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Main results

Main results

m M = (M,w,J) : a Kihler-Einstein C-space.
m (L1, Lg) : a pair of real forms of M with ....

Theorem (Main theorem).

For any Hamiltonian diffeomorphism ¢ € Ham(M,w) with
Ll M ¢L2 in M,

#(L1 N PL2) > #(«(M) Nar,,1,)
= dimZ2 H*(Ll N LQ;ZQ).

This inequality is sharp.
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Main results

Main results

m M = (M,w,J) : a Kahler—Einstein C-space,
i.e. a compact 1-connected homogeneous Kahler—Einstein
manifold.

m (L1, L) : a pair of real forms of M defined by a commutative
pair of anti-holomorphic isometries (71, 72) on M.

m Suppose that the minimal Maslov numbers X1, , ¥, are both
> 3.

Theorem (Main theorem).

For any ¢ € Ham (M, w) with Ly th ¢Ly in M,

#(Ll M qf)Lg) > #(L(M) N aLl’Lg) = dimZ2 H*(Ll n L2;Z2).




Main results

m M = (M,w,J) : a Kahler—Einstein C-space.
m (Ly, Lo) : real forms defined by commutative (71, 72) on M.
m Suppose that X, X1, are both > 3.

Theorem (Main theorem).

#(Ll N (z)LQ) > #(L(M) N aLl,Lg) = diHlZ2 H*(L1 N Lo; ZQ).




Main results

m M = (M,w,J) : a Kahler—Einstein C-space.
m (Ly, Lo) : real forms defined by commutative (71, 72) on M.
m Suppose that X, X1, are both > 3.

Theorem (Main theorem).
#(L1 N ¢Lo) > #(«(M) Nag,.1,) = dimg, H*(L1 N Lo; Zs).
Notation: We put the compact semisimple Lie algebra
g := Lie Ao(M).
The canonical embedding of M into g will be denoted by
t: M —g.

Then (M) is an adjoint orbit in g. We take

ap, 0, Cg iNg ™

as a maximal abelian subspace.
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Main results

Theorem (Main theorem).

#(Ll N ¢L2) > #(L(M) M aLl’LQ) = diIIlZ2 H*(Ll N Lo; Zg).




Main results

Theorem (Main theorem).

#(Ll N ¢L2) > #(L(M) M aLl’LQ) = diIIlZ2 H*(Ll N Lo; Zg).

Example: Let

M = Flaggg((cﬁ)
={(Vi,Va) | Vi € V5 C C®, dim¢ Vi = 2,dim¢ Vo = 4}

with the unique (up to scalar) SU(6)-invariant Kahler-Einstein
structure. Take real forms (L1, L2) of M as

Ly = Flag§,(R%), Ly = Flagl, (H?).
Then the conditions of our main theorem hold and

L1 N Ly = Flagf, (C%).
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Main results

Theorem (Main theorem).

#(Ll N ¢L2) > #(L(M) M aLl’LQ) = diIIlZ2 H*(Ll N Lo; Zg).

Example: Let
(M, Ly, Ly) = (Flag§,(C%), Flagy , (R®), Flagl', (H*)). Then for
any Hamiltonian diffeomorphism ¢ on FlagSQ(CG) with

Flag]ig(Rﬁ) M ¢>(F1ag]f{1(H3)) in Flag(zc,z((cﬁ),
we have

#(Flagy,(R®) N ¢(Flagy; (H*))) > «(M) Nar,, L,
=6
= dimg, H*(Flag{,(C?); Z,).
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Main results

Let (M, Ly, Ly) = (Flag§2(c6), Flags ,(R®), Flagh', (H?)).
#(Flagy 5 (R%) N ¢(Flagy' | (H*))) > (M) Nag,,L,
=6
= dimg, H*(Flag{,(C?); Z,).
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Main results

Let (M, Ly, Ly) = (Flagg{Q(@), Flags ,(R®), Flagh', (H?)).
#(Flagy 5 (R%) N ¢(Flagy' | (H*))) > (M) Nag,,L,
=6
= dimg, H*(Flag{,(C?); Z,).
Picture of «(M) Nar, 1,:

J“M G\L‘.ngz
W(Az) > Gy 'l

8\, L,




Main results

Remark:
m M = (M,w) : a compact symplectic manifold.

m L : a connected component of an anti-symplectic involution
on M.

