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Introduction

Introduction

(M , g) : a Riemannian manifold

(M , g) : a Riemannian symmetric space

def⇐⇒ ∀x ∈ M , ∃sx : M → M : an isometry

s.t. (i) s2x = idM

(ii) x is an isolated fixed point of sx

sx is called the geodesic symmetry at x .

Remarks.

γ(t) : a geodesic with γ(0) = x =⇒ sx(γ(t)) = γ(−t)

sx acts on Tx(M) as −id.

If (M , g) is irreducible, g is unique up to constant.
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Introduction

Introduction

M : a Riemannian symmetric space
sx : the geodesic symmetry at x ∈ M
S ⊂ M : a subset

S : an antipodal set
def⇐⇒ ∀x , y ∈ S , sx(y) = y

(Chen-Nagano 1988)
Remark. An antipodal set is finite.

Example 1. ∀p ∈ Sn(⊂ Rn+1), sp = 1⟨p⟩R − 1p⊥
=⇒ {p,−p} : an antipodal set

Example 2. For x ∈ RPn, sx is induced by 1x − 1x⊥ on Rn+1

y ⊂ x⊥ : 1-dim subspace =⇒ {x , y} : an antipodal set
More generally,
e1, e2, . . . , en+1 : o.n.b. of Rn+1

=⇒ {⟨e1⟩R, . . . , ⟨en+1⟩R} : a (maximal) antipodal set
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Introduction

Introduction

M : a compact Riemannian symmetric space
the 2-number #2M of M
#2M := sup{#S | S ⊂ M : an antipodal set}

(Chen-Nagano 1988)
Remark. #2M < ∞

S ⊂ M : an antipodal set

S is great
def⇐⇒ #S = #2M (Chen-Nagano 1988)

Remark. A great antipodal set S is maximal (i.e., @ antipodal set S ′

satisfying S $ S ′) but the converse is not true in general.

Chen-Nagano gave #2M for compact irreducible Riemannian
symmetric spaces M with some exceptions.
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Introduction

Examples.

#2S
n = 2. S = {p,−p} is a great antipodal set.

#2RPn = n + 1. S = {⟨e1⟩R, . . . , ⟨en+1⟩R} is a great antipodal set.

K = R,C,H
GK
k (Kn) = {V ⊂ Kn | V : K-subspace, dimKV = k}

#2G
K
k (Kn) =

n!

k!(n − k)!

{⟨ei1 , . . . , eir ⟩K ∈ GK
k (Kn) | 1 ≤ i1 < · · · < ir ≤ n}

where e1, . . . , en is the canonical basis of Kn
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Introduction

Introduction

M : a Hermitian symmetric space of compact type
τ : an involutive anti-holomorphic isometry of M

F (τ,M) := {x ∈ M | τ(x) = x} : a real form of M if F (τ,M) ̸= ∅

Remarks.

A real form is connected.

A real form L is totally geodesic Lagrangian submanifold of M .

Every real form is a symmetric R-space, and vice versa
(Takeuchi).

A compact Riemannian symmetric space is called a symmetric
R-space if it is an orbit of a linear isotropy representation of
Riemannian symmetric space of compact type.
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Introduction

Introduction

What we did are :

to investigate the following fundamental properties of antipodal
sets :
(A) Any antipodal set is included in a great antipodal set.
(B) Any two great antipodal sets are congruent.

Here subsets S1 and S2 in M are congruent if there exists
g ∈ I0(M) such that g(S1) = S2

to investigate the intersection of two real forms in a Hermitian
symmetric space of compact type and we found that the
intersection is an antipodal set.
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Fundamental properties of antipodal sets

Fundamental properties of antipodal sets

M : a Hermitian symmetric space of compact type

e.g. GC
k (Cn), Qn(C), SO(2n)/U(n), Sp(n)/U(n), etc.

