Antipodal sets of compact Riemannian symmetric spaces and their applications

Makiko Sumi Tanaka

Pacific Rim Geometry Conference 2011

December 1, 2011

Contents

Joint with Hiroyuki Tasaki

- Introduction
- 2 Fundamental properties of antipodal sets

Introduction

- (M,g): a Riemannian manifold
- (M,g): a Riemannian symmetric space

$$\stackrel{\text{def}}{\iff} \ ^{\forall}x \in M, \ ^{\exists}s_{x} : M \to M : \text{ an isometry}$$

s.t. (i) $s_{x}^{2} = \text{id}_{M}$
(ii) x is an isolated fixed point of s_{x}

 s_x is called **the geodesic symmetry** at x.

Remarks.

•
$$\gamma(t)$$
 : a geodesic with $\gamma(0) = x \Longrightarrow s_{x}(\gamma(t)) = \gamma(-t)$

•
$$s_x$$
 acts on $T_x(M)$ as $-id$.

• If (M, g) is irreducible, g is unique up to constant.

Introduction

- M : a Riemannian symmetric space s_x : the geodesic symmetry at $x \in M$ $S \subset M$: a subset
- S: an antipodal set $\stackrel{\text{def}}{\iff} {}^{\forall}x, y \in S, \ s_x(y) = y$ (Chen-Nagano 1988)

Remark. An antipodal set is finite.

Example 1.
$$\forall p \in S^n (\subset \mathbb{R}^{n+1}), \ s_p = 1_{\langle p \rangle_{\mathbb{R}}} - 1_{p^{\perp}}$$

 $\implies \{p, -p\}$: an antipodal set
Example 2. For $x \in \mathbb{R}P^n$, s_x is induced by $1_x - 1_{x^{\perp}}$ on \mathbb{R}^{n+1}
 $y \subset x^{\perp}$: 1-dim subspace $\implies \{x, y\}$: an antipodal set
More generally,
 $e_1, e_2, \ldots, e_{n+1}$; o.n.b. of \mathbb{R}^{n+1}

$$\implies \{\langle e_1\rangle_{\mathbb{R}},\ldots,\langle e_{n+1}\rangle_{\mathbb{R}}\}: \text{ a (maximal) antipodal set}$$

Remark. $\#_2 M < \infty$

$S \subset M$: an antipodal set S is great $\stackrel{\text{def}}{\iff} \#S = \#_2M$ (Chen-Nagano 1988)

Remark. A great antipodal set S is maximal (i.e., \nexists antipodal set S' satisfying $S \subsetneq S'$) but the converse is not true in general.

Chen-Nagano gave $\#_2M$ for compact irreducible Riemannian symmetric spaces M with some exceptions.

Examples.

$$\begin{split} \#_2 S^n &= 2. \quad S = \{p, -p\} \text{ is a great antipodal set.} \\ \#_2 \mathbb{R} P^n &= n+1. \quad S = \{\langle e_1 \rangle_{\mathbb{R}}, \dots, \langle e_{n+1} \rangle_{\mathbb{R}}\} \text{ is a great antipodal set} \\ \mathbb{K} &= \mathbb{R}, \mathbb{C}, \mathbb{H} \\ G_k^{\mathbb{K}}(\mathbb{K}^n) &= \{V \subset \mathbb{K}^n \mid V : \quad \mathbb{K}\text{-subspace, } \dim_{\mathbb{K}} V = k\} \\ \#_2 G_k^{\mathbb{K}}(\mathbb{K}^n) &= \frac{n!}{k!(n-k)!} \\ \{\langle e_{i_1}, \dots, e_{i_r} \rangle_{\mathbb{K}} \in G_k^{\mathbb{K}}(\mathbb{K}^n) \mid 1 \leq i_1 < \dots < i_r \leq n\} \\ \text{where } e_1, \dots, e_n \text{ is the canonical basis of } \mathbb{K}^n \end{split}$$

M: a Hermitian symmetric space of compact type τ : an involutive anti-holomorphic isometry of M

 $F(\tau, M) := \{x \in M \mid \tau(x) = x\}$: a real form of M if $F(\tau, M) \neq \emptyset$

Remarks.