Conjecture (The Arnold—Givental conjecture).

For any ¢ € Ham(M,w) with L th ¢(L) in M

#(L N @(L)) > dimg, H*(L; Z).




Main results

Conjecture (The Arnold—Givental conjecture).

#(LN (L)) > dimg, H*(L; Zs).




Main results Anti on Kahle Compu of Floer homolog roof Furture

Fact (Y.G.Oh (Progr. Math., 1995)).

m M = (M,w,J) : a compact Hermitian symmetric space with
Einstein metric.
m L : areal form of M.

#(LN (L)) = #(u(M) Nar) = dimgz, H*(L; Zy).

Remark: Many great results were given by Fukaya—Oh—Ohta—Ono
related to this topic.




Main results

Fact (Y.G.Oh (1995)).

Let M be a compact Hermitian symmetric space with Einstein
metric and L a real form of M. Then

#(LNG(L)) > #((M) N ay) = dimg, H*(L; Zs).




Main results

Fact (Y.G.Oh (1995)).

Let M be a compact Hermitian symmetric space with Einstein
metric and L a real form of M. Then

#(LNG(L) = #(u(M) Nag) = dimg, H*(L; Zs).

Fact (Iriyeh—Sakai—Tasaki (J. Math. Soc. Japan 2013) +a).

m M = (M,w,J) : a compact Hermitian symmetric space with
Einstein metric.

m (L1, Lo) : real forms of M defined by commutative (71, 72)
with EL;U ELQ > 3.

#(Ll N ¢L2) > #(L(M) N aLl,LQ) = dimZ2 H*(Ll N LQ;ZQ).




Main results Antipodal sets on Kahler C-spaces Computations of Floer homologies ’roof Furture works

Fact (lriyeh—Sakai—-Tasaki (2013) +«).

m M = (M,w,J) : a compact Hermitian symmetric space with
Einstein matric.

m (L1, L) : real forms of M defined by commutative (11, 72)
with ELlszQ > 3.

#(Ll n ¢L2) > #(L(M) N CLLLL2) = diHlZ2 H*(Ll N LQ;ZQ).
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Main results Antipodal sets on Kahler C-spaces Computations of Floer homologies ’roof Furture works

Fact (lriyeh—Sakai—-Tasaki (2013) +«).

m M = (M,w,J) : a compact Hermitian symmetric space with
Einstein matric.

m (L1, L) : real forms of M defined by commutative (11, 72)
with ELlszQ > 3.

#(Ll n ¢L2) > #(L(M) N aL17L2) = diHlZ2 H*(Ll N LQ;ZQ).

Theorem (Main theorem of this talk).

The same results hold for
m M = (M,w,J) : a Kihler—Einstein C-space.




Main results Antipodal sets on Kahler C-spaces Computations of Floer homologies ’roof Furture works

Theorem (Main theorem).

m M = (M,w,J) : a Kihler—Einstein C'-space, and
m (L1, Lo) : real forms of M defined by commutative (11, T2)
with ELU ELQ > 3.

For any ¢ € Ham(M, w) with Ly th ¢Ls,

#(Ll N ¢L2) > #(L(M) N ClLl,LQ) = diHlZ2 H*(Ll N LQ;ZQ).
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Theorem (Main theorem).

m M = (M,w,J) : a Kihler—Einstein C'-space, and
m (L1, Lo) : real forms of M defined by commutative (11, T2)
with ELU ELQ > 3.

For any ¢ € Ham(M, w) with Ly th ¢Ls,

#(Ll N ¢L2) > #(L(M) N ClLl,LQ) = diHlZ2 H*(Ll N LQ;ZQ).

Compute the Zo-Lagrangian Floer homology.