M = Ad(G )J ⊂ g = Lie(G ),

where G : a compact semisimple Lie group,

J( ̸= 0) ∈ g, (adJ)3 = −adJ
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Fundamental properties of antipodal sets

Fundamental properties of antipodal sets

.
Theorem 1 (Sánchez(1997), T.-Tasaki)
..

.

. ..

.

.

M : a Hermitian symmetric space of compact type
M = Ad(G )J ⊂ g
=⇒
(1) X ,Y ∈ M, sX (Y ) = Y ⇐⇒ [X ,Y ] = 0

Moreover, the following conditions (A) and (B) hold.
(A) Any antipodal set is included in a great antipodal set.
(B) Any two great antipodal sets are congruent.

(2) ∀S : a great antipodal set of M
∃t : a maximal abelian subalgebra of g s.t. S = M ∩ t
In particular, a great antipodal set is an orbit of the Weyl group
of g.
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Fundamental properties of antipodal sets

Fundamental properties of antipodal sets
.
Theorem 2 (T.-Tasaki)
..

.

. ..

.

.

M = Ad(G )J : a Hermitian symmetric space of compact type
L = F (τ,M) : a real form

(τ : an involutive anti-holomorphic isometry of M)
Assume J ∈ L
Iτ : G → G , Iτ (g) := τgτ−1 (g ∈ G )
g = l+ p : the decomposition w.r.t. dIτ
=⇒
(1) L = M ∩ p.

Moreover, (A) and (B) in Theorem 1 hold.

(2) ∀S : a great antipodal set of L
∃a : a maximal abelian subspace of p s.t. S = M ∩ a
In particular, a great antipodal set is an orbit of the Weyl group
of the symmetric pair determined by Iτ .
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Fundamental properties of antipodal sets

Fundamental properties of antipodal sets

.
Corollary 3
..

.

. ..

.

.

M : a symmetric R-space
=⇒
(A) Any antipodal set is included in a great antipodal set.
(B) Any two great antipodal sets are congruent.

Remark. Ad(SU(4)) ∼= SU(4)/Z4 does not satisfy (A). In fact, there
exists a maximal antipodal set which is not great.
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Polars

Polars

M : compact Riemannian symmetric space
p ∈ M
F (sp,M) = {x ∈ M | sp(x) = x}

=
r∪

j=1

M+
j : the disjoint union of the connected components

where M+
1 = {p}

M+
j is called a polar of M w.r.t. p.

(Chen-Nagano 1977, 1978, 1988)

Remark. A polar is a totally geodesic submanifold of M .

Example. M = CPn

e1, . . . , en+1 : a unitary basis of Cn+1, p := ⟨e1⟩C
F (sp,CPn) = {p} ∪ {V ⊂ ⟨e2, . . . , en+1⟩C | dimV = 1}(∼= CPn−1)
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Polars

Polars

M : a compact Riemannian symmetric space

F (sp,M) =
r∪

j=1

M+
j =⇒ #2M ≤

r∑
j=1

#2M
+
j

Remark. S : an antipodal set, p ∈ S =⇒ S ⊂ F (sp,M)
.
Theorem 4 (Chen-Nagano, 1988)
..

.

. ..

.

.

M : a compact Riemannian symmetric space
=⇒ #2M ≥ χ(M)

M : a Hermitian symmetric space of compact type

=⇒ #2M = χ(M), #2M =
r∑

j=1

#2M
+
j
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Polars

Polars
.
Theorem 5 (Takeuchi,1989)
..

.

. ..

.

.

M : a symmetric R-space =⇒ #2M =
r∑

j=1

#2M
+
j

M : a Hermitian symmetric space of compact type
=⇒
M+

j : a Hermitian symmetric space of compact type if dimM+
j > 0

.
Lemma 6
..

.

. ..

.

.

M : a Hermitian symmetric space of compact type
L : a real form of M, o ∈ L
M+ : a polar of M w.r.t. o, M+ ∩ L ̸= ∅
=⇒ M+ ∩ L is a real form of M+
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Polars

Polars
.
Lemma 7
..

