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Introduction and preliminaries

M: a Riemannian symmetric space

A ⊂ M: a subset

A: an antipodal set :⇔ ∀x , y ∈ A, sx(y) = y ,

where sx : the symmetry at x .

An antipodal set is discrete since x is an isolated fixed point of sx .

E.g. M = Sn (⊂ Rn+1), ∀x ∈ Sn, {x ,−x}: an antipodal set.

M = RPn, ∀x ∈ RPn, ∀y ∈ RPn, y ⊂ x⊥, {x , y}: an antipodal set.

A: a maximal antipodal set :⇔

A′ ⊂ M: an antipodal set, A ⊂ A′ ⇒ A = A′.

M = Sn, {x ,−x}: maximal

M = RPn, {x , y}: not maximal (n ≥ 2)
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Remark. A1,A2: antipodal sets ⇒ A1 ∩A2: an antipodal set, A1 ∪A2: not

necessarily an antipodal set.

If M: connected, ∀x , y ∈ A, ∃γ: a closed geodesic s.t.

γ(0) = γ(2) = x , γ(1) = y , i.e., x , y are antipodal points on γ.

If M: connected, |A| <∞.

∃max{|A| : A ⊂ M : antpodal} =: #2M: the 2-number of M

A: a great antipodal set :⇔ |A| = #2M.

Remark. A great antipodal set ⇒ a maximal antipodal set. A maximal

antipodal set 6⇒ a great antipodal set.

E.g. #2S
n = 2, #2RPn = n + 1, #2Rn = 1, #2RHn = 1.

u1, . . . , un+1: an o.n.b. of Rn+1, {Ru1, . . . ,Run+1}: a great antipodal set

of RPn.

Makiko Sumi Tanaka (TUS) Antipodal sets Representations of Sym. Sp. 4 / 35



G : a compact Lie group

r2(G ): the 2-rank of G , i.e., the maximal integer t satisfying ∃G ′: a

subgroup of G , G ′ ∼= (Z2)
t .

G is a Riemannian symmetric space w.r.t. a bi-invariant metric.

#2G = 2r2(G).

Chen and Nagano (Trans. Amer.Math. Soc. 1988) studied #2M of a

compact Riemannian symmetric space M.

They also studied relations between the Euler characteristic χ(M) and

#2M, e.g. χ(M) ≤ #2M. χ(M) = #2M if M is a Hermitian symmetric

space of semisimple type.

Takeuchi (Nagoya Math. J. 1989) showed: #2M =(the sum of Z2-Betti

numbers of M) if M is a symmetric R-space.
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Tasaki and T. (J.Math. Soc. Japan 2012) obtained the following result:

M: a Hermitian symmetric space of compact type

L1, L2: real forms of M, intersect transversely

⇒ L1 ∩ L2 is an antipodal set of L1, L2. Moreover, if L1, L2 are congruent,

L1 ∩ L2 is an great antipodal set.

L1, L2 ⊂ M are congruent if there exists f ∈ Iso(M)0 such that f (A) = B .

A real form of a Hermitian symmetric space M is a connected component

of an involutive aniti-holomorphic isometry of M.

A real form of a Herm. sym. sp. of cpt. type ←→ A symmetric R-space

E.g. M = CP1 = S2, L1, L2 ∼= RP1 = S1 (a great circle)
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Antipodal sets are “good” finite subsets of compact Riemannian

symmetric spaces. To classify maximal antipodal sets is a fundamental

problem for studies of antipodal sets.

Aims: (1) To classify maximal antipodal sets of a compact Riemannian

symmetric space up to congruence and give an explicit description of a

representative of each congruent class.
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(2) To determine the maximum of the cardinalities of maximal antipodal

sets as well as to determine antipodal sets whose cardinalities attain the

maximum. (Explicit descriptions of maximal antipodal sets make us

possible to calculate their cardinalities. This gives an alternative proof of

Chen-Nagano’s result of the determination of #2M.)