Theorem .

dimgz, HF (L1, Lo; Zo) = #(«(M) Nag, 1,)-




Main results

m M = (M,w,J) : a Kahler—Einstein C-space.
m (L1, Lg) : real forms of M defined by commutative (71, 72)
with ZLl’ELQ > 3.

dimz, HF (L1, Lo; Z2) = #(«(M) Nar, 1)




Main results Antipodal sets on Kahler C-spaces Computations of Floer homologies ’roof Furture works

m M = (M,w,J) : a Kahler—Einstein C-space.
m (L1, Lg) : real forms of M defined by commutative (71, 72)
with ZLl’ELQ > 3.

dimz, HF (L1, Lo; Z2) = #(«(M) Nar, 1)

Lemma (Key Lemma).

For any g € Ao(M),
LythgLs in M = Ly N gLy is “antipodal” in M,

where Ayg(M) denotes the identity component of the group of
holomorphic isometries on M .
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Main results

Remark:
Kahler C-spaces M
<> Adjoint orbits O in compact semisimple Lie algebras g
with invariant Kahler metrics
> Generalized complex flag manifolds F¢
with invariant Kahler metrics.
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Main results

Remark:
Kahler C-spaces M
<> Adjoint orbits O in compact semisimple Lie algebras g
with invariant Kahler metrics
> Generalized complex flag manifolds F¢
with invariant Kahler metrics.

Real forms L of M
< Intersections O N g~% in O for involutions 6 on g.
> Real flag submanifolds Fg of F¢
with anti-symplectic complex conjugations.
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Main results

Plan of this talk:

m Antipodal subsets of Kahler C-spaces.

m Computations of Zo-Lagrangian Floer homologies.

m Proof of our main theorem.




Antipodal sets on Kahler C-spaces

Antipodal subsets of Kahler C'-spaces

m M= (M,w,J) : a Kahler C-space.
m Ayg(M) ~ M: the identity component of the group of all
holomorphic isometries on M.

For each x € M, we put T, := Z(Ao(M)*).

Definition .
A pair of points (z,y) of M will be called antipodal in M if

t,y =y for any t, € T,.

A finite subset X of M is said to be antipodal if any pair of points
(x,y) of X is antipodal in M.




Antipodal sets on Kahler C-spaces

Let M be a Kahler C-space. For each z € M, we put
T, := Z(Ao(M)*).

A finite subset X of M will be called antipodal if

tyy =y for any x,y € X and any ¢, € T,.




Antipodal sets on Kahler C-spaces

Let M be a Kahler C-space. For each z € M, we put
T, := Z(Ao(M)*).

Definition .
A finite subset X of M will be called antipodal if

tyy =y for any x,y € X and any ¢, € T,.

Example
Let M = S2. Then T, ~ T! as the rotations at € S2. In
particular, (x,y) are antipodal if and only if z = —y.




Antipodal sets on Kahler C-spaces

A finite subset X of a Kahler C-space M will be called antipodal if

tyy =y forany x,y € X and any ¢, € T,.
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Antipodal sets on Kahler C-spaces

A finite subset X of a Kahler C-space M will be called antipodal if
tyy =y forany x,y € X and any ¢, € T,.

Remark: Let N be a symmetric space.
Definition (Chen—Nagano (1988)).
A finite subset X of NV is called antipodal if

Sgy =y for any x,y € X,

where s, denotes the point symmetry at x.

Let M be a Hermitian symmetric space of compact type. Then M
is a symmetric space and a Kahler C-space. The two definitions of
antipodal sets on M above coincide with each other.




Antipodal sets on Kahler C-spaces

Example of non-symmetric case:
Let M = Flag, ,(C®).

For z = (V4, V5, Vs = C9) € Flag,(CS),
CS =W, @ Wy @ W3 (the orthogonal decomposition)
such that V4 = Wq, Vo = W7 @ Ws. Consider

T, =S(U1) xU1) xU(1)) ~Cl =W, @ Wa @ Ws.

~ Ty ~ Flagy 5(C%).

{z,y} C Flagy 5(C%) is antipodal if and only if the
decompositions corresponding to x and y of C% are compatible
(i.e. projections are commutative to each other).




