
Antipodal sets of compact symmetric spaces

Makiko Sumi Tanaka

Tokyo University of Science

International Conference on Differential Geometry, Integrable Systems

and Their Ramifications

Waseda University

June 18–20, 2024

Makiko Sumi Tanaka (TUS) Antipodal sets Int. Conf. onDGISR 1 / 28



1 Antipodal sets - Introduction and overview

2 Maximal antipodal subgroups of compact Lie groups

3 Covering homomorphisms with odd degree

4 Maximal antipodal subgroups of U(n)/Zµ

Makiko Sumi Tanaka (TUS) Antipodal sets Int. Conf. onDGISR 2 / 28



Antipodal sets - Introduction and overview

M : a Riemannian symmetric space

∀x ∈ M, ∃sx : an involutive isometry s.t. x is an isolated fixed point of sx .

A ⊂ M : a subset

A : an antipodal set :⇔ ∀x , y ∈ A, sx(y) = y

An antipodal set is a discrete subset.

E.g. M = Sn (⊂ Rn+1) ∀x ∈ Sn, {x ,−x}: an antipodal set

M = RPn ∀x , y ∈ RPn with y ⊂ x⊥, {x , y}: an antipodal set

A : a maximal antipodal set in M :⇔

A′ ⊂ M : an antipodal set, A ⊂ A′ ⇒ A = A′

In the examples above, {x ,−x} is a maximal antipodal set of Sn. {x , y} is

not a maximal antipodal set of RPn if n ≥ 2.
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If M is connected, for ∀x , y in an antipodal set A, ∃γ: a closed geodesic

s.t. x , y are antipodal points on γ.

If M is a Riem. sym. sp. of noncompact type or the Euclidean space, any

antipodal set consists of one point.

Assume M is compact and connected.

A ⊂ M : an antipodal set ⇒ |A| < ∞

∃max{|A| : A ⊂ M : antpodal} =: #2M : the 2-number of M

A : a great antipodal set :⇔ |A| = #2M

Remark. Great antipodal set ⇒ Maximal antipodal set.

Maximal antipodal set ̸⇒ Great antipodal set.
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E.g. #2S
n = 2, #2RPn = n + 1, #2Rn = 1, #2RHn = 1.

u1, . . . , un+1 : an o.n.b. of Rn+1, {Ru1, . . . ,Run+1} : a great antipodal

set of RPn.

G : a compact Lie group (with a bi-invariant Riemannian metric)

r2(G ): the 2-rank of G , i.e., the maximal integer t satisfying ∃G ′ : a

subgroup of G with G ′ ∼= (Z2)
t

#2G = 2r2(G)

These notions were introduced by Chen and Nagano

(Trans. Amer.Math. Soc. 1988). They studied #2M of a compact

Riemannian symmetric space M. They also studied relations between the

Euler characteristic χ(M) and #2M. E.g. χ(M) ≤ #2M. If M is a

Hermitian symmetric space of compact type, χ(M) = #2M.
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Takeuchi showed that #2M =(the sum of Z2-Betti numbers of M) if M is

a symmetric R-space (Nagoya Math. J. 1989).

Tasaki and T. obtained the following result (J.Math. Soc. Japan 2012):

M : a Hermitian symmetric space of compact type

L1, L2 : real forms of M, intersect transversely

⇒ L1 ∩ L2 is an antipodal set of L1, L2. Moreover, if L1, L2 are congruent,

L1 ∩ L2 is a great antipodal set.

Here, L1, L2 ⊂ M are congruent if ∃f ∈ I (M)0 such that f (L1) = L2.