.

. ..

.

.

M : a Hermitian symmetric space of compact type, o ∈ M

F (so ,M) =
r∪

j=1

M+
j

=⇒
(1) L : a real form of M, o ∈ L

F (so , L) =
r∪

j=1

L ∩M+
j , #2L =

r∑
j=1

#2(L ∩M+
j )

(2) L1, L2 : real forms of M, o ∈ L1 ∩ L2

L1 ∩ L2 =
r∪

j=1

{(L1 ∩M+
j ) ∩ (L2 ∩M+

j )}

#(L1 ∩ L2) =
r∑

j=1

#{(L1 ∩M+
j ) ∩ (L2 ∩M+

j )}
Makiko Sumi Tanaka (Pacific Rim Geometry Conference 2011)Antipodal sets of compact Riemannian symmetric spaces and their applicationsDecember 1, 2011 16 / 26



Intersections of two real forms

Intersections of two real forms

Simple example.

S2 = CP1 is a Hermitian symmetric space of compact type.
A real form of S2 is a great circle S1, and vice versa.
Any two great circles intersect in two points which are antipodal to
each other, if they intersect transversally.

More generally,
M = CPn, L = RPn : a real form of CPn

g ∈ I0(M), L and g(L) intersect transversally
=⇒
∃u1, . . . , un+1 : a unitary basis of Cn+1

s.t. L ∩ g(L) = {⟨u1⟩C, . . . , ⟨un+1⟩C} (Howard, 1993)

In particular, L ∩ g(L) is a great antipodal set of L.
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Intersections of two real forms

Intersections of two real forms

.
Theorem 8 (T.-Tasaki)
..

.

. ..

.

.

M : a Hermitian symmetric space of compact type
L1, L2 : real forms of M, L1 t L2

=⇒ L1 ∩ L2 is an antipodal set of L1 and L2.

.
Theorem 9 (T.-Tasaki)
..

.

. ..

.

.

M : a Hermitian symmetric space of compact type
L1, L2 : congruent real forms of M, L1 t L2

=⇒ L1 ∩ L2 is a great antipodal set of L1 and L2,
i.e., #(L1 ∩ L2) = #2L1 = #2L2.
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Intersections of two real forms

Intersections of two real forms

(Outline of Proof)

L1 ∩ L2 ̸= ∅ (Tasaki)
o, p ∈ L1 ∩ L2
=⇒ ∃ closed geodesic on which o and p are antipodal, since M has
a cubic unit lattice.
(Here we need to investigate the intersection of maximal tori A1 ⊂ L1
and A2 ⊂ L2 satisfying o, p ∈ A1 ∩ A2.)

=⇒ Thm 8

By Lemma 7, L1 ∩ L2 =
r∪

j=1

{(L1 ∩M+
j ) ∩ (L2 ∩M+

j )}

(Case 1) L1 ∩M+
j = L2 ∩M+

j = ∅
(Case 2) L1 ∩M+

j = L2 ∩M+
j = {a point}

(Case 3) L1 ∩M+
j , L2 ∩M+

j : congruent real forms of M+
j with

L1 ∩M+
j t L2 ∩M+

j
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Intersections of two real forms

Intersections of two real forms

(Case 1) and (Case 2)
=⇒ #(L1 ∩M+

j ) = #(L2 ∩M+
j ) = #2(L1 ∩M+

j ) = #2(L2 ∩M+
j )

where #2∅ := 0

(Case 3)
=⇒
By taking a polar M+

jk of M+
j and repeating this argument a finite

number, (Case 3) reduces to (Case 1) or (Case 2), since
dimM+

j < dimM .

=⇒
#(L1 ∩ L2) = #2L1 = #2L2

=⇒ Thm 9
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Intersections of two real forms

Intersections of two real forms
.
Theorem 10 (T.-Tasaki)
..

.