Antipodal sets on Kahler C-spaces
Definition .

A finite subset X of M will be called antipodal if

tyy =y for any 2,y € X and any ¢, € T,.




Antipodal sets on Kahler C-spaces
Definition .

A finite subset X of M will be called antipodal if

tyy =y for any 2,y € X and any ¢, € T,.

m (L1, Ls) : real forms of M defined by commutative (71, 72).

Theorem (Key theorem).

For any g € Ag(M) with Ly th gLy in M,
m [y N gLy is antipodal in M.
n #(Ll N ng) = #(L(M) N aLl,Lz) = Clil’IlZ2 H*(Ll N LQ;ZQ).




Computations of Floer homologies

Computations of Zs-Lagrangian Floer homologies

m M = (M,w,J) : a Kahler—Einstein C-space.
m (L1, Lo) : real forms of M with ¥7,,%7, > 3.

Take g € Ham(M,w) such that
L1 M gL2 in M
J is regular for g.

The number of isolated points of
{J-holomorphic strips for (p,q; L1,g9L2)}/~ is even for any
p,q € L1 NgLs.

Then...




Main results Antipodal sets on Kahler C-spaces Computations of Floer homologies roof Furture works

m M = (M,w,J) : a Kihler—Einstein C-space.
m (Ly, L) : real forms of M with ¥,,¥z, > 3.

Take g € Ham(M,w) such that
Lim gLo in M
J is regular for g.

The number of isolated points of
{J-holomorphic strips for (p,q; L1,g9L2)}/~ is even for any
p,q € L1 NgLo.
Then

HF(Ly, Ly Zo) = @  Zalp).

peLiNgLs
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Computations of Floer homologies roof Furture works

Main results Antipodal sets on Kahler C-spaces

Take g € Ham(M,w) such that
Lim gLo in M
J is regular for g.

The number of isolated points of
{J-holomorphic strips for (p,q; L1,g9L2)}/~ is even for any
p,q € L1 NgLs.
Then

HF (L1, Ly Zo) = @D Zalpl.
pEL1NgL2
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Antipodal sets on Kahler C-spaces Computations of Floer homologies roof Furture

Main results

Take g € Ham(M,w) such that
Lim gLo in M
J is regular for g.

The number of isolated points of
{J-holomorphic strips for (p,q; L1,g9L2)}/~ is even for any
p,q € L1 NgLs.
Then

HF (L1, Ly Zo) = @D Zalpl.
pEL1NgL2

Furthermore, for any ¢ € Ham(M,w) with Ly th ¢Lg in M,

#(Ll N ¢L2) > CliHlZ2 HF(Ll,LQ; Zg) = #(Ll M ng).




Computations of Floer homologies

m M = (M,w,J) : a Kahler—Einstein C-space.
m (Ly, L) : real forms of M with ¥,,¥r, > 3.
m g € Ham(M,w) with Ly h gLs.
For each p,q € L1 NgLo, we put
M(p,q; L1, gLs)°
:= the set of all isolated points of
{J-holo. strips for (p,q; L1, gL2)}/parameter shifts.

Definition of J-holomorphic strips:

Let Q:={s+it|secR,0<t<1} CC.
A J-holomorphic map u : Q — M is said to be a strip for
(p,q; L1, gLo) if

m u(s) € Ly and u(s +1i) € gLo.

(] Sgr_noou(s +it) = p and Sli_glou(s +it) = q.

m [ [|9Y)2dsdt < <.




Computations of Floer homologies

m M = (M,w,J) : a Kihler-Einstein C-space.
m (L, Lo) : real forms of M with ¥,,¥z, > 3.
m g € Ham(M,w) with Ly i gLs.
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Computations of Floer homologies

m M = (M,w,J) : a Kihler-Einstein C-space.
m (L, Lo) : real forms of M with ¥,,¥z, > 3.
m g € Ham(M,w) with Ly h gLo.

J is called regular for (L1, gL2) if

is surjective for any u € M (L1, gL2)
(cf. Y.G.Oh [Comm. Pure Appl. Math. (1993)]).

