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1. Introduction

M : a compact (Riemannian) symmetric space

sx : the geodesic symmetry at x ∈ M

i.e., (i) sx is an isometry of M, (ii) sx ◦ sx =

id, (iii) x is an isolated fixed point of sx.

A ⊂ M : a subset

A : an antipodal set def⇐⇒ ∀x, y ∈ A, sx(y) = y

An antipodal set is finite.

The 2-number #2M of M is defined by

#2M = max{|A| | A ⊂ M : an antipodal set}.
A : a great antipodal set def⇐⇒ |A| = #2M

(Chen-Nagano 1982, 1988)



Example 1. M = Sn (⊂ Rn+1) : the sphere

π⟨x⟩R, π⟨x⟩R⊥
: the orthogonal projection onto

⟨x⟩R, ⟨x⟩R⊥ (x ∈ Sn)

sx(y) = (π⟨x⟩R − π⟨x⟩R⊥
)(y) (y ∈ Sn)

sx(y) = y ⇔ y = ±x

{x,−x} : a great antipodal set

#2S
n = 2

Example 2. M = RPn : the real proj. space

x ∈ RPn, sx(y) = (πx − πx⊥)(y) (y ∈ RPn)

sx(y) = y ⇔ y = x or y ⊂ x⊥



{e1, . . . , en+1} : an o.n.b. of Rn+1

{⟨e1⟩R, . . . , ⟨en+1⟩R} : a great antipodal set

#2RPn = n+1

Fact 1. N ⊂ M : totally geodesic

∀x ∈ N, sx(N) = N

N is a symmetric space w.r.t. the induced

metric.

If A ⊂ N is an antipodal set, A is an antipo-

dal set of M.

Hence #2N ≤ #2M.



Fact 2. (Chen-Nagano 1988)

M : a connected compact symmetric space

χ(M) : the Euler characteristic of M

#2M ≥ χ(M)

Fact 3. A connected compact symmetric

space M is a symmetric R-space if and only

if M is an orbit of the linear isotropy repre-

sentation of a symmetric space of compact

type (or non-compact type).



(Takeuchi 1989)

M : a symmetric R-space

bk(M,Z2) : the k-th Betti number of M with

coefficients in Z2

#2M =
∑
k≥0

bk(M,Z2)

Fact 4. A symmetric R-space is a real form

L of the certain Hermitian symmetric space

M of compact type, and vice versa.

∃τ : an involutive anti-holomorphic isome-

try of M; L = {x ∈ M | τ(x) = x}



(T.-Tasaki 2012)

M : a Herm. sym. sp. of compact type

L1, L2 : real forms of M, L1 ⋔ L2

⇒ L1∩L2 is an antipodal set of Li (i = 1,2).

Moreover, if L1, L2 are I0(M)-congruent, L1∩
L2 is a great antipodal set, that is, |L1 ∩
L2| = #2L1 = #2L2.

Application : Determination of Lagrangian

Floer homology (Iriyeh-Sakai-Tasaki 2013)



Fact 5. (T.-Tasaki 2013)

M : a symmetric R-space

(i) Any antipodal set of M is included in a

great antipodal set.

(ii) Any two great antipodal sets of M are

I0(M)-congruent.

Remark. In general each of (i) and (ii) is

not necessarily satisfied.



Chen-Nagano determined #2M of almost

all compact symmetric spaces M and re-

ferred to great antipodal sets. A great an-

tipodal set is a maximal antipodal set but

the converse is not true.

(An antipodal set A is maximal ⇔ A′ : an

antipodal set, A ⊂ A′ ⇒ A′ = A)

Aim : To understand maximal antipodal

sets of compact symmetric spaces (classi-

fications, properties, etc.).



2.Maximal antipodal subgroups of compact

Lie groups

G : a compact Lie group

∃g : a bi-invariant Riemannian metric

G is a symmetric space w.r.t. g.

x ∈ G, sx(y) = xy−1x (y ∈ G)

e : the identity element, se(y) = y−1

se(y) = y ⇔ y2 = e

If x2 = y2 = e, sx(y) = y ⇔ xy = yx.



A ⊂ G : an antipodal set, e ∈ A

⇒ (i) ∀x ∈ A, x2 = e, (ii) ∀x, y ∈ A, xy = yx

If A is maximal, A is a subgroup.

A ∼= Z2 × · · · × Z2︸ ︷︷ ︸
r

, |A| = 2r

r ≥ rank(G)

E.g. U(n) : the unitary group

A : a maximal antipodal subgroup (MAS)

By (i) each eigenvalue of ∀x ∈ A is 1 or −1.

By (ii) A is simultaneously diagonalizable.



A is conjugate to {diag(±1, . . . ,±1)} ⊂ U(n),

which is a maximal (great) antipodal sub-

group of U(n). #2U(n) = 2n.

∆n := {diag(±1, . . . ,±1)} ⊂ O(n)

∆+
n := {g ∈ ∆n | det g = 1}

Generally we obtain the following.

Theorem. A MAS of O(n), U(n), Sp(n) is

conjugate to ∆n. A MAS of SO(n), SU(n)

is conjugate to ∆+
n .

#2O(n) = #2U(n) = #2Sp(n) = 2n

#2SO(n) = #2SU(n) = 2n−1



Griess (1991) and Yu (2013) classified con-

jugate classes of elementary abelian p-subgr.