A real form of a Hermitian symmetric space M is a connected component

of an involutive aniti-holomorphic isometry of M. A real form of a

Herm. sym. sp. of cpt. type is a symmetric R-space, and vise versa.
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E.g. M = CP1 = S2, L1, L2 ∼= RP1 = S1 (a great circle)
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Tasaki and T. showed that if M is a symmetric R-space, any antipodal

sets of M is included in a great antipodal sets, and furthermore, any two

great antipodal sets of M are congruent (Osaka J.Math. 2013).
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Tasaki and T. classified maximal antipodal sets of:

・some compact classical Lie groups (U(n), SU(n), Sp(n),O(n), SO(n),

and their quotient groups) (J. Lie Theory 2017).

・some compact classical symmetric spaces

(Gk(Kn),K = R,C,H, Sp(n)/U(n), SO(2n)/U(n) and their quotient

spaces) (Differ. Geom.Appl. 2020).

・some compact classical outer symmetric spaces

(U(n)/O(n),U(2n)/Sp(n), SU(n)/SO(n), SU(2n)/Sp(n) and their

quotient spaces) (in preparation).

・G2 and G2/SO(4) (with Yasukura, Proc. Amer.Math. Soc. 2022).
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Maximal antipodal subgroups of compact Lie groups

G : a compact Lie group with a bi-invariant Riemannian metric

x ∈ G , sx(y) = xy−1x (y ∈ G )

e : the identity element of G , se(y) = y−1 (y ∈ G )

A : an antipodal set of G , e ∈ A

x , y ∈ A ⇒ x2 = y2 = e, xy = yx

If A is maximal, A is a subgroup ∼= (Z2)
t , where t = r2(G )

We call A a maximal antipodal subgroup.

G = O(n),U(n), Sp(n)

O(n) := {x ∈ GL(n,R) | txx = 1n}

U(n) := {x ∈ GL(n,C) | t x̄x = 1n}

Sp(n) := {x ∈ GL(n,H) | t x̄x = 1n}
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∆n :=



±1

. . .

±1


 ⊂ O(n)

∆n is a maximal antipodal subgroup of G . Any maximal antipodal group

of G is conjugate to ∆n. #2O(n) = #2U(n) = #2Sp(n) = 2n.

G = SO(n), SU(n)

SO(n) := {x ∈ O(n) | det(x) = 1}

SU(n) := {x ∈ U(n) | det(x) = 1}

∆+
n := {d ∈ ∆n | det(d) = 1} is a maximal antipodal subgroup of G . Any

maximal antipodal group of G is conjugate to ∆+
n .

#2SO(n) = #2SU(n) = 2n−1.
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Covering homomorphisms with odd degree

We show that all of the maximal antipodal subgroups in compact Lie

groups do not change through covering homomorphisms with odd degree.

Tanaka and Tasaki, Maximal antipodal subgroups and covering

homomorphisms with odd degree, Int. Electron. J. Geom. 17, No.1

(2024), 153–156. (This issue was dedicated to the anniversary of

Bang-Yen Chen’s 80th birthday.)

Preparation from Group theory

G : a group

e: the unit element of G

X ,Y ⊂ G , XY = {xy | x ∈ X , y ∈ Y }
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Lemma 1

Let H,K be subgroups of a group G. The following conditions are

equivalent.

(1) For each x ∈ HK, there is the unique (h, k) ∈ H ×K such that x = hk.

(2) If hk = e for h ∈ H, k ∈ K, then h = k = e.

(3) H ∩ K = {e}.

Theorem 2 (Lagrange)

If H is a subgroup of a finite group G, then |H| divides |G |.

Corollary 3

Let G be a finite group. For each g ∈ G, min{n ∈ N | gn = e} divides |G |.
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Theorem 4 (Sylow)

Let G be a finite group with |G | = pnm, where p is a prime, and p,m are

mutually prime.

(1) There is a subgroup H of G with |H| = pn, called a p-Sylow subgroup.

(2) Any two p-Sylow subgroups are conjugate.