Tasaki and T. showed that if M is a symmetric R-space, any antipodal

sets of M is included in a great antipodal sets, and furthermore, any two

great antipodal sets of M are congruent (Osaka J.Math. 2013).
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Under the collaboration with Tasaki we classified maximal antipodal sets

of:

・some compact classical Lie groups. (U(n), SU(n), Sp(n),O(n), SO(n),

and their quotient groups) (J. Lie Theory 2017).

・some compact classical symmetric spaces.

(Gk(Kn),K = R,C,H, Sp(n)/U(n), SO(2n)/U(n) and their quotient

spaces) (Differ. Geom.Appl. 2020).

・some compact classical symmetric spaces.

(U(n)/O(n),U(2n)/Sp(n), SU(n)/SO(n), SU(2n)/Sp(n) and their

quotient spaces) (in preparation).

・G2 and G2/SO(4) (with Yasukura, Proc. Amer.Math. Soc. 2022)
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Other researches:

Tasaki: Maximal antipodal sets of the oriented Grassmann manifolds

G̃k(Rn),

Sasaki: Maximal antipodal sets of compact exceptional symmetric spaces

F4, FI , E6, EI , EII , EIII , EIV ,

etc.
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Maximal antipodal subgroups of compact Lie groups

G : a compact Lie group with a bi-invariant Riemannian metric

x ∈ G , sx(y) = xy−1x (y ∈ G ).

e: the identity element, se(y) = y−1 (y ∈ G ).

A: an antipodal set, e ∈ A

x , y ∈ A ⇒ x2 = y2 = e, xy = yx .

If A is maximal, A is a subgroup ∼= (Z2)
t , where t = r2(G ).

We call A a maximal antipodal subgroup (MAS).

G = O(n),U(n), Sp(n) ⇝ symmetric R-spaces

O(n) := {X ∈ GL(n,R) | tXX = 1n}

U(n) := {X ∈ GL(n,C) | tX̄X = 1n}

Sp(n) := {X ∈ GL(n,H) | tX̄X = 1n}
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∆n :=



±1

. . .

±1


 ⊂ O(n)

∆n is a unique MAS of G up to conjugation (simultaneous

diagonalization). #2O(n) = #2U(n) = #2Sp(n) = 2n.

G = SO(n), SU(n)

∆+
n := {d ∈ ∆n | det(d) = 1} is a unique MAS of G up to conjugation.

#2SO(n) = #2SU(n) = 2n−1.

Quotient groups of U(n)

“The center of U(n)” = {α1n | α ∈ C, |α| = 1} ⊃ Zµ = {α1n | αµ = 1}

(µ: a natural number)

πn : U(n)→ U(n)/Zµ: the natural projection
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I1 :=

−1 0

0 1

 , J1 :=

0 −1

1 0

 , K1 :=

0 1

1 0


D[4] := {±12,±I1,±J1,±K1}

n = 2k · l , l : an odd number

s ∈ {0, . . . , k}, D(s, n) := D[4]⊗ · · · ⊗ D[4]︸ ︷︷ ︸
s

⊗∆n/2s ⊂ O(n)

D(0, n) = ∆n

D(s, n) = {d1 ⊗ · · · ⊗ ds ⊗ d0 | d1, . . . , ds ∈ D[4], d0 ∈ ∆n/2s} (1 ≤ s ≤ k)

A = [aij ], A⊗ B =

a11B a12B

a21B a22B


E.g. I1 ⊗ J1 =

−J1 0

0 J1

 , J1 ⊗ I1 =

0 −I1
I1 0
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Theorem 1 ([2])

πn : U(n)→ U(n)/Zµ: the natural projection

θ: a primitive 2µ-th root of 1

n = 2k · l , l : odd

Any MAS of U(n)/Zµ is conjugate to one of the following:

(1) µ: odd ⇒ πn({1, θ}∆n)

(2) µ: even

(2-1) k = 0 ⇒ πn({1, θ}∆n)

(2-2) k ≥ 1 ⇒ πn({1, θ}D(s, n)) (0 ≤ s ≤ k), where the case of

s = k − 1, n = 2k is excluded.