(∼= Zp×· · ·×Zp) of algebraic groups for prime

p by algebraic methods. We classified con-

jugate classes of maximal antipodal sub-

groups of the quotient groups of the clas-

sical compact Lie groups and gave explicit

expressions of their representatives, where

we used “polars” and “centrosomes” intro-

duced by Chen-Nagano (T.-Tasaki, J. Lie

Theory 2017).



3. Basic principle of classifying maximal an-

tipodal sets of compact symmetric spaces

G : a compact Lie group

e : the identity element of G

G0 : the identity component of G

Each connected component of F (se, G) :=

{g ∈ G | se(g) = g} is called a polar of G. {e} is

a trivial polar. A polar is a totally geodesic

submanifold. It is a compact symmetric

space.



E.g. G = U(n)

F (s1n, U(n)) =
n∪

j=0
{g Ij g−1 | g ∈ U(n)}

Ij = diag(−1, . . . ,−1︸ ︷︷ ︸
j

,1, . . . ,1︸ ︷︷ ︸
n−j

)

g ∈ G, Ig(h) := ghg−1 (h ∈ G)

Lemma. Let M be a polar of G and let x ∈
M. Then M = {Ig(x) | g ∈ G0} and I0(M) =

{Ig|M | g ∈ G0}.

A : a maximal antipodal set of a polar M

A∪{e} is an antipo. set of G by A ⊂ F (se, G).



∃Ã : a MAS of G; A ∪ {e} ⊂ Ã

A = M ∩ Ã by the maximality of A

B1, . . . , Bk : representatives of each G0-conj.

class of MAS of G

1 ≤ ∃s ≤ k, ∃g ∈ G0; Ã = Ig(Bs)

A = M ∩ Ã = Ig(M ∩Bs) since M is invariant

by Ig.

A representative of an I0(M)-congruence

class of maximal antipodal sets of M is one

of M ∩B1, . . . ,M ∩Bk.



4. Classification of maximal antipodal sets

of classical compact symmetric spaces

We use an appropriate totally geodesic em-

bedding of each classical compact symmet-

ric space M = G/K into G and the classifi-

cation of MAS of G.

K = R,C,H
O(n,K) := O(n), U(n), Sp(n) (K = R,C,H, resp.)

Gk(Kn) : the Grassman manifold of the k-

dimensional K-subpsaces in Kn



Gk(Kn) ∼= O(n,K)/O(k,K)×O(n− k,K)

ι : Gk(Kn) ∋ x 7→ πx − πx⊥ ∈ O(n,K) : embed-

ding, the image is a polar.

ι(Gk(Kn)) ∩∆n = {diag(ε1, . . . , εn) ∈ ∆n
∣∣∣

|{i|εi = 1}| = k, |{i|εi = −1}| = n− k}
By taking the inverse image, we obtain:

Theorem. Any maximal antipodal set of

Gk(Kn) is O(n,K)-congruent to {⟨ei1, . . . , eik⟩K |
1 ≤ i1 < · · · < ik ≤ n}, where {e1, . . . , en} is the

standard o.n.b. of Kn. #2Gk(Kn) =
(
n
k

)
.



γ : Gm(K2m)∋x 7→x⊥∈Gm(K2m) : an isometry

Gm(K2m)∗ := Gm(K2m)/{id, γ}
s[x]([y]) = [sx(y)] ([x], [y] ∈ Gm(K2m)∗)

O(2m,K)∗ := O(2m,K)/{±12m}
π2m : O(2m,K) → O(2m,K)∗ : the projection

ι ◦ γ(x) = ι(x⊥) = −(πx − πx⊥) (x ∈ Gm(K2m))

Gm(K2m)∗ =
id

ι(Gm(K2m))/{±12m} ⊂ O(2m,K)∗

: a polar

Since MAS of O(2m,K)∗ are determined in

[T.-Tasaki 2017], we can determine maxi-

mal antipodal sets of Gm(K2m)∗.



CI(n) := {x ∈ Sp(n) | x2 = −1n} ∼= Sp(n)/U(n)

1, i, j, k : the standard basis of H
Theorem. Any maximal antipodal set of

CI(n) is Sp(n)-congruent to i∆n. #2CI(n) =

2n.

Sp(n)∗ := Sp(n)/{±1n}
πn : Sp(n) → Sp(n)∗ : the projection

CI(n)∗ := πn(CI(n)) = CI(n)/{±1n}
CI(n)∗ ⊂ {x ∈ Sp(n)∗ | x2 = πn(1n)} : a polar



Since MAS of Sp(n)∗ are determined in [T.-

Tasaki 2017], we can determine maximal

antipodal sets of CI(n)∗.

DIII(n) := {x ∈ SO(2n) | x2 = −12n,Pf(x) =

1} ∼= SO(2n)/U(n)

Pf(x) : the Pfaffian of x

Theorem. Any maximal antipodal set of

DIII(n) is SO(2n)-congruent to


ϵ1J

. . .

ϵnJ

 ∈ SO(2n)

∣∣∣∣∣∣∣∣∣∣∣
ϵi = ±1, ϵ1 · · · ϵn = 1


,



where J =

 0 1
−1 0

.
Assume n is even.

SO(2n)∗ := SO(2n)/{±12n}
π2n : SO(2n) → SO(2n)∗ : the projection

DIII(n)∗ := π2n(DIII(n)) = DIII(n)/{±12n}
DIII(n)∗ ⊂ {x ∈ SO(2n)∗ | x2 = π2n(12n)} : a

polar

Since MAS of SO(2n)∗ are determined in

[T.-Tasaki 2017], we can determine maxi-

mal antipodal sets of DIII(n)∗.
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