(3) If K is a subgroup of G with |K | = pk , there is a p-Sylow subgroup H

which satisfies K ⊂ H.
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Lemma 5

Let G ,G ′ be compact Lie groups and let π : G → G ′ be a covering

homomorphism whose covering degree is odd. If A′ is an antipodal

subgroup of G ′, then there exists an antipodal subgroup B of G which

satisfies the following conditions.

(1) B is a 2-Sylow subgroup of π−1(A′) such that |B | = |A′|.

(2) The restriction of π to B is an isomorphism from B onto A′.

Proof. Since A′ ∼= (Z2)
r for some r , |A′| = 2r . Set |ker(π)| = k , where k

is odd. Since π−1(A′) is a subgroup of G and |π−1(A′)| = |A′||ker(π)|

= 2rk , there is a 2-Sylow subgroup B by Thm.4, where |B | = 2r = |A′|.

Since |ker(π)| is odd, B ∩ ker(π) = {e}. Hence π is injective on B .
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AS: antipodal subgroup(s), MAS: maximal antipodal subgroup(s)

Theorem 6

G ,G ′ : cpt. Lie gr., π : G → G ′: a covering homo. with odd degree

G0,G
′
0 : the identity comp. of G ,G ′

(1) A : AS (resp. MAS) of G ⇒ π(A) : AS (resp. MAS) of G ′.

MAS A1,A2 ⊂ G are G-conjugate (resp. G0-conjugate) ⇒ MAS

π(A1), π(A2) ⊂ G ′ are G ′-conjugate (resp. G ′
0-conjugate).

(2) A′ : AS (resp. MAS) of G ′ ⇒ ∃A : AS (resp. MAS) of G s.t.

π|A : A → A′is an isom.

MAS A′
1,A

′
2 ⊂ G ′ : G ′-conjugate ⇒ MAS A1,A2 ⊂ G : G-conjugate,

where π|Ai
: Ai → A′

i : isom. (i = 1, 2).

Furthermore, if G0 contains kerπ, we can replace G ′-conjugate (resp.

G-conjugate) to G ′
0-conjugate (resp. G0-conjugate) in the above.
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Proof. (1) It is easy to see that π(A) is an AS of G ′ if A is an AS of G ,

since π is a homomorphism. Assume A is a MAS of G . Set Z ′ = ker(π).

In order to show π(A) is a MAS of G ′, let A′ be an AS of G ′ with

π(A) ⊂ A′. By Lem.5, ∃ a 2-Sylow subgroup B of Ã := π−1(A′) such that

π|B : B → A′ is an isomorphism. Note that B is an AS of G . Since

B ,Z ′ ⊂ Ã, we have BZ ′ ⊂ Ã. Since B ∩ Z ′ = {e}, ∀x ∈ BZ ′ is uniquely

described as x = bz for b ∈ B , z ∈ Z ′. Hence |BZ ′| = |B ||Z ′| = |A′||Z ′|

= |Ã|, thus BZ ′ = Ã. Since A is a subgroup of Ã, ∃g ∈ Ã such that

gAg−1 ⊂ B by Thm.4. Since A is a MAS of G , gAg−1 = B holds. Thus

|π(A)| = |π(gAg−1)| = |π(B)| = |A′|, which implies π(A) = A′.

Therefore, π(A) is a MAS of G ′.
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If MAS A1,A2 ⊂ G are conjugate by g ∈ G , i.e., A2 = gA1g
−1, then

π(A2) = π(g)π(A1)π(g)
−1, hence π(A1) and π(A2) are G ′-conjugate. If

g ∈ G0, π(A1) and π(A2) are G ′
0-conjugate since π(g) ∈ π(G0) = G ′

0.

(2) If A′ is an AS of G ′, by Lem.5 there is a 2-Sylow subgroup A of

π−1(A′) such that π|A : A → A′ is an isomorphism, where A is an AS of

G . Assume A′ is a MAS of G ′. We show this A is a MAS of G . In order

that, let C be an AS of G with A ⊂ C . Since ker(π) ∩ C = {e},

π|C : C → π(C ) is injective, thus it is an isomorphism. Hence π(C ) is an

AS of G ′. Since A′ = π(A) ⊂ π(C ), we obtain A′ = π(A) = π(C ) by the

maximality of A′. Since π is injective on C , we obtain A = C . Therefore A

is a MAS of G .