. ..

.

.

M : a Hermitian symmetric space of compact type
L1, L2, L

′
1, L

′
2 : real forms of M, L1 t L2, L

′
1 t L′2

Li and L′i are congruent (i = 1, 2)
=⇒ #(L1 ∩ L2) = #(L′1 ∩ L′2)

Remark. L1 and L2 (L′1 and L′2) are not necessarily congruent.
.
Corollary 11
..

.

. ..

.

.

M : a Hermitian symmetric space of compact type
L1, L2, L

′
1, L

′
2 : same as Thm 10

#(L1 ∩ L2) = min{#2L1,#2L2}
(i.e., L1 ∩ L2 is a great antipodal set of L1 or L2.)
=⇒ L1 ∩ L2 and L′1 ∩ L′2 are congruent.
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Intersections of two real forms

Intersections of two real forms

M : a Hermitian symmetric space
L : a Lagrangian submanifold
L : globally tight

def⇐⇒ #(L ∩ g(L)) = dimH∗(L,Z2) for
∀g ∈ I0(M) with L t g(L)

(Y.-G Oh, 1991)

#(L ∩ g(L)) = #2L (Thm 9 )
= dimH∗(L,Z2) (Takeuchi)

.
Corollary 12 (T.-Tasaki)
..

.

. ..

.

.

Any real form of a Hermitian symmetric space of compact type is a
globally tight Lagrangian submanifold.
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Intersections of two real forms

Intersections of two real forms

Remark. The classification of real forms is obtained by D. P. S.
Leung (1979) and M. Takeuchi (1984).

Example. M = GC
k (Cn)

L ∼=


GR
k (Rn)

GH
l (Hm) if k = 2l , n = 2m

U(k) if n = 2k
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Intersections of two real forms

Intersections of two real forms

.
Theorem 13 (T.-Tasaki)
..

.

. ..

.

.

M : an irreducible Hermitian symmetric space of compact type
L1, L2 : real forms of M, L1 t L2, #2L1 ≤ #2L2

(1) (M , L1, L2) = (GC
2m(C4m),GH

m (H2m),U(2m)) (m ≥ 2)

=⇒ #(L1 ∩ L2) = 2m <
(
2m
m

)
= #2L1 < 22m = #2L2

In particular, L1 ∩ L2 is not a great antipodal set of L1 (and not of
L2).

(2) Otherwise, #(L1 ∩ L2) = #2L1
i.e., L1 ∩ L2 is a great antipodal set of L1.
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Intersections of two real forms

Intersections of two real forms

Example (non-irreducible case).

M = CP1 × CP1 × CP1 × CP1

τ1, τ2 : CP1 → CP1 : involutive anti-holomorphic isometries
s.t. real forms determined by τ1, τ2 intersect transversally
L1 = {(x , y , τ1(x), τ1(y)) | x , y ∈ CP1}
L2 = {(x , τ2(x), y , τ2(y)) | x , y ∈ CP1}
=⇒ L1, L2 : real forms of M , L1 t L2

#(L1 ∩ L2) = 2 < 4 = #2L1 = #2L2

Makiko Sumi Tanaka (Pacific Rim Geometry Conference 2011)Antipodal sets of compact Riemannian symmetric spaces and their applicationsDecember 1, 2011 25 / 26



Intersections of two real forms

Intersections of two real forms

Application.
.
Theorem 14 (Iriyeh-Sakai-Tasaki)
..

.

. ..

.

.

M : an irreducible Hermitian symmetric space of compact type
L1, L2 : real forms of M, L1 t L2
=⇒
(1) M = GC

2m(C4m) (m ≥ 2)
L1 : congruent to GH

m (H2m)
L2 : congruent to U(2m)
=⇒ HF (L1, L2 : Z2) ∼= (Z2)

2m

(2) Otherwise, HF (L1, L2 : Z2) ∼= (Z2)
min{#2L1,#2L2}.
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