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0. Introduction

Conformal Field Theory

• Representation thoery of ∞-dim. Lie alg.

（affine Lie alg., Virasoro alg.）

+ Moduli of Riemann surfaces,

Moduli of G-bundles over Riemann surfaces
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CFT and topology

• Tsuchiya-Kanie (1988): Jones representation

⇒ Kohno, Drinfeld: quantum groups

⇒Witten: Chern-Simons gauge theory

• Categorification of Tsuchiya-Kanie ?

Jones-Witten theory =⇒ Khovanov homology
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CFT and 4-dim. gauge theory

•Nakajima (1990’s)

Instanton moduli and affine Lie alg.

• Alday-Gaiotto-Tachikawa (2009)

Instanton moduli and Virasoro alg.
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Geometric Langlands correspondence

•Non-abelian Class Field Theory

•Wakimoto modules, screening operators

• Kapustin-Witten (2006) 4-dim. gauge theory
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1. Harish-Chandra pairs and D-modules

Representation theory of Lie algebras

• Representations of a Lie algebra g = Lie(G) induced by those

of the Lie group G can be understood geometrically.

•More generally, we study representations of g whose restric-

tions on Lie(K) ⊂ g are induced by those of K.
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Harish-Chandra pair (g, K)

Example G: Lie group, g = Lie(G), K ⊂ G

Def. If K: Lie group, g: Lie algebra with a K-action with

K-equivariant embedding Lie(K) ⊂ g,

(g, K) is called Harish-Chandra pair.
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(g, K)-modules Representation theory of HC pairs

Def. V : (g, K)-module

(1) V : K-module

(2) g→ End(V ): K-equivariant

• To study (g, K)-modules geometrically,

we needs the language of sheaf．
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Structure sheaf

X: complex manifold

Example U ⊂ X open set

OX(U) = {holomorphic functions on U}

OX : U 7−→ OX(U)　structure sheaf of X
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Definition of sheaf

Def. F : U 7−→ F(U) sheaf on X

ρ12 = ρU1⊂U2
: F(U2)→ F(U1), ρ13 = ρ12ρ23

F(
∪

Uα) ↪→
∏
F(Uα) ⇒

∏
F(Uα ∩ Uβ) exact

F(U) set, abelian group, C-vector space, C-algebra, . . .

F(U) = Γ(U, F)

Fx = lim
−→U3x

F(U) stalk at x ∈ X
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Examples of sheaves

(1) V : C-vector space

VX : connected U 7−→ V constant sheaf

(2) F : OX-module

F(U): OX(U)-module + compatibility

(3) ΘX(U) = {holomorphic vector fields on U}

(4) Ω
q
X(U) = {holomorphic q-forms on U}
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Sheaf DX

DX(U) ⊂ EndC(OX(U))

the C-algebra generated by OX(U), ΘX(U)

OX left DX-module

KX = Ω
dim(X)
X canonical sheaf, right DX-module

Lfξ(ω) = Lξ(fω) (f ∈ OX , ξ ∈ ΘX , ω ∈ KX)
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Vector bundles with flat connections

(E, ∇): vector bundle with a flat connection over X

E : sheaf of local sections of E

ΘX 3 ξ 7−→ (∇ξ : E → E), ∇[ξ, η] = [∇ξ, ∇η]

=⇒ E : left DX-module

M: left DX-module, FpM⊂ Fp+1M,

∇ξ(FpM) ⊂ Fp+1(M)
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Harish-Chandra pair (g, K) (over C)

K: Lie group, g: Lie algebra with a K-action,

Lie(K) ⊂ g: K-equivariant embedding

Def. V : (g, K)-module

V : K-module, g→ EndC(V ): K-equivariant
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(g, K)-action

Z: complex manifold with a K-action

Lie(K) ⊂ g −→
a

ΘZ K-equivariant, compatible

For example, Z is a K-invariant open subset of a G-space.

Setting

π : Z → S principal K-bundle

a : OZ ⊗ g→ ΘZ surjective
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Localization functor

∆ : (g, K)-mod −→ DS-mod

∆(V ) = (π∗(DZ ⊗Ug V ))K

the left adjoint of Γ : DS-mod −→ (g, K)-mod

Γ(M) = Γ(Z, π∗M)

HomDS
(∆(V ), M) ∼= Homg(V, Γ(M))
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Terminology

(1) a : g→ ΘZ induces Ug→ DZ

(2) π : Z → S, F : sheaf on Z,M: sheaf on S,

(π∗F)(U) = F(π−1(U)) direct image

(π−1M)z =Mπ(z) inverse image

π∗M = π−1M⊗π−1OS
OZ
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Coinvariants

V : (g, K)-module

a : OZ ⊗ g→ ΘZ surjective

Vcoinv = OZ ⊗ V/Ker(a) · OZ ⊗ V

Vcoinv
∼= DZ ⊗Ug V DZ-module
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CFT case (1)