Floer ZEB Y



Computations of Floer homologies

m M = (M,w,J) : a Kdhler—Einstein C-space.
m (L1, L) : real forms of M with ¥1,,3¥r, > 3.
m g € Ham(M,w) with Ly h gLo.




Computations of Floer homologies

m M = (M,w,J) : a Kdhler—Einstein C-space.
m (L1, Lo) : real forms of M with ¥7,,%7, > 3.
m g € Ham(M,w) with Ly  gLs.

Put

CFy(L1,L2) = €P Zafpl.
pEL1NgL2




Computations of Floer homologies

m M = (M,w,J) : a Kihler-Einstein C-space.
m (L1, L) : real forms of M with ¥1,,3¥r, > 3.
m g € Ham(M,w) with Ly h gLo.

Put
CFy(L1,L2) = €P Zafpl.

pEL1NgL2

Suppose that J is regular for (L1,gL2). We put

ng(p,a; J) = #M(p,q; L1, gL2)° < o0
for each p,q € L1 N gLs. Define

O1g: CFy(L1, Ly) = CFy(L1, Lo), [Pl = > n(p,q;J)lg)-
geL1NgLo

Then 05450054 = 0.
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Computations of Floer homologies

Put

CFy(L1,Ly) = €P Za[pl.

peL1NgLa

Suppose that J is regular for (L1,g9L2). We put
ng(p, q;J) := #M;(p,¢; L1,9L2)" < o0
for each p,q € L1 N gLs. Define

019 CFy(L1, Ly) = CFy(L1, Lo), [l = > n(p,q;J)g)-
qeLi1NgLy

Then (9(]79 o (9J7g =0.




Computations of Floer homologies

Put

CFy(L1,Ly) = €P Za[pl.

peL1NgLa

Suppose that J is regular for (L1,g9L2). We put

ng(p,q; J) == #M(p,q; L1, 9L2)° < o0

for each p,q € L1 N gLs. Define

019 CFy(L1, Ly) = CFy(L1, Lo), [l = > n(p,q;J)g)-
qeLi1NgLy

Then 8(]79 o (9J7g =0.
In this situation, the Zy-Lagrangian Floer homology of (M, L1, L)
can be “computed”’ as

HF(Ly, Ly; Zy) = Ker 04/Image 0.




Computations of Floer homologies

Suppose that J is regular for (L1,g9L2). We put

ng(p,q; J) == #M(p,q; L1, 9L2)° < o0

for each p,q € L1 N gLs. Define

019 : CFy(L1, L) = CFy(L1, Lo), [l = > n(p,q;J)g)-
qeL1NgL2

Then 054500, = 0.
In this situation, the Zy-Lagrangian Floer homology of (M, L1, L)
can be “computed”’ as

HF(Ly, Ly; Z3) = Ker 0;,4/Image 0.




Computations of Floer homologies

Suppose that J is regular for (L1,g9L2). We put

ng(p,q;J) == #My(p,¢; L1, gL2)° < o0
for each p,q € L1 N gLs. Define
019 : CFy(L1, Ly) = CFy(L1, La), [pl = > nlp.a; ).
qeL1NgL2

Then 054500, = 0.
In this situation, the Zy-Lagrangian Floer homology of (M, L1, L)
can be “computed”’ as

HF(Ly, Ly; Z3) = Ker 0;,4/Image 0.

In particular, for any ¢ € Ham(M,w) with Ly M ¢Lo,

#(L1 N ¢La) > dimg, (Ker 0;4/Image ).




Main results Anti on Kahle Computations of Floer homologies roof Furture

m M = (M,w,J): a Kahler-Einstein C-space.
m (L1, Lo): real forms of M with ¥p,, %7, > 3.

Suppose that g € Ham(M,w) satisfies that

m Ly Mgly in M

m J is regular for (L1, gL2).

m #M;(p,q; L1, gL2)° is even for any p,q € L1 N ¢Lo.
Then for any ¢ € Ham(M,w) with Ly th ¢ Lo,

#(Ll M ¢L2) > dimz2 HF(Ll,LQ; Zg) = #(Ll N gLQ)

Problem: Find such g € Ham(M,w).