- A real form is connected.
- A real form L is totally geodesic Lagrangian submanifold of M.
- Every real form is a symmetric *R*-space, and vice versa (Takeuchi).

A compact Riemannian symmetric space is called **a symmetric** *R*-**space** if it is an orbit of a linear isotropy representation of Riemannian symmetric space of compact type.

What we did are :

- to investigate the following fundamental properties of antipodal sets :
 - (A) Any antipodal set is included in a great antipodal set.
 - (B) Any two great antipodal sets are congruent.

Here subsets S_1 and S_2 in M are **congruent** if there exists $g \in I_0(M)$ such that $g(S_1) = S_2$

• to investigate the intersection of two real forms in a Hermitian symmetric space of compact type and we found that the intersection is an antipodal set.

 \boldsymbol{M} : a Hermitian symmetric space of compact type

e.g. $G_k^{\mathbb{C}}(\mathbb{C}^n)$, $Q_n(\mathbb{C})$, SO(2n)/U(n), Sp(n)/U(n), etc.

$$M = \operatorname{Ad}(G)J \subset \mathfrak{g} = \operatorname{Lie}(G),$$

where G: a compact semisimple Lie group,

$$J(\neq 0) \in \mathfrak{g}, \ (\mathsf{ad}J)^3 = -\mathsf{ad}J$$

Theorem 1 (Sánchez(1997), T.-Tasaki)

 \implies

M : a Hermitian symmetric space of compact type $M = Ad(G)J \subset \mathfrak{g}$

- X, Y ∈ M, s_X(Y) = Y ⇔ [X, Y] = 0 Moreover, the following conditions (A) and (B) hold. (A) Any antipodal set is included in a great antipodal set. (B) Any two great antipodal sets are congruent.
 ∀S : a great antipodal set of M [∃]t : a maximal abelian subalgebra of g s.t. S = M ∩ t
 - In particular, a great antipodal set is an orbit of the Weyl group of \mathfrak{g} .

Theorem 2 (T.-Tasaki)

$$\begin{split} M &= Ad(G)J : \text{ a Hermitian symmetric space of compact type} \\ L &= F(\tau, M) : \text{ a real form} \\ (\tau : \text{ an involutive anti-holomorphic isometry of } M) \\ Assume \ J \in L \\ l_{\tau} : G \to G, \quad l_{\tau}(g) := \tau g \tau^{-1} \ (g \in G) \\ \mathfrak{g} &= \mathfrak{l} + \mathfrak{p} : \text{ the decomposition w.r.t. } dl_{\tau} \\ \Longrightarrow \end{split}$$

- (1) $L = M \cap \mathfrak{p}$. Moreover, (A) and (B) in Theorem 1 hold.
- (2) $\forall S : a \text{ great antipodal set of } L$ $\exists \mathfrak{a} : a \text{ maximal abelian subspace of } \mathfrak{p} \quad s.t. \quad S = M \cap \mathfrak{a}$ In particular, a great antipodal set is an orbit of the Weyl group of the symmetric pair determined by I_{τ} .

Corollary 3

 \Longrightarrow

M : a symmetric R-space

(A) Any antipodal set is included in a great antipodal set.(B) Any two great antipodal sets are congruent.

Remark. Ad(SU(4)) \cong $SU(4)/\mathbb{Z}_4$ does not satisfy (A). In fact, there exists a maximal antipodal set which is not great.

