Geometry of Conformal Field Theory

Yoshitake HASHIMOTO (Tokyo City University)

2010/07/10 (Sat.)

AKB Differential Geometry Seminar

Based on a joint work with A. Tsuchiya (IPMU)

Contents

- **0. Introduction**
- **1. Harish-Chandra pairs and D-modules**
- **2. Families of stable curves**
- **3. Vertex algebras and chiral algebras**

0. Introduction

Conformal Field Theory

• **Representation thoery of** *∞***-dim. Lie alg.**

(affine Lie alg., Virasoro alg.)

- **+ Moduli of Riemann surfaces,**
	- **Moduli of** *G***-bundles over Riemann surfaces**

CFT and topology

- *•* **Tsuchiya-Kanie (1988): Jones representation**
	- *⇒* **Kohno, Drinfeld: quantum groups**
	- *⇒* **Witten: Chern-Simons gauge theory**
- *•* **Categorification of Tsuchiya-Kanie ?**

Jones-Witten theory =*⇒* **Khovanov homology**

CFT and 4-dim. gauge theory

• **Nakajima (1990's)**

Instanton moduli and affine Lie alg.

• **Alday-Gaiotto-Tachikawa (2009)**

Instanton moduli and Virasoro alg.

Geometric Langlands correspondence

- *•* **Non-abelian Class Field Theory**
- *•* **Wakimoto modules, screening operators**
- *•* **Kapustin-Witten (2006) 4-dim. gauge theory**

References

1. E. Frenkel and D. Ben-Zvi,

Vertex Algebras and Algebraic Curves, 2nd. ed., AMS, 2004.

2. K. Ueno,

Conformal Field Theory with Gauge Symmetry, AMS, 2008.

1. Harish-Chandra pairs and D-modules

Representation theory of Lie algebras

• Representations of a Lie algebra $g = \text{Lie}(G)$ induced by those

of the Lie group *G* can be understood geometrically.

• More generally, we study representations of g whose restric-

tions on $\text{Lie}(K) \subset \mathfrak{g}$ are induced by those of K.

Harish-Chandra pair (g*, K*)

Example *G*: Lie group, $g = \text{Lie}(G)$, $K \subset G$

Def. If *K*: Lie group, g: Lie algebra with a *K*-action with

K-equivariant embedding $\text{Lie}(K) \subset \mathfrak{g}$,

(g*, K*) is called **Harish-Chandra pair**.

(g*, K*)-**modules** Representation theory of HC pairs

Def. *V* : (g*, K*)-**module**

(1) *V* : *K*-module

(2) $\mathfrak{g} \to \text{End}(V)$: *K*-equivariant

• To study (g*, K*)-modules geometrically,

we needs the language of **sheaf**.

Structure sheaf

X: complex manifold

Example $U \subset X$ open set

 $\mathcal{O}_X(U) = \{$ holomorphic functions on *U* $\}$

 $\mathcal{O}_X : U \longmapsto \mathcal{O}_X(U)$ structure sheaf of *X*

Definition of sheaf

Def. $\mathcal{F}: U \longmapsto \mathcal{F}(U)$ **sheaf** on *X*

$$
\rho_{12} = \rho_{U_1 \subset U_2} : \mathcal{F}(U_2) \to \mathcal{F}(U_1), \quad \rho_{13} = \rho_{12}\rho_{23}
$$

$$
\mathcal{F}(\bigcup U_\alpha) \hookrightarrow \prod \mathcal{F}(U_\alpha) \rightrightarrows \prod \mathcal{F}(U_\alpha \cap U_\beta) \quad \text{exact}
$$

 $\mathcal{F}(U)$ set, abelian group, \mathbb{C} -vector space, \mathbb{C} -algebra, ... $\mathcal{F}(U) = \Gamma(U, \mathcal{F})$ $\mathcal{F}_x = \lim$ *−→U3x* $\mathcal{F}(U)$ **stalk** at $x \in X$

Examples of sheaves

- (1) *V* : C-vector space
	- V_X : connected $U \longmapsto V$ **constant sheaf**
- (2) $\mathcal{F}: \mathcal{O}_X$ -module
	- $\mathcal{F}(U)$: $\mathcal{O}_X(U)$ -module + compatibility
- (3) $\Theta_X(U) = \{$ holomorphic vector fields on $U\}$

