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Main results

M = (M,ω, J) : a Kähler–Einstein C-space.

(L1, L2) : a pair of real forms of M with ....

Theorem (Main theorem).

For any Hamiltonian diffeomorphism φ ∈ Ham(M,ω) with
L1 ! φL2 in M ,

#(L1 ∩ φL2) ≥ #(ι(M) ∩ aL1,L2)

= dimZ2 H
∗(L1 ∩ L2;Z2).

This inequality is sharp.
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Main results

M = (M,ω, J) : a Kähler–Einstein C-space,
i.e. a compact 1-connected homogeneous Kähler–Einstein
manifold.

(L1, L2) : a pair of real forms of M defined by a commutative
pair of anti-holomorphic isometries (τ1, τ2) on M .

Suppose that the minimal Maslov numbers ΣL1 , ΣL2 are both
≥ 3.

Theorem (Main theorem).

For any φ ∈ Ham(M,ω) with L1 ! φL2 in M ,

#(L1 ∩ φL2) ≥ #(ι(M) ∩ aL1,L2) = dimZ2 H
∗(L1 ∩ L2;Z2).
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M = (M,ω, J) : a Kähler–Einstein C-space.
(L1, L2) : real forms defined by commutative (τ1, τ2) on M .
Suppose that ΣL1 , ΣL2 are both ≥ 3.

Theorem (Main theorem).

#(L1 ∩ φL2) ≥ #(ι(M) ∩ aL1,L2) = dimZ2 H
∗(L1 ∩ L2;Z2).

Notation: We put the compact semisimple Lie algebra

g := LieA0(M).

The canonical embedding of M into g will be denoted by

ι : M ↪→ g.

Then ι(M) is an adjoint orbit in g. We take

aL1,L2 ⊂ g−τ∗1 ∩ g−τ∗2

as a maximal abelian subspace.
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Theorem (Main theorem).

#(L1 ∩ φL2) ≥ #(ι(M) ∩ aL1,L2) = dimZ2 H
∗(L1 ∩ L2;Z2).

Example: Let

M := FlagC2,2(C6)

:= {(V1, V2) | V1 ⊂ V2 ⊂ C6, dimC V1 = 2, dimC V2 = 4}

with the unique (up to scalar) SU(6)-invariant Kähler–Einstein
structure. Take real forms (L1, L2) of M as

L1 = FlagR2,2(R6), L2 = FlagH1,1(H3).

Then the conditions of our main theorem hold and

L1 ∩ L2 = FlagC1,1(C3).
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Theorem (Main theorem).

#(L1 ∩ φL2) ≥ #(ι(M) ∩ aL1,L2) = dimZ2 H
∗(L1 ∩ L2;Z2).

Example: Let
(M,L1, L2) = (FlagC2,2(C6),FlagR2,2(R6),FlagH1,1(H3)). Then for

any Hamiltonian diffeomorphism φ on FlagC2,2(C6) with

FlagR2,2(R6) ! φ(FlagH1,1(H3)) in FlagC2,2(C6),

we have

#(FlagR2,2(R6) ∩ φ(FlagH1,1(H3))) ≥ ι(M) ∩ aL1,L2

= 6

= dimZ2 H
∗(FlagC1,1(C3);Z2).
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Let (M,L1, L2) = (FlagC2,2(C6),FlagR2,2(R6),FlagH1,1(H3)).

#(FlagR2,2(R6) ∩ φ(FlagH1,1(H3))) ≥ ι(M) ∩ aL1,L2

= 6

= dimZ2 H
∗(FlagC1,1(C3);Z2).

Picture of ι(M) ∩ aL1,L2 :
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Remark:

M = (M,ω) : a compact symplectic manifold.

L : a connected component of an anti-symplectic involution
on M .

Conjecture (The Arnold–Givental conjecture).

For any φ ∈ Ham(M,ω) with L ! φ(L) in M

#(L ∩ φ(L)) ≥ dimZ2 H
∗(L;Z2).
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Conjecture (The Arnold–Givental conjecture).