Remark. ∆2 ⊊ D[4] implies D(k − 1, 2k) ⊊ D(k , 2k).
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Corollary 2 ([2])

Great antipodal subgroups of U(n)/Zµ and their cardinalities are as

follows:

(1) µ: odd ⇒ πn({1, θ}∆n) is a unique great antipodal subgroup up to

conjugation and its cardinality is 2n, and hence #2U(n)/Zµ = 2n.

(2) µ: even,

(2-1) k = 0 ⇒ πn({1, θ}∆n), #2U(n)/Zµ = 2n.

(2-2) k ≥ 1

n = 2 ⇒ π2({1, θ}D[4]), #2U(2)/Zµ = 23 = 8.

n = 4 ⇒ π4({1, θ}D(2, 4)), #2U(4)/Zµ= 25 = 32.

n 6= 2, 4 ⇒ πn({1, θ}∆n) #2U(n)/Zµ = 2n.
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E.g. U(4)/Z2 (n = 4, µ = 2, k = 2, l = 1, θ = i)

A MAS of U(4)/Z2 is conjugate to one of the following:

π4({1, i}D(0, 4)) = π4({1, i}∆4),

π4({1, i}D(2, 4)) = π4({1, i}(D[4]⊗ D[4]).

Remark. π4({1, i}D(1, 4)) = π4({1, i}D[4]⊗∆2) ⊊ π4({1, i}D(2, 4)).

{1, i}∆4 =




±1

±1

±1

±1

 ,


±i

±i

±i

±i




.

|π4({1, i}∆4)| = (24 + 24)/2 = 24.

{1, i}D[4]⊗ D[4] =

{±{12, I1, J1,K1} ⊗ {12, I1, J1,K1},±i{12, I1, J1,K1} ⊗ {12, I1, J1,K1}}.
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|π4({1, i}D[4]⊗ D[4])| = (2 · 42 + 2 · 42)/2 = 25.

π4({1, i}D[4]⊗ D[4]) is a unique great antipodal subgroup up to

conjugation. #2U(4)/Z2 = 25 = 32.

Remark. In SU(8)/Zµ (µ = 2, 4, 8), there are two great antipodal

subgroups which are not conjugate:

π8({1, θ}∆+
8 ), π8({1, θ}D(3, 8)), their cardinalities = 27.

Sketch of the proof of Theorem 1

A : a maximal antipodal subgroup of U(n)/Zµ

B := π−1
n (A)

B : commutative ⇝ A
conj∼ πn({1, θ}∆n)

B : not commutative, i.e., ∃a, b ∈ B s.t. ab 6= ba.

⇝ ab = −ba
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⇝ • tr(a) = tr(b) = 0

• n, µ : even

• {a, b} conj∼ {I1 ⊗ 1n′ , K1 ⊗ 1n′} (n′ = n/2)

⇝ 〈a, b〉 ∼= D[4]⊗ 1n′

⇝ B
conj∼ a subgroup of D[4]⊗ U(n′)

A = πn(B)
conj∼ a subgroup of πn(D[4]⊗ U(n′))

Furthermore, ∃A′ : a maximal antipodal subgroup of U(n′)/Zµ s.t.

A
conj∼ πn(D[4]⊗ π−1

n′ (A
′)). Conversely, if C is a maximal antipodal

subgroup of U(n′)/Zµ, πn(D[4]⊗ π−1
n′ (C )) is a maximal antipodal

subgroup of U(n)/Zµ.

Induction on k ⇝ Theorem 1.
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In [2] we classified MAS of the quotient groups of O(n), Sp(n), SO(n) in

similar ways and determined great antipodal subgroups and their

cardinalities. To classify MAS of the quotient groups of SU(n) we used

the following: ∀A: a MAS of SU(n)/Zµ, ∃Ã: a MAS of U(n)/Zµ

satisfying A = Ã ∩ SU(n)/Zµ, and vise versa.
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Maximal antipodal subsets of compact symmetric spaces

M : a compact connected Riemannian symmetric space, not a Lie group

Strategy: To Use the realization of M as a totally geodesic submanifold,

called a polar, of a compact Lie group G and to apply classification results

of MAS of G .

o ∈ M

F (so ,M) := {x ∈ M | so(x) = x}

A connected component of F (so ,M) is called a polar of M w.r.t. o.