(4)
$$
\Omega_X^q(U) = \{ \text{holomorphic } q\text{-forms on } U \}
$$

Sheaf *DX*

 $\mathcal{D}_X(U) \subset \text{End}_{\mathbb{C}}(\mathcal{O}_X(U))$

the C-algebra generated by $\mathcal{O}_X(U)$, $\Theta_X(U)$

$$
\mathcal{O}_X \quad \text{left } \mathcal{D}_X \text{-module}
$$

 $K_X = \Omega_X^{\dim(X)}$ canonical sheaf, right \mathcal{D}_X -module $L_{f\xi}(\omega) = L_{\xi}(f\omega)$ (*f* $\in \mathcal{O}_X$ *,* $\xi \in \Theta_X$ *,* $\omega \in K_X$)

Vector bundles with flat connections

(*E, ∇*): vector bundle with a flat connection over *X*

$$
\mathcal{E}
$$
: sheaf of local sections of E

$$
\Theta_X \ni \xi \longmapsto (\nabla_{\xi} : \mathcal{E} \to \mathcal{E}), \quad \nabla_{[\xi, \eta]} = [\nabla_{\xi}, \nabla_{\eta}]
$$

=*⇒ E*: left *DX*-module

M: left \mathcal{D}_X -module, $F_p\mathcal{M} \subset F_{p+1}\mathcal{M}$, $\nabla_{\xi}(F_p\mathcal{M}) \subset F_{p+1}(\mathcal{M})$

Harish-Chandra pair (g*, K*) (over C)

K: Lie group, g: Lie algebra with a *K*-action,

Lie(*K*) *⊂* g: *K*-equivariant embedding

Def. *V* : (g*, K*)-**module**

V: *K*-module, $\mathfrak{g} \to \text{End}_{\mathbb{C}}(V)$: *K*-equivariant

(g*, K*)-**action**

Z: complex manifold with a *K*-action

Lie $(K) \subset \mathfrak{g} \longrightarrow$ *a* Θ*Z K*-equivariant, compatible For example, *Z* is a *K*-invariant open subset of a *G*-space.

Setting

 $\pi : Z \to S$ principal *K*-bundle

 $a: \mathcal{O}_Z \otimes \mathfrak{g} \to \Theta_Z$ surjective

Localization functor

$$
\Delta: (\mathfrak{g},\,K)\text{-mod} \longrightarrow \mathcal{D}_S\text{-mod}
$$

$$
\Delta(V)=(\pi_*(\mathcal{D}_Z\otimes_{U\mathfrak{g}}V))^K
$$

the left adjoint of $\Gamma : \mathcal{D}_S$ -mod $\longrightarrow (\mathfrak{g}, K)$ -mod

$$
\Gamma(\mathcal{M}) = \Gamma(Z, \, \pi^* \mathcal{M})
$$

 $\text{Hom}_{\mathcal{D}_S}(\Delta(V), \mathcal{M}) \cong \text{Hom}_{\mathfrak{g}}(V, \Gamma(\mathcal{M}))$

Terminology

(1)
$$
a : \mathfrak{g} \to \Theta_Z
$$
 induces $U\mathfrak{g} \to \mathcal{D}_Z$
\n(2) $\pi : Z \to S$, \mathcal{F} : sheaf on Z , \mathcal{M} : sheaf on S ,
\n $(\pi_*\mathcal{F})(U) = \mathcal{F}(\pi^{-1}(U))$ direct image
\n $(\pi^{-1}\mathcal{M})_z = \mathcal{M}_{\pi(z)}$ inverse image
\n $\pi^*\mathcal{M} = \pi^{-1}\mathcal{M} \otimes_{\pi^{-1}\mathcal{O}_S} \mathcal{O}_Z$

Coinvariants

V : (g*, K*)-module

$$
a: \mathcal{O}_Z \otimes \mathfrak{g} \rightarrow \Theta_Z \quad \text{surjective} \\
$$