#(L ∩ φ(L)) ≥ dimZ2 H
∗(L;Z2).

Fact (Y.G.Oh (Progr. Math., 1995)).

M = (M,ω, J) : a compact Hermitian symmetric space with
Einstein metric.

L : a real form of M .

#(L ∩ φ(L)) ≥ #(ι(M) ∩ aL) = dimZ2 H
∗(L;Z2).

Remark: Many great results were given by Fukaya–Oh–Ohta–Ono
related to this topic.
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Fact (Y.G.Oh (1995)).

Let M be a compact Hermitian symmetric space with Einstein
metric and L a real form of M . Then

#(L ∩ φ(L)) ≥ #(ι(M) ∩ aL) = dimZ2 H
∗(L;Z2).

Fact (Iriyeh–Sakai–Tasaki (J. Math. Soc. Japan 2013) +α).

M = (M,ω, J) : a compact Hermitian symmetric space with
Einstein metric.

(L1, L2) : real forms of M defined by commutative (τ1, τ2)
with ΣL1 ,ΣL2 ≥ 3.

#(L1 ∩ φL2) ≥ #(ι(M) ∩ aL1,L2) = dimZ2 H
∗(L1 ∩ L2;Z2).
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Fact (Iriyeh–Sakai–Tasaki (2013) +α).

M = (M,ω, J) : a compact Hermitian symmetric space with
Einstein matric.

(L1, L2) : real forms of M defined by commutative (τ1, τ2)
with ΣL1 ,ΣL2 ≥ 3.

#(L1 ∩ φL2) ≥ #(ι(M) ∩ aL1,L2) = dimZ2 H
∗(L1 ∩ L2;Z2).

Theorem (Main theorem of this talk).

The same results hold for

M = (M,ω, J) : a Kähler–Einstein C-space.
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Theorem (Main theorem).

M = (M,ω, J) : a Kähler–Einstein C-space, and

(L1, L2) : real forms of M defined by commutative (τ1, τ2)
with ΣL1 ,ΣL2 ≥ 3.

For any φ ∈ Ham(M,ω) with L1 ! φL2,

#(L1 ∩ φL2) ≥ #(ι(M) ∩ aL1,L2) = dimZ2 H
∗(L1 ∩ L2;Z2).

Strategy Compute the Z2-Lagrangian Floer homology.

Theorem .

dimZ2 HF(L1, L2;Z2) = #(ι(M) ∩ aL1,L2).
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M = (M,ω, J) : a Kähler–Einstein C-space.

(L1, L2) : real forms of M defined by commutative (τ1, τ2)
with ΣL1 ,ΣL2 ≥ 3.

Theorem .

dimZ2 HF(L1, L2;Z2) = #(ι(M) ∩ aL1,L2).

Lemma (Key Lemma).

For any g ∈ A0(M),

L1 ! gL2 in M ⇒ L1 ∩ gL2 is “antipodal” in M,

where A0(M) denotes the identity component of the group of
holomorphic isometries on M .
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Remark:
Kähler C-spaces M

↔ Adjoint orbits O in compact semisimple Lie algebras g
with invariant Kähler metrics

↔ Generalized complex flag manifolds FC
with invariant Kähler metrics.

Real forms L of M
↔ Intersections O ∩ g−θ in O for involutions θ on g.
↔ Real flag submanifolds FR of FC

with anti-symplectic complex conjugations.
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Plan of this talk:

Antipodal subsets of Kähler C-spaces.

Computations of Z2-Lagrangian Floer homologies.

Proof of our main theorem.
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Antipodal subsets of Kähler C-spaces

M = (M,ω, J) : a Kähler C-space.

A0(M) ! M : the identity component of the group of all
holomorphic isometries on M .

For each x ∈ M , we put Tx := Z(A0(M)x).

Definition .

