exercise 14：Calculate the limit of Eq. (68) when t≫ τ (the long
time limit).
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In the short time limit (t≪ τ),

⟨
x2(t)

⟩
=

kBT

ζτ
t2 (69)

∴
√
⟨x2(t)⟩ =

√
kBT

m
t (70)

∴ In this regime, the particle moves ballistically with the thermal
velocity,

vth =
d

dt

√
⟨x2⟩ = kBT

m
. (71)

vth
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In the long time limit (t≫ τ),

⟨
x2(t)

⟩
=

2kBT

ζ
t. (72)

⟨
x2(t)

⟩
∝ t indicates diffusive motion (= the random walk model).

ballistic

diffusive



Einstein relation

Mean square displacement 45 / 70

If compared with the result from the random walk model,⟨
x2(t)

⟩
= 2Dt, (73)

the Einstein relation is obtained,

D =
kBT

ζ
. (74)

D : Characteristics of fluctuation (75)

ζ : Characteristics of dissipation (76)

∴ This relation is one of fluctuation-dissipation theorem.



Spectrum of velocity fluctuation

Spectra of fluctuation 46 / 70

Let F (t) = 0,

m
dv

dt
= −ζv + f ′(t). (77)

Multiply v(0) and average,

m
d

dt
⟨v(0)v(t)⟩ = −ζ ⟨v(0)v(t)⟩+

⟨
v(0)f ′(t)

⟩
(78)

=

⟨v(0)⟩ ⟨f ′(t)⟩ = 0

∴ m
dϕv

dt
= −ζϕv, (79)

ϕv = ⟨v(0)v(t)⟩ : velocity correlation function (80)

Exercise 15：Solve Eq. (79) with
⟨
v2(0)

⟩
= kBT/m (equipartition law).
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Thus the velocity correlation function is

ϕv =
kBT

m
e−t/τc , τc =

m

ζ
(81)

Since ϕv(t) = ϕv(−t),

ϕv =
kBT

m
e−|t|/τc (82)

The spectrum of v, Jv(ω), can be obtained using
Wiener-Khinchin theorem,

ϕv(t)
inverse Fourier

GGGGGGGGGGGGGGGGGGGBFGGGGGGGGGGGGGGGGGGG

Fourier
Jv(ω) (83)
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Jv(ω) =

∫ ∞

−∞
ϕv(t)e

−iωtdt (84)

Exercise 16：Solve Eq. (84) using Euler’s formula,

eiθ = cos θ + i sin θ. (85)



Debye relaxation spectrum
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Jv(ω) =
2kBT

ζ

1

1 + ω2τ2c
. (86)

ω

Jv(ω)

1/τc
FWHM



Spectrum of random force
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Fourier transform v(t), f ′(t),

v(t) =
1

2π

∫ ∞

−∞
v̂(ω)eiωtdω

f ′(t) =
1

2π

∫ ∞

−∞
f̂ ′(ω)eiωtdω (87)

Exercise 17：Substitute Eqs. (87) into the Langevin equation
(F (t) = 0) and obtain the relation between v̂ and f̂ ′.
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From the relation,

v̂ =
f̂ ′

imω + ζ
(88)

the power spectrum can be obtained,

Jv(ω) = |v̂|2 =
|f̂ ′|2

|imω + ζ|2
=

Jf ′(ω)

|imω + ζ|2
. (89)

Exercise 18：Using

Jv(ω) =
2kBT

ζ

1

1 + ω2τ2c
, (90)

calculate Jf ′(ω).



White spectrum

Spectra of fluctuation 52 / 70

Jf ′(ω) = 2ζkBT (91)

ω

Jf ′(ω)

const.
It is also called white noise.

Exercise 19：Calculate the correlation function, ⟨f ′(0)f ′(t)⟩,
using the definition of δ function,

δ(t) =
1

2π

∫ ∞

−∞
eiωtdω (92)



Spectra of fluctuation 53 / 70

⟨
f ′(0)f ′(t)

⟩
= 2ζkBTδ(t) (93)

t

ϕf ′(t)

τc = 0 No correlation except t = 0.
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Transition probability

Derivation 55 / 70

Let’s consider the transition probability, P (x, t|x0)dx.

x0 x+ dx

t = 0 t = t

dx

Initial condition:

P (x, 0|x0) = δ(x− x0) (94)



Markov process

Derivation 56 / 70

The Markov process:

If each step of a random process depends only on the
state a step ago, the process is the Markov process.

Then,

P (x, t+∆t|x0) =
∫ ∞

−∞
P (x,∆t|x′)P (x′, t|x0)dx′, (95)

which is called Chapman-Kolmogorov equation.

x0 x

x′

··
·

x′

t

t
∆t

∆t



Kramers-Moyal expansion
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When ∆t≪ 1, the left-hand side of Eq. (95) can be
expanded,

P (x, t|x0) +
∂P

∂t
∆t =

∫ ∞

−∞
P (x,∆t|x−∆x)P (x−∆x, t|x0)d∆x,

(96)

with a change of variables, ∆x = x− x′, where ∆x≪ 1 for
∆t≪ 1.
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Expansion of P (x,∆t|x−∆x)P (x−∆x, t|x0) around
x+∆x yields,

P (x,∆t|x−∆x)P (x−∆x, t|x0) =
∞∑
n=0

(−∆x)n

n!