 $V_{\text{coinv}} = \mathcal{O}_Z \otimes V / \text{Ker}(a) \cdot \mathcal{O}_Z \otimes V$

$$
V_{\rm coinv} \cong \mathcal{D}_Z \otimes_{U \mathfrak{g}} V \quad \mathcal{D}_Z\text{-module}
$$

CFT case (1)

$$
\mathcal{O} = \mathbb{C}[[z]], \quad \mathcal{K} = \mathbb{C}((z)) = \mathcal{O}[z^{-1}]
$$

Der $(\mathcal{K}) = \mathbb{C}((z))\partial_z$, Der₀ $(\mathcal{O}) = z\mathbb{C}[[z]]\partial_z$
Aut $(\mathcal{O}) = \{z \mapsto a_1z + a_2z^2 + \cdots | a_1 \neq 0\}$
(Der (\mathcal{K}) , Aut (\mathcal{O})): Harish-Chandra pair
 C : compact Riemann surface, $p \in C$

 $H^1(C, \Theta_C) = \Theta_C(C \setminus \{p\}) \backslash \text{Der}(\mathcal{K}_p) / \text{Der}(\mathcal{O}_p)$

CFT case (2)

G: reductive algebraic group, $g = \text{Lie}(G)$

(g(*K*)*, G*(*O*)): Harish-Chandra pair

 $P \rightarrow C$: principal $G(\mathbb{C})$ -bundle

 $\mathrm{H}^1(C, \mathfrak{g}_P) = \Gamma(C \smallsetminus \{p\}, \mathfrak{g}_P) \backslash \mathfrak{g}(\mathcal{K}_p) / \mathfrak{g}(\mathcal{O}_p)$

CFT case

 \mathcal{D}_S -module structure on $\Delta(V)$

Knizhnik-Zamoldchikov connection

2. Families of stable curves

Stable curves

Let *g*, *n* be non-negative integers such that $2g - 2 + n > 0$, and $I = \{1, 2, ..., n\}$. An *n*-pointed, or *I*-pointed stable **curve of genus** *g* over a scheme *B* is a proper flat morphism $\pi: C \rightarrow B$ together with n sections $s_I = (s_i : B \rightarrow C)_{i \in I}$ such that

(i) The geometric fibers C_b of π at $b \in B$ are reduced and connected curves with at most ordinary double points.

(ii) C_b is smooth at $s_i(b)$.

(iii) $s_i(b) \neq s_j(b)$ for $i \neq j$.

(iv) Each non-singular rational component of C_b has at least 3 points which are sections or intersections with other components.

$$
\text{(v) } \dim \mathrm{H}^1(C_b, \mathcal{O}_{C_b}) = g. \qquad \qquad \Box
$$

Stabilization

Let *I* = {1, 2, ..., *n*}, I^+ = *I* ∪ {*n* + 1}. An *I*-pointed stable curve $\mathcal{X}~=~(\pi~:~C~\rightarrow~B,~s_I~=~(s_i)_{i\in I})$ and another section $s_{n+1}: B \to C$ are given. A pair (\mathcal{X}^{+}, f) of an I^{+} pointed stable curve $\mathcal{X}^+ = (\pi^+ : C^+ \to B, s^+_{I^+} = (s^+_{i})^T)$ *i*) *ⁱ∈I*⁺) and a morphism $f:C^+\to C$ over B is called a $\bf{stabilization}$ if

\n- (i)
$$
fs_i^+ = s_i
$$
 $(i \in I^+)$
\n- (ii) There are two possible cases for a geometric fiber C_b^+ .
\n- a) If C_b is smooth at $s_{n+1}(b)$ and $s_{n+1}(b) \neq s_i(b)$ $(i \in I)$, $f_b: C_b^+ \to C_b$ is an isomorphism.
\n- b) If not, there is a rational component E of C_b^+ such that $s_{n+1}^+(b) \in E$ and $f_b(E) = \{s_{n+1}(b)\}$ and $f_b: C_b^+ \setminus E \to C_b \setminus \{s_{n+1}(b)\}$ is an isomorphism. \Box
\n

Remark

The stabilization $(\mathcal{X}^+,\,f)$ is unique up to isomorphisms for

 $\mathcal{X}, s_{n+1}.$

Tower

For an *I*-pointed stable curve $\mathcal{X} = (\pi : C \to B, s_I = (s_i)_{i \in I})$,

the first projection on the fiber product

$$
\mathcal{X}^2=(p_1:C\times_B C\to C,\,\pi^*s_I=(\pi^*s_i)_{i\in I})
$$

is an *I*-pointed stable curve over *C*.