A pair of points (x, y) of M will be called antipodal in M if

txy = y for any tx ∈ Tx.

A finite subset X of M is said to be antipodal if any pair of points
(x, y) of X is antipodal in M .
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Let M be a Kähler C-space. For each x ∈ M , we put
Tx := Z(A0(M)x).

Definition .

A finite subset X of M will be called antipodal if

txy = y for any x, y ∈ X and any tx ∈ Tx.

Example
Let M = S2. Then Tx ≃ T1 as the rotations at x ∈ S2. In
particular, (x, y) are antipodal if and only if x = −y.
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A finite subset X of a Kähler C-space M will be called antipodal if

txy = y for any x, y ∈ X and any tx ∈ Tx.

Remark: Let N be a symmetric space.

Definition (Chen–Nagano (1988)).

A finite subset X of N is called antipodal if

sxy = y for any x, y ∈ X,

where sx denotes the point symmetry at x.

Let M be a Hermitian symmetric space of compact type. Then M
is a symmetric space and a Kähler C-space. The two definitions of
antipodal sets on M above coincide with each other.
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Example of non-symmetric case:
Let M = Flag2,2(C6).

1 For x = (V1, V2, V3 = C6) ∈ FlagC2,2(C6),

C6 = W1 ⊕W2 ⊕W3 (the orthogonal decomposition)

such that V1 = W1, V2 = W1 ⊕W2. Consider

Tx = S(U(1)× U(1)× U(1)) ! C6 = W1 ⊕W2 ⊕W3.

" Tx ! Flag2,2(C6).

2 {x, y} ⊂ Flag2,2(C6) is antipodal if and only if the
decompositions corresponding to x and y of C6 are compatible
(i.e. projections are commutative to each other).
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Definition .

A finite subset X of M will be called antipodal if

txy = y for any x, y ∈ X and any tx ∈ Tx.

(L1, L2) : real forms of M defined by commutative (τ1, τ2).

Theorem (Key theorem).

For any g ∈ A0(M) with L1 ! gL2 in M ,

L1 ∩ gL2 is antipodal in M .

#(L1 ∩ gL2) = #(ι(M) ∩ aL1,L2) = dimZ2 H
∗(L1 ∩ L2;Z2).
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Definition .

A finite subset X of M will be called antipodal if

txy = y for any x, y ∈ X and any tx ∈ Tx.

(L1, L2) : real forms of M defined by commutative (τ1, τ2).

Theorem (Key theorem).

For any g ∈ A0(M) with L1 ! gL2 in M ,

L1 ∩ gL2 is antipodal in M .

#(L1 ∩ gL2) = #(ι(M) ∩ aL1,L2) = dimZ2 H
∗(L1 ∩ L2;Z2).
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Computations of Z2-Lagrangian Floer homologies

M = (M,ω, J) : a Kähler–Einstein C-space.

(L1, L2) : real forms of M with ΣL1 ,ΣL2 ≥ 3.

Fact .

Take g ∈ Ham(M,ω) such that

1 L1 ! gL2 in M

2 J is regular for g.

3 The number of isolated points of
{J-holomorphic strips for (p, q;L1, gL2)}/∼ is even for any
p, q ∈ L1 ∩ gL2.

Then...
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M = (M,ω, J) : a Kähler–Einstein C-space.

(L1, L2) : real forms of M with ΣL1 ,ΣL2 ≥ 3.

Fact .

Take g ∈ Ham(M,ω) such that

1 L1 ! gL2 in M

2 J is regular for g.

3 The number of isolated points of
{J-holomorphic strips for (p, q;L1, gL2)}/∼ is even for any
p, q ∈ L1 ∩ gL2.

Then
HF (L1, L2;Z2) =

⊕

p∈L1∩gL2

Z2[p].
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p, q ∈ L1 ∩ gL2.

Then
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⊕
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Z2[p].