∂n

∂xn
P (x+∆x,∆t|x)P (x, t|x0)

(97)

Exercise 20：Confirm Eq. (97).
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∴ P (x, t|x0) +
∂P

∂t
∆t =

∞∑
n=0

(−1)n

n!

∂n

∂xn
P (x, t|x0)

∫ ∞

−∞
(∆x)nP (x+∆x,∆t|x)d∆x.

At n = 0,

P (x, t|x0)
∫ ∞

−∞
P (x+∆x,∆t|x)d∆x = P (x, t|x0). (98)

= 1
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Then,

∂P

∂t
=

∞∑
n=1

(−1)n

n!

∂n

∂xn
[αn(x)P (x, t|x0)] (99)

αn(x) = lim
∆t→0

1

∆t

∫ ∞

−∞
(∆x)nP (x+∆x,∆t|x)d∆x (100)

= lim
∆t→0

⟨(∆x)n⟩
∆t

(101)

⟨(∆x)n⟩ · · · nth moment of ∆x.

This is called Kramers-Moyal expansion.

Exercise 21：Confirm Eq. (99).



Fokker-Planck equation

Derivation 61 / 70

When a change of x is induced by many random events (such
as diffusion), P (x, t|x0) becomes Gaussian for the central
limit theorem. Then

αn = 0 (n ≥ 3). (102)

Then

∂P

∂t
= − ∂

∂x
(α1P ) +

1

2

∂2

∂x2
(α2P ). (103)

Simplified a lot!



1st and 2nd moment
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Calculate α1, α2 using the Langevin equation:

m
d2x

dt2
+ ζ

dx

dt
= F (x, t) + f ′(t). (104)

Assuming (inertia) ≪ (viscous resistance),

dx

dt
=

1

ζ
F (x, t) +

1

ζ
f ′(t). (105)

Then integrate both sides,∫ t+∆t

t

dx

dt
dt′ =

1

ζ

∫ t+∆t

t
F (x, t′)dt′ +

1

ζ

∫ t+∆t

t
f ′(t′)dt′.

(106)
A B
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∴ A = x(t+∆t)− x(t) = ∆x (107)

B =
1

ζ
F (x, t)∆t. (108)

(assuming F (x, t) is slowly changing.)

Then

∆x =
1

ζ
F (x, t)∆t+

1

ζ

∫ t+∆t

t
f ′(t′)dt′. (109)

Exercise 22：Calculate α1 and α2 using Eq. (109).
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α1 =
F (x, t)

ζ
(110)

α2 =
2kBT

ζ
. (111)

Then with P = P (x, t|x0),

∂P

∂t
= − ∂

∂x

(
F

ζ
P

)
+

1

2

∂2

∂x2

(
2kBT

ζ
P

)
. (112)

Using the Einstein relation,

∂P

∂t
= D

∂

∂x

(
∂P

∂x
− F

kBT
P

)
. (113)

This is called the Fokker-Planck equation.

Exercise 23：Confirm Eq. (113).



Diffusion equation
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Let

ρ(x, t)dx : Probability to find a particle at x ∼ x+ dx at t,
(114)

then ρ(x, t) is the normalized density, and

ρ(x, t) =

∫ ∞

−∞
P (x, t|x0)ρ(x0, 0)dx0 (115)

where ρ(x0, 0) is the initial density.Time derivative yields,

∂ρ

∂t
=

∫ ∞

−∞

∂P

∂t
ρ(x0, 0)dx0 (116)

Exercise 24：Substitute the Fokker-Planck equation and
simplify Eq. (116).
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Answer:

∂ρ

∂t
= D

∂

∂x

(
∂ρ

∂x
− F

kBT
ρ

)
(117)

Thus ρ itself is the Fokker-Planck equation. This is called
diffusion equation.



Flux
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The flux, j, is defined as

∂ρ

∂t
= − ∂j

∂x
. (118)

This is called Continuity equation. Using j, the diffusion
equation is rewritten as

j =
ρ

ζ

(
−kBT

∂ ln ρ

∂x
+ F

)
. (119)

Diffusion force External force

Thus, the flux is proportional to (density)×(force).

Exercise 25：Confirm Eq. (119).
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If F is a potential force,

F = −∂U

∂x
(120)

with the potential U . Then

j = −ρ

ζ

∂

∂x
(U + kBT ln ρ) , (121)

where

µ = U + kBT ln ρ (122)

is the chemical potential. Thus the flux is proportial to the
chemical potential gradient.

Exercise 26：Confirm Eq. (121).



Stationary state
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When U(x, t) = U(x), the stationary state (∂ρ/∂t = 0) is
given by

∂ρ

∂x
+

ρ

kBT

∂U

∂x
= 0. (123)

Exercise 27：Solve Eq. (123) to calculate the stationary
density distribution ρ(x).
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Answer:

ρ ∝ exp

(
− U

kBT

)
(124)

Then

j = −ρ

ζ

∂

∂x
(U + kBT ln ρ) = 0. (125)

Thus there is no flux in the stationary state.
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