複素旗多様体内の実形の交叉の対蹠性と Floer ホモロジー

奥田隆幸 (広島大)

joint works with 井川治 (京都工繊大), 入江博 (茨城大), 酒井高司 (首都大東京), 田崎博之 (筑波大)

2018/8/29 第 65 回幾何学シンポジウム 於 東北大学

Main results

- $M = (M, \omega, J)$: a Kähler–Einstein C-space.
- \blacksquare (L_1, L_2) : a pair of real forms of M with

Theorem (Main theorem).

For any Hamiltonian diffeomorphism $\phi \in \operatorname{Ham}(M, \omega)$ with $L_1 \pitchfork \phi L_2$ in M,

$$\#(L_1 \cap \phi L_2) \ge \#(\iota(M) \cap \mathfrak{a}_{L_1, L_2})$$

= $\dim_{\mathbb{Z}_2} H^*(L_1 \cap L_2; \mathbb{Z}_2).$

This inequality is sharp.

Main results

- $M = (M, \omega, J)$: a Kähler–Einstein C-space, i.e. a compact 1-connected homogeneous Kähler-Einstein manifold.
- \bullet (L_1, L_2) : a pair of real forms of M defined by a commutative pair of anti-holomorphic isometries (τ_1, τ_2) on M.
- Suppose that the minimal Maslov numbers Σ_{L_1} , Σ_{L_2} are both > 3.

Theorem (Main theorem).

For any $\phi \in \operatorname{Ham}(M, \omega)$ with $L_1 \pitchfork \phi L_2$ in M,

$$\#(L_1 \cap \phi L_2) \ge \#(\iota(M) \cap \mathfrak{a}_{L_1, L_2}) = \dim_{\mathbb{Z}_2} H^*(L_1 \cap L_2; \mathbb{Z}_2).$$

- $M = (M, \omega, J)$: a Kähler–Einstein C-space.
- (L_1, L_2) : real forms defined by commutative (τ_1, τ_2) on M.
- Suppose that Σ_{L_1} , Σ_{L_2} are both ≥ 3 .

$$\#(L_1 \cap \phi L_2) \ge \#(\iota(M) \cap \mathfrak{a}_{L_1,L_2}) = \dim_{\mathbb{Z}_2} H^*(L_1 \cap L_2; \mathbb{Z}_2).$$

Notation: We put the compact semisimple Lie algebra

$$g := \operatorname{Lie} A_0(M).$$

The canonical embedding of M into $\mathfrak g$ will be denoted by

$$\iota:M\hookrightarrow\mathfrak{g}.$$

Then $\iota(M)$ is an adjoint orbit in \mathfrak{g} . We take

$$\mathfrak{a}_{L_1,L_2} \subset \mathfrak{g}^{-\tau_1^*} \cap \mathfrak{g}^{-\tau_2^*}$$

as a maximal abelian subspace.

- $M = (M, \omega, J)$: a Kähler–Einstein C-space.
- (L_1, L_2) : real forms defined by commutative (τ_1, τ_2) on M.
- Suppose that Σ_{L_1} , Σ_{L_2} are both ≥ 3 .

$$\#(L_1 \cap \phi L_2) \ge \#(\iota(M) \cap \mathfrak{a}_{L_1,L_2}) = \dim_{\mathbb{Z}_2} H^*(L_1 \cap L_2; \mathbb{Z}_2).$$

Notation: We put the compact semisimple Lie algebra

$$\mathfrak{g} := \operatorname{Lie} A_0(M).$$

The canonical embedding of M into $\mathfrak g$ will be denoted by

$$\iota:M\hookrightarrow\mathfrak{g}.$$

Then $\iota(M)$ is an adjoint orbit in \mathfrak{g} . We take

$$\mathfrak{g}_{L_1,L_2} \subset \mathfrak{g}^{-\tau_1^*} \cap \mathfrak{g}^{-\tau_2^*}$$

as a maximal abelian subspace.