Furthermore, for any φ ∈ Ham(M,ω) with L1 ! φL2 in M ,

#(L1 ∩ φL2) ≥ dimZ2 HF (L1, L2;Z2) = #(L1 ∩ gL2).
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M = (M,ω, J) : a Kähler–Einstein C-space.
(L1, L2) : real forms of M with ΣL1 ,ΣL2 ≥ 3.
g ∈ Ham(M,ω) with L1 ! gL2.

For each p, q ∈ L1 ∩ gL2, we put

M̂J(p, q;L1, gL2)
0

:= the set of all isolated points of

{J-holo. strips for (p, q;L1, gL2)}/parameter shifts.

Definition of J-holomorphic strips:
Let Ω := {s+ it | s ∈ R, 0 ≤ t ≤ 1} ⊂ C.
A J-holomorphic map u : Ω → M is said to be a strip for
(p, q;L1, gL2) if

u(s) ∈ L1 and u(s+ i) ∈ gL2.
lim

s→−∞
u(s+ it) = p and lim

s→∞
u(s+ it) = q.

∫
∥∂u
∂s ∥

2dsdt < ∞.
u(s+ i ·) is not constant for each s ∈ R.

Ԟా ޾ོ (ౡେ޿)

ෳૉضଟ༷ମ಺ͷ࣮ܗͷަࠥͷରᪧੑͱ Floer ϗϞϩδʔ



Main results Antipodal sets on Kähler C-spaces Computations of Floer homologies Proof Furture works

M = (M,ω, J) : a Kähler–Einstein C-space.

(L1, L2) : real forms of M with ΣL1 ,ΣL2 ≥ 3.

g ∈ Ham(M,ω) with L1 ! gL2.

Definition .

J is called regular for (L1, gL2) if

Eu = D∂̄J : TuPu → Lu

is surjective for any u ∈ MJ(L1, gL2)
(cf. Y.G.Oh [Comm. Pure Appl. Math. (1993)]).
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M = (M,ω, J) : a Kähler–Einstein C-space.

(L1, L2) : real forms of M with ΣL1 ,ΣL2 ≥ 3.

g ∈ Ham(M,ω) with L1 ! gL2.

Put
CFg(L1, L2) :=

⊕

p∈L1∩gL2

Z2[p].

Suppose that J is regular for (L1, gL2). We put

ng(p, q; J) := #M̂J(p, q;L1, gL2)
0 < ∞

for each p, q ∈ L1 ∩ gL2. Define

∂J,g : CFg(L1, L2) → CFg(L1, L2), [p] 0→
∑

q∈L1∩gL2

n(p, q; J)[q].

Then ∂J,g ◦ ∂J,g = 0.
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Put
CFg(L1, L2) :=

⊕

p∈L1∩gL2

Z2[p].

Suppose that J is regular for (L1, gL2). We put

ng(p, q; J) := #M̂J(p, q;L1, gL2)
0 < ∞

for each p, q ∈ L1 ∩ gL2. Define

∂J,g : CFg(L1, L2) → CFg(L1, L2), [p] 0→
∑

q∈L1∩gL2

n(p, q; J)[q].

Then ∂J,g ◦ ∂J,g = 0.
In this situation, the Z2-Lagrangian Floer homology of (M,L1, L2)
can be “computed” as

HF (L1, L2;Z2) = Ker ∂J,g/Image ∂J,g.
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Suppose that J is regular for (L1, gL2). We put

ng(p, q; J) := #M̂J(p, q;L1, gL2)
0 < ∞

for each p, q ∈ L1 ∩ gL2. Define

∂J,g : CFφ(L1, L2) → CFφ(L1, L2), [p] 0→
∑

q∈L1∩gL2

n(p, q; J)[q].

Then ∂J,g ◦ ∂J,g = 0.
In this situation, the Z2-Lagrangian Floer homology of (M,L1, L2)
can be “computed” as

HF (L1, L2;Z2) = Ker ∂J,g/Image ∂J,g.