If MAS A′
1,A

′
2 ⊂ G ′ are G ′-conjugate, ∃g ′ ∈ G ′ s.t. A′

2 = g ′A′
1(g

′)−1.

Then π−1(A′
2) = π−1(g ′A′

1(g
′)−1).
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Furthermore, π−1(g ′A′
1(g

′)−1) = gπ−1(A′
1)g

−1 holds for g ∈ π−1(g ′). By

the argument above, there exist MAS A1,A2 ⊂ G such that π|Ai
: Ai → A′

i

is an isomorphism (i = 1, 2). Note that Ai is a 2-Sylow subgroup of

π−1(A′
i ) (i = 1, 2). Since gA1g

−1 is a 2-Sylow subgroup of

gπ−1(A′
1)g

−1 = π−1(A′
2), gA1g

−1 is conjugate to A2 by an element of

π−1(A′
2) by Thm.4. In particular, A1 is conjugate to A2 by an element of

G .

Now we assume that G0 contains ker(π). We can take g mentioned above

as g ∈ G0 if g ′ ∈ G ′
0. As mentioned before, gA1g

−1 is conjugate to A2 by

an element of π−1(A′
2). Hence ∃x ∈ π−1(A′

2) such that

xgA1g
−1x−1 = A2. Note that π−1(A′

2) = A2ker(π). Since

A2 ∩ ker(π) = {e}, x ∈ π−1(A′
2) is uniquely described as x = az for

a ∈ A2, z ∈ ker(π). Then azgA1g
−1(az)−1 = A2.
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Thus we have zgA1g
−1z−1 = a−1A2a = A2. Hence, A1 and A2 are

G0-conjugate since zg ∈ G0.

Remark. Thm.6 is a refinement of the following result by Chen-Nagano in

the case of compact Lie groups.

Proposition 7 (Chen-Nagano 1988)

One has #2M
′ = #2M, if there exists a k-fold covering morphism

f : M ′ → M between compact Riemannian symmetric spaces and k is odd.

Makiko Sumi Tanaka (TUS) Antipodal sets Int. Conf. onDGISR 19 / 28



Maximal antipodal subgroups of U(n)/Zµ

∆n :=



±1

. . .

±1


 ⊂ O(n) ⊂ U(n)

Proposition 8

Every maximal antipodal subgroup of U(n) is conjugate to ∆n. ∆n is a

great antipodal subgroup. #2U(n) = 2n.

Proof. ∆n is a MAS of U(n). Since a MAS A of U(n) is abelian, A is

simultaneously diagonalizable. Since ∀a ∈ A, a2 = 1n, ∃g ∈ U(n) s.t.

gAg−1 ⊂ ∆n. By the maximality of A, gAg−1 = ∆n.

#2U(n) = |∆n| = 2n.
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µ: a natural number

Zµ := {α1n | αµ = 1}

Zµ ⊂ {α1n | α ∈ C, |α| = 1}: the center of U(n)

U(n)/Zµ is a compact Lie group locally isomorphic to U(n).

πn : U(n) → U(n)/Zµ: the natural projection

By Thm.6 we obtain the following.

Theorem 9

When µ is odd, every maximal antipodal subgroup of U(n)/Zµ is

conjugate to πn(∆n). πn(∆n) is a great antipodal subgroup of U(n)/Zµ.

#2U(n)/Zµ = 2n.
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To state the result when µ is even we prepare some notation.