$$\#(L_1 \cap \phi L_2) \ge \#(\iota(M) \cap \mathfrak{a}_{L_1, L_2}) = \dim_{\mathbb{Z}_2} H^*(L_1 \cap L_2; \mathbb{Z}_2).$$

$$:= \operatorname{Flag}_{2,2}^{\mathbb{C}}(\mathbb{C}^6)$$

:= $\{(V_1, V_2) \mid V_1 \subset V_2 \subset \mathbb{C}^6, \dim_{\mathbb{C}} V_1 = 2, \dim_{\mathbb{C}} V_2 = 4\}$

$$L_1 = \operatorname{Flag}_{2,2}^{\mathbb{R}}(\mathbb{R}^6), \quad L_2 = \operatorname{Flag}_{1,1}^{\mathbb{H}}(\mathbb{H}^3).$$

$$L_1 \cap L_2 = \operatorname{Flag}_{1,1}^{\mathbb{C}}(\mathbb{C}^3)$$

$$\#(L_1 \cap \phi L_2) \ge \#(\iota(M) \cap \mathfrak{a}_{L_1, L_2}) = \dim_{\mathbb{Z}_2} H^*(L_1 \cap L_2; \mathbb{Z}_2).$$

Example: Let

$$M := \operatorname{Flag}_{2,2}^{\mathbb{C}}(\mathbb{C}^{6})$$

:= \{(V_{1}, V_{2}) | V_{1} \subseteq V_{2} \subseteq \mathbb{C}^{6}, \dim_{\mathbb{C}} V_{1} = 2, \dim_{\mathbb{C}} V_{2} = 4\}

with the unique (up to scalar) SU(6)-invariant Kähler–Einstein structure. Take real forms (L_1, L_2) of M as

$$L_1 = \operatorname{Flag}_{2,2}^{\mathbb{R}}(\mathbb{R}^6), \quad L_2 = \operatorname{Flag}_{1,1}^{\mathbb{H}}(\mathbb{H}^3).$$

Then the conditions of our main theorem hold and

$$L_1 \cap L_2 = \operatorname{Flag}_{1,1}^{\mathbb{C}}(\mathbb{C}^3).$$

Furture works

Theorem (Main theorem).

$$\#(L_1 \cap \phi L_2) \ge \#(\iota(M) \cap \mathfrak{a}_{L_1, L_2}) = \dim_{\mathbb{Z}_2} H^*(L_1 \cap L_2; \mathbb{Z}_2).$$

Example: Let

 $(M, L_1, L_2) = (\operatorname{Flag}_{2,2}^{\mathbb{C}}(\mathbb{C}^6), \operatorname{Flag}_{2,2}^{\mathbb{R}}(\mathbb{R}^6), \operatorname{Flag}_{1,1}^{\mathbb{H}}(\mathbb{H}^3)).$ Then for any Hamiltonian diffeomorphism ϕ on $\operatorname{Flag}_{2,2}^{\mathbb{C}}(\mathbb{C}^6)$ with

$$\operatorname{Flag}_{2,2}^{\mathbb{R}}(\mathbb{R}^6) \pitchfork \phi(\operatorname{Flag}_{1,1}^{\mathbb{H}}(\mathbb{H}^3)) \text{ in } \operatorname{Flag}_{2,2}^{\mathbb{C}}(\mathbb{C}^6),$$

we have

$$\#(\operatorname{Flag}_{2,2}^{\mathbb{R}}(\mathbb{R}^{6}) \cap \phi(\operatorname{Flag}_{1,1}^{\mathbb{H}}(\mathbb{H}^{3}))) \geq \iota(M) \cap \mathfrak{a}_{L_{1},L_{2}}$$

$$= 6$$

$$= \dim_{\mathbb{Z}_{2}} H^{*}(\operatorname{Flag}_{1,1}^{\mathbb{C}}(\mathbb{C}^{3}); \mathbb{Z}_{2}).$$

Let
$$(M, L_1, L_2) = (\operatorname{Flag}_{2,2}^{\mathbb{C}}(\mathbb{C}^6), \operatorname{Flag}_{2,2}^{\mathbb{R}}(\mathbb{R}^6), \operatorname{Flag}_{1,1}^{\mathbb{H}}(\mathbb{H}^3)).$$

$$\#(\operatorname{Flag}_{2,2}^{\mathbb{R}}(\mathbb{R}^6) \cap \phi(\operatorname{Flag}_{1,1}^{\mathbb{H}}(\mathbb{H}^3))) \geq \iota(M) \cap \mathfrak{a}_{L_1,L_2}$$

$$= 6$$

$$= \dim_{\mathbb{Z}_2} H^*(\operatorname{Flag}_{1,1}^{\mathbb{C}}(\mathbb{C}^3); \mathbb{Z}_2).$$