In particular, for any φ ∈ Ham(M,ω) with L1 ! φL2,

#(L1 ∩ φL2) ≥ dimZ2(Ker ∂J,g/Image ∂J,g).
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M = (M,ω, J): a Kähler–Einstein C-space.

(L1, L2): real forms of M with ΣL1 ,ΣL2 ≥ 3.

Fact .

Suppose that g ∈ Ham(M,ω) satisfies that

L1 ! gL2 in M

J is regular for (L1, gL2).

#M̂J(p, q;L1, gL2)0 is even for any p, q ∈ L1 ∩ φL2.

Then for any φ ∈ Ham(M,ω) with L1 ! φL2,

#(L1 ∩ φL2) ≥ dimZ2 HF (L1, L2;Z2) = #(L1 ∩ gL2)

Problem: Find such g ∈ Ham(M,ω).
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Proof of our main theorem

M = (M,ω, J) : a Kähler–Einstein C-space.
(L1, L2) : real forms defined by commutative (τ1, τ2) with
ΣL1 ,ΣL2 ≥ 3.

Our Goal: dimZ2 HF (L1, L2;Z2) = #(ι(M) ∩ aL1,L2).
Recall: For any g ∈ A0(M) with L1 ! gL2 in M ,

L1 ∩ gL2 is antipodal in M .
#(L1 ∩ gL2) = #(ι(M) ∩ aL1,L2) = dimZ2 H

∗(L1 ∩ L2;Z2).
Strategy: Find g ∈ A0(M) ⊂ Ham(M,ω) such that

1 L1 ! gL2 in M .
2 J is regular for (L1, gL2).

3 #M̂J(p, q;L1, gL2)0 is even for any p, q ∈ L1 ∩ gL2.
Then

dimZ2 HF (L1, L2;Z2) = #(L1 ∩ gL2) = #(ι(M) ∩ aL1,L2).
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M = (M,ω, J) : Kähler–Einstein C-space.

(L1, L2) : real forms of M defined by commutative (τ1, τ2)
with ΣL1 ,ΣL2 ≥ 3.

Our Goal: dimZ2 HF (L1, L2;Z2) = #(ι(M) ∩ aL1,L2).
Strategy: Find g ∈ A0(M) ⊂ Ham(M,ω) such that

1 L1 ! gL2 in M .

2 J is regular for (L1, gL2).

3 #M̂J(p, q;L1, gL2)0 is even for any p, q ∈ L1 ∩ gL2.

Step 1: Find g ∈ A0(M) such that

L1 ! gL2 in M .
J is regular for (L1, gL2).

Step 2: For such g ∈ A0(M), #M̂J(p, q;L1, gL2)0 is even
for any p, q ∈ L1 ∩ gL2.

Today, we focus on Step 2.
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Step 2: For such g ∈ A0(M), #M̂J(p, q;L1, gL2)0 is even
for any p, q ∈ L1 ∩ gL2.

M : a Kähler C-space.
(L1, L2) : a real forms of M with commutative (τ1, τ2).
g ∈ A0(M) with L1 ! gL2.

Lemma .

For each x ∈ M , there exists a sequence of finite abelian subgroups

{id} = Γ0
x ⊂ Γ1

x ⊂ · · · ⊂ ΓN
x

of Tx = Z(A0(M)x) such that

#Γl
x is a power of 2 for any l.

x is isolated in Fix(M ;ΓN
x ).

For any real form L with x ∈ L and any l = 1, . . . , N ,
L ∩ Fix(M ;Γl−1

x ) is stable by Γl
x.
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Lemma .

For each x ∈ M , there exists a sequence of finite abelian subgroups

{id} = Γ0
x ⊂ Γ1

x ⊂ · · · ⊂ ΓN
x ⊂ Tx such that

#Γl
x is a power of 2 for any l.

x is isolated in Fix(M ;ΓN
x ).