{o}: a trivial polar

A polar M+ (dimM+ > 0) is a totally geodesic submanifold.

⇝ ∀x ∈ M+, sx(M
+) = M+, hence M+ is a Riemannian symmetric space

w.r.t. the induced metric.
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E.g. M = U(n)

s1n(x) = x−1 (x ∈ U(n))

F (s1n ,U(n)) = {x ∈ U(n) | x2 = 1n}

x2 = 1 ⇝ x
conj∼ Ik , Ik := diag(−1. . . . ,−1︸ ︷︷ ︸

k

, 1, . . . , 1︸ ︷︷ ︸
n−k

)

F (s1n ,U(n)) = {±1n} ∪
n−1⋃
k=1

{g Ik g
−1 | g ∈ U(n)}

{g Ik g
−1 | g ∈ U(n)} ∼= U(n)/(U(k)× U(n − k)) ∼= Gk(Cn)

Gk(Cn) is realized as a polar of U(n).

Polars of a compact Lie group

G : a compact Lie group

e: the identity element of G

G0: the identity component of G
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We simply refer to a polar of G w.r.t. e as a polar of G .

g ∈ G , τg : G → G , τg (x) := gxg−1 (x ∈ G ) (an inner automorphism)

Proposition 3 ([3])

Let M be a polar of G. Then M = {τg (x0) | g ∈ G0} for x0 ∈ M and

Iso(M)0 = {τg |M | g ∈ G0}.

Basic principle:

M: a polar of G

A: a maximal antipodal set of M ⇝ A ∪ {e}: an antipodal set of G

(∵ A ⊂ M ⊂ F (se ,G ))

∃Ã: a maximal antipodal subgroup of G satisfying A ∪ {e} ⊂ Ã

⇝ A = M ∩ Ã (∵ A: maximal)

[B0], . . . , [Bk ]: all G0-conjugacy classes of maximal antipodal subgroups of

G , where B0, . . . ,Bk denotes representatives.
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⇝ ∃g ∈ G0, ∃s ∈ {0, . . . , k} s.t. Ã = τg (Bs).

A = M ∩ Ã = M ∩ τg (Bs) = τg (M ∩ Bs) (∵ τg (M) = M)

i.e., A is Iso(M)0-congruent to M ∩ Bs .

⇝ Any representative of Iso(M)0-congruent class of maximal antipodal

sets of M is one of M ∩ B0, . . . ,M ∩ Bk .

Maximal antipodal sets of Grassmann manifolds

K = R,C,H

GK := O(n) (K = R), U(n) (K = C), Sp(n) (K = H)

Gk(Kn) is regarded as a polar of GK by the correspondence x 7→ πx⊥ − πx .

πx⊥ , πx : the orthogonal projections on x⊥, x
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Theorem 4 ([3])

A maximal antipodal set of Gk(Kn) is GK-congruent to

{〈ei1 , . . . , eik 〉K | 1 ≤ i1 < · · · < ik ≤ n}, where e1, . . . , en is the standard

orthonormal basis of Kn. This is a great antipodal set and

#2Gk(Kn) =
(n
k

)
.

The quotient space of Gm(K2m)

γ : Gm(K2m)→ Gm(K2m), γ(x) := x⊥ (x ∈ Gm(K2m))

〈γ〉: the subgroup of Iso(Gm(K2m)) generated by γ

Gm(K2m)∗ := Gm(K2m)/〈γ〉 is a compact Riemannian symmetric space,

doubly covered by Gm(K2m).
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We regard Gm(K2m) as a polar of GK under the correspondence

x 7→ πx⊥ − πx .