I1 :=

−1 0

0 1

 , J1 :=

0 −1

1 0

 , K1 :=

0 1

1 0


D[4] := {±12,±I1,±J1,±K1}

n = 2k ·m, m : odd

s ∈ {0, . . . , k}

D(s, n) := D[4]⊗ · · · ⊗ D[4]︸ ︷︷ ︸
s

⊗∆n/2s ⊂ O(n)

i.e., D(0, n) = ∆n,

D(s, n) = {d1 ⊗ · · · ⊗ ds ⊗ d0 | d1, . . . , ds ∈ D[4], d0 ∈ ∆n/2s} (1 ≤ s ≤ k)

Makiko Sumi Tanaka (TUS) Antipodal sets Int. Conf. onDGISR 22 / 28



A = [aij ], A⊗ B =

a11B a12B

a21B a22B



e.g. I1 ⊗ J1 =

−J1 0

0 J1

 , J1 ⊗ I1 =

0 −I1

I1 0


θ: a primitive 2µ-th root of 1

Theorem 10

When µ is even, any maximal antipodal subgroup of U(n)/Zµ is conjugate

to one of the following:

(1) If n is odd, πn({1, θ}∆n).

(2) If n is even, πn({1, θ}D(s, n)) (0 ≤ s ≤ k), where the case of

s = k − 1, n = 2k is excluded.
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Since

∆2 = {±12,±I1} ⊊ D[4] = {±12,±I1,±J1,±K1},

induces

D(k − 1, 2k) = D[4]⊗ · · · ⊗ D[4]︸ ︷︷ ︸
k−1

⊗∆2

⊊ D(k , 2k) = D[4]⊗ · · · ⊗ D[4]︸ ︷︷ ︸
k

,

D(k − 1, 2k) is not maximal.
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Corollary 11

When µ is even, great antipodal subgroups of U(n)/Zµ and their

cardinalities are as follows:

(1) If n is odd, πn({1, θ}∆n), #2U(n)/Zµ = 2n.

(2) If n is even,

n = 2 ⇒ π2({1, θ}D[4]), #2U(2)/Zµ = 23 = 8.

n = 4 ⇒ π4({1, θ}D(2, 4)), #2U(4)/Zµ= 25 = 32.

n ̸= 2, 4 ⇒ πn({1, θ}∆n) #2U(n)/Zµ = 2n.
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Remark. By Thm.9 and Cor.11, a great antipodal subgroup of U(n)/Zµ is

unique up to conjugation. Generally, a great antipodal subgroup is not

necessarily unique up to conjugation. For example, in SU(8)/Zµ with

µ = 2, 4, 8, there are two great antipodal subgroups which are not

conjugate.

Sketch of Proof

(In the following proof (J. Lie Theory 2017), we proved Thm.9 and

Thm.10 together without using Thm.6.)

A : a maximal antipodal subgroup of U(n)/Zµ

B := π−1
n (A)

B : commutative ⇝ A
conj∼ πn({1, θ}∆n)

B : not commutative, i.e., ∃a, b ∈ B s.t. ab ̸= ba.

⇝ ab = −ba
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⇝ • tr(a) = tr(b) = 0

• n, µ : even

• {a, b} conj∼ {I1 ⊗ 1n′ , K1 ⊗ 1n′} (n′ = n/2)

⇝ ⟨a, b⟩ ∼= D[4]⊗ 1n′

⇝ B
conj∼ a subgroup of D[4]⊗ U(n′)

A = πn(B)
conj∼ a subgroup of πn(D[4]⊗ U(n′))

Furthermore, ∃A′ : a maximal antipodal subgroup of U(n′)/Zµ s.t.

A
conj∼ πn(D[4]⊗ π−1

n′ (A
′)). Conversely, if C is a maximal antipodal

subgroup of U(n′)/Zµ, πn(D[4]⊗ π−1
n′ (C )) is a maximal antipodal

subgroup of U(n)/Zµ.

By induction on k , we get the conclusion.
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Thank you for your kind attention.
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