Polars

$$M : \text{ compact Riemannian symmetric space}$$

$$p \in M$$

$$F(s_p, M) = \{x \in M \mid s_p(x) = x\}$$

$$= \bigcup_{j=1}^{r} M_j^+ : \text{ the disjoint union of the connected components}$$
where $M_1^+ = \{p\}$

$$M_j^+ \text{ is called } \mathbf{a} \text{ polar of } M \text{ w.r.t. } p.$$
(Chen-Nagano 1977, 1978, 1988)

Remark. A polar is a totally geodesic submanifold of M.

Example. $M = \mathbb{C}P^n$ e_1, \ldots, e_{n+1} : a unitary basis of \mathbb{C}^{n+1} , $p := \langle e_1 \rangle_{\mathbb{C}}$ $F(s_p, \mathbb{C}P^n) = \{p\} \cup \{V \subset \langle e_2, \ldots, e_{n+1} \rangle_{\mathbb{C}} \mid \dim V = 1\} (\cong \mathbb{C}P^{n-1})$

Polars

M: a compact Riemannian symmetric space

$$F(s_{\rho},M) = \bigcup_{j=1}^{r} M_{j}^{+} \implies \#_{2}M \leq \sum_{j=1}^{r} \#_{2}M_{j}^{+}$$

Remark. S : an antipodal set, $p \in S \implies S \subset F(s_p, M)$

Theorem 4 (Chen-Nagano, 1988)

$$M$$
 : a compact Riemannian symmetric space
 $\implies \#_2 M \ge \chi(M)$

M : a Hermitian symmetric space of compact type

$$\implies \#_2 M = \chi(M), \quad \#_2 M = \sum_{j=1}^{n} \#_2 M_j^+$$

Polars

Theorem 5 (Takeuchi, 1989)

$$M$$
 : a symmetric R-space $\implies \#_2 M = \sum_{j=1}^r \#_2 M_j^+$

M: a Hermitian symmetric space of compact type \implies M_i^+ : a Hermitian symmetric space of compact type if dim $M_i^+ > 0$

Lemma 6

 $\begin{array}{l}M: a \ Hermitian \ symmetric \ space \ of \ compact \ type\\ L: \ a \ real \ form \ of \ M, \quad o \in L\\ M^+: \ a \ polar \ of \ M \ w.r.t. \ o, \ M^+ \cap L \neq \emptyset\\ \Longrightarrow \ M^+ \cap L \ is \ a \ real \ form \ of \ M^+\end{array}$

Lemma 7

M: a Hermitian symmetric space of compact type, $o \in M$ $F(s_o, M) = \bigcup M_i^+$ i=1(1) L : a real form of M, $o \in L$ $F(s_o, L) = \bigcup^{\cdot} L \cap M_j^+, \quad \#_2 L = \sum \#_2(L \cap M_j^+)$ (2) L_1, L_2 : real forms of M, $o \in L_1 \cap L_2$ $L_1 \cap L_2 = \bigcup \{ (L_1 \cap M_i^+) \cap (L_2 \cap M_i^+) \}$ i=1 $\#(L_1 \cap L_2) = \sum \#\{(L_1 \cap M_i^+) \cap (L_2 \cap M_i^+)\}$

Makiko Sumi Tanaka (Pacific Rim Geometry Antipodal sets of compact Riemannian symm

Simple example.

 $S^2 = \mathbb{C}P^1$ is a Hermitian symmetric space of compact type. A real form of S^2 is a great circle S^1 , and vice versa. Any two great circles intersect in two points which are antipodal to each other, if they intersect transversally.

More generally,

$$M = \mathbb{C}P^n, \ L = \mathbb{R}P^n$$
: a real form of $\mathbb{C}P^n$
 $g \in I_0(M), \ L \text{ and } g(L)$ intersect transversally
 \Longrightarrow
 $\exists u_1, \dots, u_{n+1}$: a unitary basis of \mathbb{C}^{n+1}
s.t. $L \cap g(L) = \{ \langle u_1 \rangle_{\mathbb{C}}, \dots, \langle u_{n+1} \rangle_{\mathbb{C}} \}$ (Howard, 1993)

In particular, $L \cap g(L)$ is a great antipodal set of L.