O = C[[z]], K = C((z)) = O[z−1]

Der(K) = C((z))∂z, Der0(O) = zC[[z]]∂z

Aut(O) = {z 7→ a1z + a2z
2 + · · · | a1 6= 0}

(Der(K), Aut(O)): Harish-Chandra pair

C: compact Riemann surface, p ∈ C

H1(C, ΘC) = ΘC(C r {p})\Der(Kp)/Der0(Op)
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CFT case (2)

G: reductive algebraic group, g = Lie(G)

(g(K), G(O)): Harish-Chandra pair

P → C: principal G(C)-bundle

H1(C, gP ) = Γ(C r {p}, gP )\g(Kp)/g(Op)
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CFT case

DS-module structure on ∆(V )

Knizhnik-Zamoldchikov connection
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2. Families of stable curves

Stable curves

Let g, n be non-negative integers such that 2g − 2 + n > 0,

and I = {1, 2, . . . , n}. An n-pointed, or I-pointed stable

curve of genus g over a scheme B is a proper flat morphism

π : C → B together with n sections sI = (si : B → C)i∈I such

that
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(i) The geometric fibers Cb of π at b ∈ B are reduced and

connected curves with at most ordinary double points.

(ii) Cb is smooth at si(b).

(iii) si(b) 6= sj(b) for i 6= j.

(iv) Each non-singular rational component of Cb has at least 3

points which are sections or intersections with other components.

(v) dim H1(Cb, OCb
) = g. �
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Stabilization

Let I = {1, 2, . . . , n}, I+ = I ∪ {n + 1}. An I-pointed

stable curve X = (π : C → B, sI = (si)i∈I) and another

section sn+1 : B → C are given. A pair (X+, f ) of an I+-

pointed stable curve X+ = (π+ : C+ → B, s+
I+ = (s+

i )i∈I+)

and a morphism f : C+→ C over B is called a stabilization if
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(i) fs+
i = si (i ∈ I+)

(ii) There are two possible cases for a geometric fiber C+
b :

a) If Cb is smooth at sn+1(b) and sn+1(b) 6= si(b) (i ∈ I),

fb : C+
b → Cb is an isomorphism.

b) If not, there is a rational component E of C+
b such that

s+
n+1(b) ∈ E and fb(E) = {sn+1(b)} and fb : C+

b r E →

Cb r {sn+1(b)} is an isomorphism. �
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Remark

The stabilization (X+, f ) is unique up to isomorphisms for

X , sn+1.
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Tower

For an I-pointed stable curve X = (π : C → B, sI = (si)i∈I),

the first projection on the fiber product

X 2 = (p1 : C ×B C → C, π∗sI = (π∗si)i∈I)

is an I-pointed stable curve over C.
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We define an I+-pointed stable curve

X (2) = (π(2) : C(2)→ C, s
(2)
I+)

over C as the stabilization of X 2 for the diagonal section

∆ : C → C ×B C.

Similarly we define (n + k − 1)-pointed stable curve

X (k) = (π(k) : C(k)→ C(k−1), s
(k)

I(k))

over C(k−1) as X (k) = (X (k−1))(2).
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Regular family

An I-pointed stable curve (π : C → B, sI) is a regular family

if

(1) C, B: non-singular

(2) The image of π of singular points in the fibers is a set of

normal-crossing divisors in B.
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Proposition

For a regular family (π : C → B, sI),

the variety C(2) is also non-singular.
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Deformation theory

Let (π : C → B, sI = (si)i∈I) be a regular family. We put

SI =
∪

i∈I si(B),

π∗ΩB = π−1ΩB ⊗OB
OC ,

F = HomOC
(−, OC(−SI)).

We apply a left exact functor π∗◦F to the short exact sequence

0→ π∗ΩB → ΩC → ΩC/B → 0.
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Since π is proper,

π∗ ◦ F (π∗ΩB) = π∗HomOC
(π∗ΩB, OC(−SI))

= HomOB
(ΩB, OB) = ΘB.

We obtain an exact sequence

0→ π∗ΘC/B(−SI)→ π∗ΘC(−SI)→ ΘB

−→
ρB

R1(π∗ ◦ F )ΩC/B → R1(π∗ ◦ F )ΩC → 0.

The map ρB is called a Kodaira-Spencer map.
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3. Vertex algebras and chiral algebras

Taylor expansions

Oz1, ..., zn = C[[z1, . . . , zn]]

Pz1, z2 = (z1 − z2)
−1Oz2[(z1 − z2)

−1]

We have a decomposition of Oz2-modules,

Oz1, z2[(z1 − z2)
−1] = Pz1, z2 ⊕Oz1, z2.
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The first projection µ0 : Oz1, z2[(z1 − z2)
−1]→ Pz1, z2

is given by

µ0

(
f (z1)g(z2)

(z1 − z2)n

)
=

n−1∑
k=0

1

k!
·
∂k
z2

f (z2) · g(z2)

(z1 − z2)n−k

for n ∈ N, f (z), g(z) ∈ Oz.