Let
$$(M, L_1, L_2) = (\operatorname{Flag}_{2,2}^{\mathbb{C}}(\mathbb{C}^6), \operatorname{Flag}_{2,2}^{\mathbb{R}}(\mathbb{R}^6), \operatorname{Flag}_{1,1}^{\mathbb{H}}(\mathbb{H}^3)).$$

$$\#(\operatorname{Flag}_{2,2}^{\mathbb{R}}(\mathbb{R}^6) \cap \phi(\operatorname{Flag}_{1,1}^{\mathbb{H}}(\mathbb{H}^3))) \geq \iota(M) \cap \mathfrak{a}_{L_1,L_2}$$

$$= 6$$

$$= \dim_{\mathbb{Z}_2} H^*(\operatorname{Flag}_{1,1}^{\mathbb{C}}(\mathbb{C}^3); \mathbb{Z}_2).$$

Picture of $\iota(M) \cap \mathfrak{a}_{L_1,L_2}$:

Main results

Remark:

- ullet $M=(M,\omega)$: a compact symplectic manifold.
- L: a connected component of an anti-symplectic involution on M.

Conjecture (The Arnold–Givental conjecture).

For any $\phi \in \operatorname{Ham}(M, \omega)$ with $L \pitchfork \phi(L)$ in M

$$\#(L \cap \phi(L)) \ge \dim_{\mathbb{Z}_2} H^*(L; \mathbb{Z}_2).$$

Conjecture (The Arnold–Givental conjecture).

$$\#(L \cap \phi(L)) \ge \dim_{\mathbb{Z}_2} H^*(L; \mathbb{Z}_2).$$

Fact (Y.G.Oh (Progr. Math., 1995))

- $M = (M, \omega, J)$: a compact Hermitian symmetric space with Einstein metric.
- $\blacksquare L$: a real form of M.

$$\#(L \cap \phi(L)) \ge \#(\iota(M) \cap \mathfrak{a}_L) = \dim_{\mathbb{Z}_2} H^*(L; \mathbb{Z}_2)$$

Remark: Many great results were given by Fukaya-Oh-Ohta-Ono related to this topic.

Conjecture (The Arnold–Givental conjecture).

$$\#(L \cap \phi(L)) \ge \dim_{\mathbb{Z}_2} H^*(L; \mathbb{Z}_2).$$

Fact (Y.G.Oh (Progr. Math., 1995)).

- ullet $M=(M,\omega,J)$: a compact Hermitian symmetric space with Finstein metric
- L: a real form of M.

$$\#(L \cap \phi(L)) \ge \#(\iota(M) \cap \mathfrak{a}_L) = \dim_{\mathbb{Z}_2} H^*(L; \mathbb{Z}_2).$$

Remark: Many great results were given by Fukaya-Oh-Ohta-Ono related to this topic.

Main results

Fact (Y.G.Oh (1995)).

Let M be a compact Hermitian symmetric space with Einstein metric and L a real form of M. Then

$$\#(L \cap \phi(L)) \ge \#(\iota(M) \cap \mathfrak{a}_L) = \dim_{\mathbb{Z}_2} H^*(L; \mathbb{Z}_2).$$

- $M = (M, \omega, J)$: a compact Hermitian symmetric space with
- \blacksquare (L_1, L_2) : real forms of M defined by commutative (τ_1, τ_2)

$$\#(L_1 \cap \phi L_2) \ge \#(\iota(M) \cap \mathfrak{a}_{L_1,L_2}) = \dim_{\mathbb{Z}_2} H^*(L_1 \cap L_2; \mathbb{Z}_2).$$

Fact (Y.G.Oh (1995)).

Let M be a compact Hermitian symmetric space with Einstein metric and L a real form of M. Then

$$\#(L \cap \phi(L)) \ge \#(\iota(M) \cap \mathfrak{a}_L) = \dim_{\mathbb{Z}_2} H^*(L; \mathbb{Z}_2).$$

Fact (Iriyeh–Sakai–Tasaki (J. Math. Soc. Japan 2013) $+\alpha$).

- $M = (M, \omega, J)$: a compact Hermitian symmetric space with Einstein metric.
- (L_1,L_2) : real forms of M defined by commutative (τ_1,τ_2) with $\Sigma_{L_1},\Sigma_{L_2}\geq 3$.

$$\#(L_1 \cap \phi L_2) \ge \#(\iota(M) \cap \mathfrak{a}_{L_1,L_2}) = \dim_{\mathbb{Z}_2} H^*(L_1 \cap L_2; \mathbb{Z}_2).$$

Fact (Iriyeh–Sakai–Tasaki (2013) $+\alpha$).