Theorem 8 (T.-Tasaki)

M : a Hermitian symmetric space of compact type L_1,L_2 : real forms of $M,\,L_1 \pitchfork L_2$

 $\implies L_1 \cap L_2$ is an antipodal set of L_1 and L_2 .

Theorem 9 (T.-Tasaki)

M : a Hermitian symmetric space of compact type L_1, L_2 : congruent real forms of $M, L_1 \pitchfork L_2$

 \implies $L_1 \cap L_2$ is a great antipodal set of L_1 and L_2 , i.e., $\#(L_1 \cap L_2) = \#_2 L_1 = \#_2 L_2$.

(Outline of Proof)

- $L_1 \cap L_2 \neq \emptyset$ (Tasaki)
- $o, p \in L_1 \cap L_2$

 \implies \exists closed geodesic on which o and p are antipodal, since M has a cubic unit lattice.

(Here we need to investigate the intersection of maximal tori $A_1 \subset L_1$ and $A_2 \subset L_2$ satisfying $o, p \in A_1 \cap A_2$.)

 $\implies \text{Thm 8}$ By Lemma 7, $L_1 \cap L_2 = \bigcup_{j=1}^r \{ (L_1 \cap M_j^+) \cap (L_2 \cap M_j^+) \}$ (Case 1) $L_1 \cap M_j^+ = L_2 \cap M_j^+ = \emptyset$ (Case 2) $L_1 \cap M_j^+ = L_2 \cap M_j^+ = \{\text{a point}\}$ (Case 3) $L_1 \cap M_j^+, L_2 \cap M_j^+ : \text{ congruent real forms of } M_j^+ \text{ with}$ $L_1 \cap M_i^+ \pitchfork L_2 \cap M_i^+$

December 1, 2011

19 / 26

(Case 1) and (Case 2)

$$\implies \#(L_1 \cap M_j^+) = \#(L_2 \cap M_j^+) = \#_2(L_1 \cap M_j^+) = \#_2(L_2 \cap M_j^+)$$
where $\#_2 \emptyset := 0$
(Case 3)

$$\implies$$
By taking a polar M_{jk}^+ of M_j^+ and repeating this argument a finite
number, (Case 3) reduces to (Case 1) or (Case 2), since
 $\dim M_j^+ < \dim M$.

$$\vec{\#}(L_1 \cap L_2) = \#_2 L_1 = \#_2 L_2$$

 \rightarrow

 \implies Thm 9

Theorem 10 (T.-Tasaki)

 $M : a \text{ Hermitian symmetric space of compact type} L_1, L_2, L'_1, L'_2 : real forms of M, L_1 \pitchfork L_2, L'_1 \pitchfork L'_2 L_i \text{ and } L'_i \text{ are congruent } (i = 1, 2) \implies \#(L_1 \cap L_2) = \#(L'_1 \cap L'_2)$

Remark. L_1 and L_2 (L'_1 and L'_2) are not necessarily congruent.

Corollary 11

 $M : a \text{ Hermitian symmetric space of compact type} \\ L_1, L_2, L'_1, L'_2 : same as Thm 10 \\ \#(L_1 \cap L_2) = \min\{\#_2L_1, \#_2L_2\} \\ (i.e., L_1 \cap L_2 \text{ is a great antipodal set of } L_1 \text{ or } L_2.) \\ \Longrightarrow L_1 \cap L_2 \text{ and } L'_1 \cap L'_2 \text{ are congruent.} \end{cases}$

$\begin{array}{l} M : \text{ a Hermitian symmetric space} \\ L : \text{ a Lagrangian submanifold} \\ L : \textbf{globally tight} \\ \stackrel{\text{def}}{\iff} \#(L \cap g(L)) = \dim H_*(L, \mathbb{Z}_2) \text{ for } \forall g \in I_0(M) \text{ with } L \pitchfork g(L) \\ (Y.-G \text{ Oh, 1991}) \\ \#(L \cap g(L)) = \#_2L \\ = \dim H_*(L, \mathbb{Z}_2) \\ (\text{Thm 9 }) \\ = \dim H_*(L, \mathbb{Z}_2) \\ (\text{Takeuchi}) \end{array}$

Corollary 12 (T.-Tasaki)

Any real form of a Hermitian symmetric space of compact type is a globally tight Lagrangian submanifold.