Pz1, z2
∼= Oz1, z2[(z1 − z2)

−1]/Oz1, z2

is an Oz1, z2-module.

35



Vertex algebra

A vertex algebra (V, Y, |0〉) is a collection of data:

• a complex vector space V

• a linear map Y : V → Hom(V, V ((z))) written as

Y (a, z) =
∑
n∈Z

a(n)z
−n−1

(a ∈ V, a(n) = Resz=0(Y (a, z)zndz) ∈ End(V ))

• a vector |0〉 ∈ V (called vacuum vector)

satisfying the following conditions:

36



• (Locality) Y (a, z), Y (b, w) are mutually local for any a, b ∈

V . In other words, there exists a linear map

Y 2 : V ⊗ V → Hom(V, V [[z, w]][z−1, w−1])[(z − w)−1]

such that

Y (a, z)Y (b, w) = ε∞Y 2(a, b; z, w),

ε∞(z − w)−1 =
∑
n≥0

wnz−n−1,

Y (b, w)Y (a, z) = ε0Y
2(a, b; z, w),

ε0(z − w)−1 = −
∑
n<0

wnz−n−1
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• (Vacuum) Y (a, z)|0〉 ∈ V [[z]], Y (a, z)|0〉|z=0 = a (a ∈ V ).

In other words, a(−1) = a, a(n)|0〉 = 0 (n ≥ 0).

• (Translation) There exists a linear map T : V → V such that

T |0〉 = 0, [T, Y (a, z)] = ∂zY (a, z) (a ∈ V ).
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D-module

Θz1, ..., zn =
⊕n

i=1Oz1, ..., zn∂zi

Dz1, ..., zn the C-algebra generated by Oz1, ..., zn, Θz1, ..., zn.

The ring Oz1, ..., zn is a left Dz1, ..., zn-module.

The projection µ0 : Oz1, z2[(z1 − z2)
−1]→ Pz1, z2

is a homomorphisms of left Dz1, z2-modules.
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The Lie algebra Θz1, ..., zn acts on

ωz1, ..., zn = Oz1, ..., zndz1 ∧ · · · ∧ dzn

by Lie derivative. It makes ωz1, ..., zn a right Dz1, ..., zn-module.

The map

µR
0 : Oz1, z2[(z1 − z2)

−1]dz1 ⊗ dz2→ Pz1, z2dz1 ∧ dz2

induced by µ0 is a homomorphism of right Dz1, z2-modules.
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Jacobi identity

O = Oz1, z2, z2 = C[[z1, z2, z3]][z
−1
1 , z−1

2 , z−1
3 ]

tij = (zi − zj)
−1.

Since tijtjk = tijtik + tiktjk for distinct i, j, k, we deduce

O[tij, tik, tjk] = O[tij, tik] +O[tik, tjk].
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Hence the natural maps

O[tij, tik]

O[tik]
−→
O[tij, tik, tjk]

O[tik, tjk]

O[tij, tik]

O[tij] +O[tik]
−→

O[tij, tik, tjk]

O[tik, tjk] +O[tij]

are isomorphisms.

Let

µ1[23] : O[t12, t13, t23] −→
O[t12, t13, t23]

O[t12, t13] +O[t23]

be the projection.
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µ[12]3, µ2[13] : O[t12, t13, t23] −→
O[t12, t13, t23]

O[t12, t13] +O[t23]

are the compositions

O[t12, t13, t23]→
O[t12, t13, t23]

O[t13, t23] +O[t12]

∼← O[t12, t23]

O[t12] +O[t23]

∼→ O[t12, t13, t23]

O[t12, t13] +O[t23]
,

O[t12, t13, t23]→
O[t12, t13, t23]

O[t12, t23] +O[t13]

∼← O[t13, t23]

O[t13] +O[t23]

∼→ O[t12, t13, t23]

O[t12, t13] +O[t23]

43



µ1[23] = µ[12]3, µ2[13] = 0 on O[t12, t23],

µ1[23] = µ2[13], µ[12]3 = 0 on O[t13, t23].

Therefore µ1[23] = µ[12]3 + µ2[13].
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Chiral algebra

C: compact Riemann surface

A: right DC-module

A�A(∞∆)→ ∆!A: DC-module hom

unit: ΩC ↪→ A compatible with µΩ

skew-symmetry: µ = −σ12 ◦ µ ◦ σ12

Jacobi identity: µ1[23] = µ[12]3 + µ2[13]

45