Proof of our main theorem

m M = (M,w,J) : a Kihler—Einstein C-space.
m (L1, Ly) : real forms defined by commutative (71, 72) with
Sr,, YL, > 3.

Our Goal: diHlZ2 HF(Ll,LQ; ZQ) = #(L(M) N CILLLZ).




Proof of our main theorem

m M = (M,w,J) : a Kdhler—Einstein C-space.
m (L1, Ly) : real forms defined by commutative (71, 72) with
Y, 2L, 2> 3.
Our Goal: diHlZ2 HF(Ll,LQ; ZQ) = #(L(M) N CILLLZ).
Recall: For any g € Ag(M) with Ly th gLy in M,
m L1 NgLy is antipodal in M.
] #(Ll N ng) = #(L(M) N aLl,Lz) = Clil’IlZ2 H*(Ll N Lo; Zg)




Proof of our main theorem

m M = (M,w,J) : a Kdhler—Einstein C-space.
m (L1, Ly) : real forms defined by commutative (71, 72) with
Sr,, YL, > 3.

Our Goal: diHlZ2 HF(Ll,LQ; ZQ) = #(L(M) N CILLLZ).
Recall: For any g € Ag(M) with Ly th gLy in M,

m L1 NgLy is antipodal in M.

] #(Ll N ng) = #(L(M) N aLl,Lz) = Clil’IlZ2 H*(Ll N Lo; Zg)
Strategy: Find g € Ao(M) C Ham(M,w) such that

Lim gLo in M.

J is regular for (L1, gLo).

#M\J(p,q; L1,9L2)" is even for any p,q € Ly N gLo.
Then

dimZQ HF(Ll, LQ;ZQ) = #(Ll N ng) = #(L(M) N aLl,Lz).




m M = (M,w,J) : Kdhler-Einstein C-space.
m (Ly, L) : real forms of M defined by commutative (71, 72)
with ZL1,2L2 > 3.

Our Goal: dimy, HF (L1, Lo; Z2) = #((M)Nar,.1,)-
Strategy: Find g € Ag(M) C Ham(M,w) such that

Lyt gLy in M.

J is regular for (L1, gLo).

#M\J(p,q; L1,9L2)" is even for any p,q € L1 N gLo.




m M = (M,w,J) : Kdhler-Einstein C-space.
m (Ly, L) : real forms of M defined by commutative (71, 72)
with ZL1,2L2 > 3.
Our Goal: dimy, HF (L1, Lo; Z2) = #((M)Nar,.1,)-
Strategy: Find g € Ag(M) C Ham(M,w) such that
L1 M gL2 in M.
J is regular for (L1, gLo).
#M s (p.4; L1, gL2)° is even for any p,q € Ly N gLo.
Step 1: Find g € Ag(M) such that
| L1 M gL2 in M.
m J is regular for (L1, gL2).
Step 2: For such g € Ag(M), 7%E.//\/\1L](p7 q; L1,9L2)" is even
for any p,q € L1 N gLs.

Today, we focus on Step 2.
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Step 2: For such g € Ag(M), #M\J(p, q; L1,9L2)" is even
for any p,q € L1 N gLs.

m M : a Kahler C-space.
m (L1, L) : a real forms of M with commutative (71, 72).
mgc Ao(M) with L1 M gLo.

Lemma .

For each x € M, there exists a sequence of finite abelian subgroups

{idj=1%crlc...cr¥

of Ty, = Z(Ao(M)*) such that
m #I is a power of 2 for any .
m x is isolated in Fix(M;TY).

m For any real form L with x € L and anyl=1,..., N,
LN Fix(M;TL1) is stable by T




Main S A ahle c oe Furture

For each x € M, there exists a sequence of finite abelian subgroups

{id} =T% crlc...cr¥ c T, such that

m #T is a power of 2 for any .

m z is isolated in Fix(M;TY).

m For any real form L with x € L and anyl=1,..., N,
LN Fix(M;T,1) is stable by T




Main results Antipod ahle Co oe Furture works

Lemma .