We define an I^+ -pointed stable curve

$$
\mathcal{X}^{(2)} = (\pi^{(2)} : C^{(2)} \to C, s_{I^{+}}^{(2)})
$$

over C as the stabilization of \mathcal{X}^2 for the diagonal section $\Delta: C \to C \times_B C$.

Similarly we define $(n + k - 1)$ -pointed stable curve

 $\mathcal{X}^{(k)} = (\pi^{(k)} : C^{(k)} \to C^{(k-1)}, s_{\tau(k)}^{(k)})$ $\binom{\binom{n}{k}}{I(k)}$ $\mathsf{over}\ C^{(k-1)}$ as $\mathcal{X}^{(k)} = (\mathcal{X}^{(k-1)})^{(2)}.$

Regular family

An I -pointed stable curve $(\pi : C \to B,\, s_I)$ is a ${\sf regular\ family}$ if

(1) *C, B*: non-singular

(2) The image of π of singular points in the fibers is a set of normal-crossing divisors in *B*.

Proposition

For a regular family $(\pi : C \rightarrow B, s_I)$,

the variety $C^{\left(2\right) }$ is also non-singular.

Deformation theory

Let $(\pi: C \rightarrow B, s_I = (s_i)_{i \in I})$ be a regular family. We put $S_I = \bigcup$ *i∈I si* (*B*), $\pi^* \Omega_B = \pi^{-1} \Omega_B \otimes_{\mathcal{O}_B} \mathcal{O}_C$, $F = \mathcal{H}om_{\mathcal{O}_C}(-, \mathcal{O}_C(-S_I)).$

We apply a left exact functor $\pi_* \circ F$ to the short exact sequence

$$
0 \to \pi^* \Omega_B \to \Omega_C \to \Omega_{C/B} \to 0.
$$

Since *π* is proper,

$$
\pi_* \circ F(\pi^* \Omega_B) = \pi_* \mathcal{H}om_{\mathcal{O}_C}(\pi^* \Omega_B, \mathcal{O}_C(-S_I))
$$

$$
= \mathcal{H}om_{\mathcal{O}_B}(\Omega_B, \mathcal{O}_B) = \Theta_B.
$$

We obtain an exact sequence

$$
0 \to \pi_* \Theta_{C/B}(-S_I) \to \pi_* \Theta_C(-S_I) \to \Theta_B
$$

$$
\longrightarrow R^1(\pi_* \circ F) \Omega_{C/B} \to R^1(\pi_* \circ F) \Omega_C \to 0.
$$

The map *ρB* is called a **Kodaira-Spencer map**.

3. Vertex algebras and chiral algebras

Taylor expansions

$$
\mathcal{O}_{z_1, ..., z_n} = \mathbb{C}[[z_1, ..., z_n]]
$$

$$
\mathcal{P}_{z_1, z_2} = (z_1 - z_2)^{-1} \mathcal{O}_{z_2}[(z_1 - z_2)^{-1}]
$$

We have a decomposition of $\mathcal{O}_{z_{2}}$ -modules,

$$
\mathcal{O}_{z_1, z_2}[(z_1 - z_2)^{-1}] = \mathcal{P}_{z_1, z_2} \oplus \mathcal{O}_{z_1, z_2}.
$$

The first projection $\mu_0: \mathcal{O}_{z_1,\, z_2}[(z_1-z_2)^{-1}] \rightarrow \mathcal{P}_{z_1,\, z_2}$ is given by

$$
\mu_0 \left(\frac{f(z_1)g(z_2)}{(z_1 - z_2)^n} \right) = \sum_{k=0}^{n-1} \frac{1}{k!} \cdot \frac{\partial_{z_2}^k f(z_2) \cdot g(z_2)}{(z_1 - z_2)^{n-k}}
$$

for $n \in \mathbb{N}$, $f(z)$, $g(z) \in \mathcal{O}_z$.

$$
\mathcal{P}_{z_1, z_2} \cong \mathcal{O}_{z_1, z_2}[(z_1 - z_2)^{-1}]/\mathcal{O}_{z_1, z_2}
$$

is an $\mathcal{O}_{z_1,\,z_2}$ -module.