Since γ(x) 7→ πγ(x)⊥ − πγ(x) = −(πx⊥ − πx), γ is regarded as −id.

⇝ Gm(K2m)∗ ⊂ G ∗
K := GK/{±12m}.

π : GK → G ∗
K: the natural projection

π ◦ sx = sπ(x) ◦ π (x ∈ GK)

x ∈ Gm(K2m), sπ(e)(π(x)) = π(se(x)) = π(x)

⇝ Gm(K2m)∗ is a polar of G ∗
K

By using the classification of maximal antipodal subgroups of G ∗
K we

obtained the classification of maximal antipodal sets of Gm(K2m)∗.
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Remark. A compact connected Riemannina symmetric space is not

necessarily realized as a polar of a connected compact Lie group. For

example, U(n)/O(n),U(2n)/Sp(n), so-called outer symmetric spaces, are

realized as polars of disconnected compact Lie groups. They are not

realized as polars of connected compact Lie groups, since if so, they should

be inner symmetric spaces.
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Maximal antipodal sets of UI (n) = U(n)/O(n)

σI : U(n)→ U(n), σI (x) := x̄ (the complex conjugation)

σI ∈ Aut(U(n)), σ2
I = 1

〈σI 〉 = {1, σI}: the subgroup of Aut(U(n)) generated by σI

G := U(n)⋊ 〈σI 〉: the semidirect product

G = (U(n), 1) ∪ (U(n), σI ): the direct sum of the connected components

G is a disconnected compact Lie group.

e: the identity element of G

F (se ,G )

= {(g , 1) ∈ (U(n), 1) | se(g , 1) = (g , 1)} ∪ {(g , σI ) ∈ (U(n), σI ) |

se(g , σI ) = (g , σI )}

Makiko Sumi Tanaka (TUS) Antipodal sets Representations of Sym. Sp. 27 / 35



= {(g , 1) ∈ (U(n), 1) | (g , 1)−1 = (g , 1)} ∪ {(g , σI ) ∈ (U(n), σI ) |

(g , σI )
−1 = (g , σI )}

= {(g , 1) ∈ (U(n), 1) | (g−1, 1) = (g , 1)} ∪ {(g , σI ) ∈ (U(n), σI ) |

(σI (g)
−1, σI ) = (g , σI )}

Hence F (se ,G ) = (F (s1n ,U(n)), 1) ∪ ({g ∈ U(n) | σI (g) = g−1}, σI ).

UI (n) := {g ∈ U(n) | σI (g) = g−1} = ρσI
(U(n))(1n) ∼= U(n)/O(n),

where ρσI
(g)(x) := g x σI (g)

−1 (g , x ∈ U(n)).

UI (n) is a compact connected Riemannian symmetric space.

(UI (n), σI ) is a polar of G = U(n)⋊ 〈σI 〉.

UI (n) is realized as a polar of the disconnected Lie group U(n)⋊ 〈σI 〉.
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In order to classify maximal antipodal sets of UI (n), we classify maximal

antipodal subgroups of U(n)⋊ 〈σI 〉 first.

Theorem 5

Any maximal antipodal subgroup of U(n)⋊ 〈σI 〉 is conjugate to ∆n ⋊ 〈σI 〉

by an element of (U(n), 1).

By this, we obtain the following:

Theorem 6

Any maximal antipodal set of UI (n) is congruent to ∆n.

Corollary 7

∆n is a unique great antipodal set of UI (n) up to U(n)-congruence. We

have #2UI (n) = 2n.
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The quotient spaces of UI (n)

Zµ := {z1n | zµ = 1}, µ : a natural number

Zµ ⊂ the center of U(n)

ZµUI (n) ⊂ UI (n), where UI (n) = {g ∈ U(n) | σI (g) = g−1}.

⇝ the quotient space UI (n)/Zµ is defined.

σI (Zµ) = Zµ

⇝ σI induces an involutive autom. of U(n)/Zµ, also denoted by σI .