For each x € M, there exists a sequence of finite abelian subgroups

{id} =T% crlc...cr¥ c T, such that

m #T is a power of 2 for any .

m z is isolated in Fix(M;TY).

m For any real form L with x € L and anyl=1,..., N,
LN Fix(M;T,1) is stable by T

Remark:
Let V be a symmetric space. Then for each x € N,
m s, is involutive, and hence {idn, s, } is a group of order 2.
m z is isolated in Fix(V;s,).
m s;(L) = L for any totally geodesic submanifold L with = € L.
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For each x € M, there exists a sequence of finite abelian subgroups
{id} =T% cTlc---cIY c T, such that

m #T is a power of 2 for any .

m x is isolated in Fix(M;TY).

m For any real form L with x € L and anyl=1,..., N,
LNFix(M;T1) is stable by T




Main

For each x € M, there exists a sequence of finite abelian subgroups
{id} =T% cTlc---cIY c T, such that
m #T is a power of 2 for any .
m x is isolated in Fix(M;TY).
m For any real form L with x € L and anyl=1,..., N,
LNFix(M;T1) is stable by T

Proposition .

For any p,q € Ly N gLs, there exists a sequence
My(p,g; L1,gLs)° = Mo D My D - D My =0

— —!
such that T'L acts on M;_; with er_“”l = M. In particular,
#M\J(p, q; L1,9L2)" is even if it is finite.

INZPN)}
& Floer FEBY—



Proof

We obtained...

Theorem (Main theorem).

#(Ll N (Z)LQ) > #(L(M) N aL17L2) = diIIlZ2 H*(Ll N Lo; Zg).

m M = (M,w,J) : a Kihler—Einstein C-space.
m (L1, L) : a pair of real forms defined by commutative (11, 72)
on M.

m Suppose that ¥, ¥, are both > 3.
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m Classifications of (M, L1, L2) in our setting.

m Does the main theorem hold even if (71, 72) is not
commutative?

m Does the main theorem hold even if X7, =2 or ¥, = 27

m Applications for Hamilton volume minimizing problems?

Fact (lriyeh—Sakai—-Tasaki (J. Math. Soc. Japan 2013)).

The real form S™ of ),(C) has the Hamilton volume minimizing
property.

Thank you for your attention!
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Outline of the proof of the regularlity of J

Step 1: Find g € Ag(M) such that Ly th gLo and J is regular
for (Ll,gLQ).

First, we take g € Ag(M) as Ly M gLo and
(io(gomog )™ =idy

for some m € Z (we can find such g by using symmetric
triads).

For each uw € M(p,q, L1, gL3), we find a non-constant
holomorphic map

fu:CPY = M.

If there exists a non-zero element of CokerFE,, then it defines

a non-zero gloval holomorphic section of f(T'M) with at
least two zeros.




Furture works

Step 1: Find g € Ag(M) such that Ly th gLy and J is regular
for (Ll,ng).

First, we take g € Ag(M) as Ly M gLo and

(rio(gomog 1))*™ =idy

for some m € Z (we can find such g by using symmetric
triads).

For each uw € M(p, q, L1, gL2), we find a non-constant
holomorphic map

fu:CP = M.

If there exists a non-zero element of CokerF,, then it defines
a non-zero gloval holomorphic section of f(TM) with at
least two zeros.
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Step 1: Find g € Ag(M) such that Ly th gLy and J is regular
for (Ll,ng).

First, we take g € Ag(M) as Ly M gLo and

(rio(gomog 1))*™ =idy

for some m € Z (we can find such g by using symmetric
triads).
For each uw € M(p, q, L1, gL2), we find a non-constant
holomorphic map
fu:CP = M.

If there exists a non-zero element of CokerF,, then it defines
a non-zero gloval holomorphic section of f(TM) with at
least two zeros.

However, this contradicts to the Kodaira vanishing theorem,
thus CokerE,, = 0 for any u, i.e. J is regular for (L1, gL2).