Vertex algebra

A **vertex algebra** $(V, Y, |0\rangle)$ is a collection of data:

- *•* a complex vector space *V*
- a linear map $Y: V \to \text{Hom}(V, V(\!(z)\!))$ written as

$$
Y(a, z) = \sum_{n \in \mathbb{Z}} a_{(n)} z^{-n-1}
$$

($a \in V$, $a_{(n)} = \text{Res}_{z=0}(Y(a, z) z^n dz) \in \text{End}(V)$)

• a vector *|*0*i ∈ V* (called **vacuum vector**)

satisfying the following conditions:

• (Locality) *Y* (*a, z*)*, Y* (*b, w*) are mutually local for any *a, b ∈* V . In other words, there exists a linear map

$$
Y^2: V \otimes V \to \text{Hom}(V, V[[z, w]][z^{-1}, w^{-1}])[(z-w)^{-1}]
$$

such that

$$
Y(a, z)Y(b, w) = \varepsilon_{\infty} Y^2(a, b; z, w),
$$

\n
$$
\varepsilon_{\infty} (z - w)^{-1} = \sum_{n \ge 0} w^n z^{-n-1},
$$

\n
$$
Y(b, w)Y(a, z) = \varepsilon_0 Y^2(a, b; z, w),
$$

\n
$$
\varepsilon_0 (z - w)^{-1} = -\sum_{n < 0} w^n z^{-n-1}
$$

- *•* (Vacuum) $Y(a, z)|0\rangle \in V[[z]], Y(a, z)|0\rangle|_{z=0} = a \ (a \in V).$ \ln other words, $a_{(-1)} = a$, $a_{(n)} |0\rangle = 0$ $(n ≥ 0)$.
- *•* (Translation) There exists a linear map *T* : *V → V* such that

$$
T|0\rangle = 0, \qquad [T, Y(a, z)] = \partial_z Y(a, z) \quad (a \in V).
$$

*D***-module**

 $\Theta_{z_1,\,\dots,\,z_n} = \bigoplus_{i=1}^n$ $\stackrel{n}{i=1}\mathcal{O}_{z_1,\, ...,\, z_n}\partial_{z_i}$ ${\cal D}_{z_1,\, \ldots,\, z_n}$ the C-algebra generated by ${\cal O}_{z_1,\, \ldots,\, z_n},\, \Theta_{z_1,\, \ldots,\, z_n}.$ The ring $\mathcal{O}_{z_1,\, ...,\, z_n}$ is a left $\mathcal{D}_{z_1,\, ...,\, z_n}$ -module. The projection $\mu_0: \mathcal{O}_{z_1,\,z_2}[(z_1-z_2)^{-1}] \rightarrow \mathcal{P}_{z_1,\,z_2}$ is a homomorphisms of left $\mathcal{D}_{z_1,\,z_2}$ -modules.

The Lie algebra $\Theta_{z_1,\, ...,\, z_n}$ acts on

$$
\omega_{z_1,\,\ldots,\,z_n} = \mathcal{O}_{z_1,\,\ldots,\,z_n}dz_1\wedge\cdots\wedge dz_n
$$

by Lie derivative. It makes $\omega_{z_1,\, ..., \, z_n}$ a right ${\mathcal D}_{z_1,\, ..., \, z_n}$ -module. The map

$$
\mu_0^R: \mathcal{O}_{z_1, z_2}[(z_1 - z_2)^{-1}]dz_1 \otimes dz_2 \to \mathcal{P}_{z_1, z_2}dz_1 \wedge dz_2
$$

induced by μ_0 is a homomorphism of right $\mathcal{D}_{z_1,\, z_2}$ -modules.