Remark. The classification of real forms is obtained by D. P. S. Leung (1979) and M. Takeuchi (1984).

Example. $M = G_k^{\mathbb{C}}(\mathbb{C}^n)$

$$L \cong \begin{cases} G_k^{\mathbb{R}}(\mathbb{R}^n) \\ G_l^{\mathbb{H}}(\mathbb{H}^m) \text{ if } k = 2l, \ n = 2m \\ U(k) \text{ if } n = 2k \end{cases}$$

Theorem 13 (T.-Tasaki)

 $M : an irreducible Hermitian symmetric space of compact type L_1, L_2 : real forms of M, L_1 <math>\pitchfork L_2, \#_2L_1 \leq \#_2L_2$ (1) $(M, L_1, L_2) = (G_{2m}^{\mathbb{C}}(\mathbb{C}^{4m}), G_m^{\mathbb{H}}(\mathbb{H}^{2m}), U(2m)) \quad (m \geq 2)$ $\implies \#(L_1 \cap L_2) = 2^m < {2m \choose m} = \#_2L_1 < 2^{2m} = \#_2L_2$ In particular, $L_1 \cap L_2$ is not a great antipodal set of L_1 (and not of L_2).

(2) Otherwise, $\#(L_1 \cap L_2) = \#_2 L_1$ i.e., $L_1 \cap L_2$ is a great antipodal set of L_1 .

Example (non-irreducible case).

$$\begin{split} M &= \mathbb{C}P^1 \times \mathbb{C}P^1 \times \mathbb{C}P^1 \times \mathbb{C}P^1 \\ \tau_1, \tau_2 : \mathbb{C}P^1 \to \mathbb{C}P^1 : \text{ involutive anti-holomorphic isometries} \\ \text{s.t. real forms determined by } \tau_1, \tau_2 \text{ intersect transversally} \\ L_1 &= \{(x, y, \tau_1(x), \tau_1(y)) \mid x, y \in \mathbb{C}P^1\} \\ L_2 &= \{(x, \tau_2(x), y, \tau_2(y)) \mid x, y \in \mathbb{C}P^1\} \end{split}$$

 \implies L_1, L_2 : real forms of M, $L_1 \pitchfork L_2$

$$\#(L_1 \cap L_2) = 2 < 4 = \#_2 L_1 = \#_2 L_2$$

Application.

Theorem 14 (Iriyeh-Sakai-Tasaki)

 $\begin{array}{l} M: \mbox{ an irreducible Hermitian symmetric space of compact type} \\ L_1, L_2: \mbox{ real forms of } M, \ L_1 \pitchfork L_2 \\ \Longrightarrow \\ (1) \ M = G_{2m}^{\mathbb{C}}(\mathbb{C}^{4m}) \ (m \geq 2) \\ L_1: \ congruent \ to \ G_m^{\mathbb{H}}(\mathbb{H}^{2m}) \\ L_2: \ congruent \ to \ U(2m) \\ \Longrightarrow \ HF(L_1, L_2: \mathbb{Z}_2) \cong (\mathbb{Z}_2)^{2^m} \\ (2) \ Otherwise, \ HF(L_1, L_2: \mathbb{Z}_2) \cong (\mathbb{Z}_2)^{\min\{\#_2L_1, \#_2L_2\}}. \end{array}$