For any real form L with x ∈ L and any l = 1, . . . , N ,
L ∩ Fix(M ;Γl−1

x ) is stable by Γl
x.

Remark:
Let N be a symmetric space. Then for each x ∈ N ,

sx is involutive, and hence {idN, sx} is a group of order 2.
x is isolated in Fix(N ; sx).
sx(L) = L for any totally geodesic submanifold L with x ∈ L.
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x is isolated in Fix(N ; sx).
sx(L) = L for any totally geodesic submanifold L with x ∈ L.
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Lemma .

For each x ∈ M , there exists a sequence of finite abelian subgroups
{id} = Γ0

x ⊂ Γ1
x ⊂ · · · ⊂ ΓN

x ⊂ Tx such that

#Γl
x is a power of 2 for any l.

x is isolated in Fix(M ;ΓN
x ).

For any real form L with x ∈ L and any l = 1, . . . , N ,
L ∩ Fix(M ;Γl−1

x ) is stable by Γl
x.

Proposition .

For any p, q ∈ L1 ∩ gL2, there exists a sequence

M̂J(p, q;L1, gL2)
0 = M̂0 ⊃ M̂1 ⊃ · · · ⊃ M̂N = ∅

such that Γl
x acts on M̂l−1 with M̂Γl

x
l−1 = Ml. In particular,

#M̂J(p, q;L1, gL2)0 is even if it is finite.
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We obtained...

Theorem (Main theorem).

#(L1 ∩ φL2) ≥ #(ι(M) ∩ aL1,L2) = dimZ2 H
∗(L1 ∩ L2;Z2).

M = (M,ω, J) : a Kähler–Einstein C-space.

(L1, L2) : a pair of real forms defined by commutative (τ1, τ2)
on M .

Suppose that ΣL1 , ΣL2 are both ≥ 3.

Ԟా ޾ོ (ౡେ޿)

ෳૉضଟ༷ମ಺ͷ࣮ܗͷަࠥͷରᪧੑͱ Floer ϗϞϩδʔ



Main results Antipodal sets on Kähler C-spaces Computations of Floer homologies Proof Furture works

Furture works

Classifications of (M,L1, L2) in our setting.

Does the main theorem hold even if (τ1, τ2) is not
commutative?

Does the main theorem hold even if ΣL1 = 2 or ΣL2 = 2?

Applications for Hamilton volume minimizing problems?

Fact (Iriyeh–Sakai–Tasaki (J. Math. Soc. Japan 2013)).

The real form Sn of Qn(C) has the Hamilton volume minimizing
property.

Thank you for your attention!
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Outline of the proof of the regularlity of J

Step 1: Find g ∈ A0(M) such that L1 ! gL2 and J is regular
for (L1, gL2).

1 First, we take g ∈ A0(M) as L1 ! gL2 and

(τ1 ◦ (g ◦ τ2 ◦ g−1))2m = idM

for some m ∈ Z (we can find such g by using symmetric
triads).

2 For each u ∈ M(p, q, L1, gL2), we find a non-constant
holomorphic map

fu : CP 1 → M.

3 If there exists a non-zero element of CokerEu, then it defines
a non-zero gloval holomorphic section of f∗

u(TM) with at
least two zeros.
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Step 1: Find g ∈ A0(M) such that L1 ! gL2 and J is regular
for (L1, gL2).

1 First, we take g ∈ A0(M) as L1 ! gL2 and

(τ1 ◦ (g ◦ τ2 ◦ g−1))2m = idM

for some m ∈ Z (we can find such g by using symmetric
triads).

2 For each u ∈ M(p, q, L1, gL2), we find a non-constant
holomorphic map

fu : CP 1 → M.

3 If there exists a non-zero element of CokerEu, then it defines
a non-zero gloval holomorphic section of f∗

u(TM) with at
least two zeros.

4 However, this contradicts to the Kodaira vanishing theorem,
thus CokerEu = 0 for any u, i.e. J is regular for (L1, gL2).
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