Jacobi identity

$$
\mathcal{O} = \mathcal{O}_{z_1, z_2, z_2} = \mathbb{C}[[z_1, z_2, z_3]][z_1^{-1}, z_2^{-1}, z_3^{-1}]
$$

$$
t_{ij} = (z_i - z_j)^{-1}.
$$

Since $t_{ij}t_{jk} = t_{ij}t_{ik} + t_{ik}t_{jk}$ for distinct *i*, *j*, *k*, we deduce

 $\mathcal{O}[t_{ij}, t_{ik}, t_{jk}] = \mathcal{O}[t_{ij}, t_{ik}] + \mathcal{O}[t_{ik}, t_{jk}].$

Hence the natural maps

$$
\frac{\mathcal{O}[t_{ij}, t_{ik}]}{\mathcal{O}[t_{ik}]} \longrightarrow \frac{\mathcal{O}[t_{ij}, t_{ik}, t_{jk}]}{\mathcal{O}[t_{ik}, t_{jk}]}
$$
\n
$$
\frac{\mathcal{O}[t_{ij}, t_{ik}]}{\mathcal{O}[t_{ij}] + \mathcal{O}[t_{ik}]} \longrightarrow \frac{\mathcal{O}[t_{ij}, t_{ik}, t_{jk}]}{\mathcal{O}[t_{ik}, t_{jk}] + \mathcal{O}[t_{ij}]}
$$

are isomorphisms.

Let

$$
\mu_{1[23]}: \mathcal{O}[t_{12}, t_{13}, t_{23}] \longrightarrow \frac{\mathcal{O}[t_{12}, t_{13}, t_{23}]}{\mathcal{O}[t_{12}, t_{13}] + \mathcal{O}[t_{23}]}
$$

be the projection.

$$
\mu_{[12]3}, \mu_{2[13]} : \mathcal{O}[t_{12}, t_{13}, t_{23}] \longrightarrow \frac{\mathcal{O}[t_{12}, t_{13}, t_{23}]}{\mathcal{O}[t_{12}, t_{13}] + \mathcal{O}[t_{23}]}
$$

are the compositions

$$
\mathcal{O}[t_{12}, t_{13}, t_{23}] \rightarrow \frac{\mathcal{O}[t_{12}, t_{13}, t_{23}]}{\mathcal{O}[t_{13}, t_{23}] + \mathcal{O}[t_{12}]} \n\approx \frac{\mathcal{O}[t_{12}, t_{23}] \times \mathcal{O}[t_{12}, t_{13}, t_{23}]}{\mathcal{O}[t_{12}] + \mathcal{O}[t_{23}]} \rightarrow \frac{\mathcal{O}[t_{12}, t_{13}, t_{23}]}{\mathcal{O}[t_{12}, t_{13}] + \mathcal{O}[t_{23}]}, \n\mathcal{O}[t_{12}, t_{13}, t_{23}] \rightarrow \frac{\mathcal{O}[t_{12}, t_{13}, t_{23}]}{\mathcal{O}[t_{12}, t_{23}] + \mathcal{O}[t_{13}]} \rightarrow \frac{\mathcal{O}[t_{12}, t_{13}, t_{23}]}{\mathcal{O}[t_{13}] + \mathcal{O}[t_{23}]} \rightarrow \frac{\mathcal{O}[t_{12}, t_{13}, t_{23}]}{\mathcal{O}[t_{12}, t_{13}] + \mathcal{O}[t_{23}]}
$$

$$
\mu_{1[23]} = \mu_{[12]3}, \mu_{2[13]} = 0 \text{ on } \mathcal{O}[t_{12}, t_{23}],
$$

$$
\mu_{1[23]} = \mu_{2[13]}, \mu_{[12]3} = 0 \text{ on } \mathcal{O}[t_{13}, t_{23}].
$$

Therefore $\mu_{1[23]} = \mu_{[12]3} + \mu_{2[13]}$.

Chiral algebra

C: compact Riemann surface

A: right *DC*-module

 ${\mathcal A} \boxtimes {\mathcal A}(\infty \Delta) \to \Delta_!{\mathcal A} {\colon} {\mathcal D}_C{\operatorname{\mathsf{-module}}\nolimits}$ hom

unit: $\Omega_C \hookrightarrow \mathcal{A}$ compatible with μ_{Ω}

skew-symmetry: $\mu = -\sigma_{12} \circ \mu \circ \sigma_{12}$

Jacobi identity: $\mu_{1[23]} = \mu_{[12]3} + \mu_{2[13]}$