UI (n)/Zµ ⊂ M := {x ∈ U(n)/Zµ | σI (x) = x−1}

Note. M is not necessarily connected and UI (n)/Zµ is the connected

component containing the identity element.

(UI (n)/Zµ, σI ) is a polar of U(n)/Zµ ⋊ 〈σI 〉.
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(Zµ, 1) is a normal subgroup of U(n)⋊ 〈σI 〉.

We denote the quotient group (U(n)⋊ 〈σI 〉)/(Zµ, 1) by (U(n)⋊ 〈σI 〉)/Zµ.

By the equality

(U(n)⋊ 〈σI 〉)/Zµ 3 (g , α)(Zµ, 1) = (gZµ, α) ∈ U(n)/Zµ ⋊ 〈σI 〉,

we identify U(n)/Zµ ⋊ 〈σI 〉 with (U(n)⋊ 〈σI 〉)/Zµ.

Theorem 8

πn : U(n)⋊ 〈σI 〉 → (U(n)⋊ 〈σI 〉)/Zµ : the natural projection

θ: a primitive 2µ-th root of 1

Any maximal antipodal subgroup of (U(n)⋊ 〈σI 〉)/Zµ is

πn((U(n), 1))-conjugate to one of the following.

(1) If µ is odd, πn(∆n ⋊ 〈σI 〉).

(2) If µ is even, πn({1, θ}D(s, n)⋊ 〈σI 〉) (s ∈ {0, . . . , k}),

where the case of (s, n) = (k − 1, 2k) is excluded.

The case of (s, n) = (k − 1, 2k) is excluded because ∆2 ⊊ D[4] implies

D(k − 1, 2k) ⊊ D(k , 2k) hence πn({1, θ}D(k − 1, 2k)⋊ 〈σI 〉) is not

maximal. In general, the following holds.

Proposition 9

G ,G ′ : compact Lie groups

π : G → G ′ : a covering homomorphism whose covering degree is odd

(1) If A is a maximal antipodal subgroup of G, π(A) is a maximal

antipodal subgroup of G ′ and π(A) is isomorphic to A by π. (2) If A′ is a

maximal antipodal subgroup of G ′, there exists a maximal antipodal

subgroup A of G such that A is isomorphic to A′ by π.
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d ∈ D(s, n) ⇝ d2 = ±1n
PD(s, n) := {d ∈ D(s, n) | d2 = 1n}

Theorem 10

πn : U(n)→ U(n)/Zµ : the natural projection

Any maximal antipodal set of UI (n)/Zµ is U(n)/Zµ-congruent to one of

the following.

(1) If µ is odd, πn(∆n).

(2) If µ is even, πn({1, θ}PD(s, n)) (s ∈ {0, . . . , k}),

where the case of (s, n) = (k − 1, 2k) is excluded.
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|πn(∆n)| = 2n

|πn({1, θ}PD(s, n))| = (2s + 1) · 2s−1+2k−s ·l

Theorem 11

Great antipodal sets of UI (n)/Zµ and their cardinalities are as follows:

(1) µ: odd ⇒ πn(∆n): a unique great antipodal set, |πn(∆n)| = 2n.

(2) µ: even

(2-1) n = 2 ⇒ π2({1, θ}PD(1, 2)) = π2({1, θ}{12, I1,K1}): a unique

great antipodal set, |π2({1, θ}PD(1, 2))| = 6,

(2-2) n = 4 ⇒ π4({1, θ}PD(2, 4)): a unique great antipodal set,

|π4({1, θ}PD(2, 4))| = 20,

(2-3) n 6= 2, 4 ⇒ πn({1, θ}∆n): a unique great antipodal set,

|πn({1, θ}∆n)| = 2n.
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Corollary 12 (cf. [1])

#2UI (n)/Zµ is as follows.

(1) µ:odd ⇒ #2UI (n)/Zµ = 2n.

(2) µ: even ⇒ #2UI (2)/Zµ = 6, #2UI (4)/Zµ = 20,

#2UI (n)/Zµ = 2n (n 6= 2, 4).
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