- ullet $M=(M,\omega,J)$: a compact Hermitian symmetric space with Einstein matric.
- (L_1, L_2) : real forms of M defined by commutative (τ_1, τ_2) with $\Sigma_{L_1}, \Sigma_{L_2} > 3$.

$$\#(L_1 \cap \phi L_2) \ge \#(\iota(M) \cap \mathfrak{a}_{L_1, L_2}) = \dim_{\mathbb{Z}_2} H^*(L_1 \cap L_2; \mathbb{Z}_2).$$

 $M = (M, \omega, J)$: a Kähler–Einstein C-space.

Fact (Iriyeh–Sakai–Tasaki (2013) $+\alpha$).

- ullet $M=(M,\omega,J)$: a compact Hermitian symmetric space with Einstein matric.
- (L_1, L_2) : real forms of M defined by commutative (τ_1, τ_2) with $\Sigma_{L_1}, \Sigma_{L_2} > 3$.

$$\#(L_1 \cap \phi L_2) \ge \#(\iota(M) \cap \mathfrak{a}_{L_1, L_2}) = \dim_{\mathbb{Z}_2} H^*(L_1 \cap L_2; \mathbb{Z}_2).$$

Theorem (Main theorem of this talk).

The same results hold for

• $M = (M, \omega, J)$: a Kähler–Einstein C-space.

- ullet $M=(M,\omega,J)$: a Kähler–Einstein C-space, and
- (L_1,L_2) : real forms of M defined by commutative (τ_1,τ_2) with $\Sigma_{L_1},\Sigma_{L_2}\geq 3$.

For any $\phi \in \operatorname{Ham}(M,\omega)$ with $L_1 \cap \phi L_2$,

$$\#(L_1 \cap \phi L_2) \ge \#(\iota(M) \cap \mathfrak{a}_{L_1, L_2}) = \dim_{\mathbb{Z}_2} H^*(L_1 \cap L_2; \mathbb{Z}_2).$$

Strategy Compute the \mathbb{Z}_2 -Lagrangian Floer homology

Theorem

$$\dim_{\mathbb{Z}_2} HF(L_1, L_2; \mathbb{Z}_2) = \#(\iota(M) \cap \mathfrak{a}_{L_1, L_2}).$$

- ullet $M=(M,\omega,J)$: a Kähler–Einstein C-space, and
- (L_1,L_2) : real forms of M defined by commutative (τ_1,τ_2) with $\Sigma_{L_1},\Sigma_{L_2}\geq 3$.

For any $\phi \in \operatorname{Ham}(M,\omega)$ with $L_1 \pitchfork \phi L_2$,

$$\#(L_1 \cap \phi L_2) \ge \#(\iota(M) \cap \mathfrak{a}_{L_1, L_2}) = \dim_{\mathbb{Z}_2} H^*(L_1 \cap L_2; \mathbb{Z}_2).$$

Strategy Compute the \mathbb{Z}_2 -Lagrangian Floer homology.

Theorem .

$$\dim_{\mathbb{Z}_2} \mathrm{HF}(L_1, L_2; \mathbb{Z}_2) = \#(\iota(M) \cap \mathfrak{a}_{L_1, L_2}).$$

Furture works

- ullet $M=(M,\omega,J)$: a Kähler–Einstein C-space.
- (L_1,L_2) : real forms of M defined by commutative (τ_1,τ_2) with $\Sigma_{L_1},\Sigma_{L_2}\geq 3$.

Theorem .

$$\dim_{\mathbb{Z}_2} \mathrm{HF}(L_1, L_2; \mathbb{Z}_2) = \#(\iota(M) \cap \mathfrak{a}_{L_1, L_2}).$$

Lemma (Key Lemma)

For any $g \in A_0(M)$

 $L_1 \pitchfork gL_2$ in $M \Rightarrow L_1 \cap gL_2$ is "antipodal" in M,

where $A_0(M)$ denotes the identity component of the group of holomorphic isometries on M.

Furture works

• (L_1, L_2) : real forms of M defined by commutative (τ_1, τ_2) with $\Sigma_{L_1}, \Sigma_{L_2} > 3$.

Theorem .

$$\dim_{\mathbb{Z}_2} \mathrm{HF}(L_1, L_2; \mathbb{Z}_2) = \#(\iota(M) \cap \mathfrak{a}_{L_1, L_2}).$$

Lemma (Key Lemma).

For any $q \in A_0(M)$.

$$L_1 \pitchfork gL_2$$
 in $M \Rightarrow L_1 \cap gL_2$ is "antipodal" in M ,

where $A_0(M)$ denotes the identity component of the group of holomorphic isometries on M.

Remark:

Kähler C-spaces M

- \leftrightarrow Adjoint orbits \mathcal{O} in compact semisimple Lie algebras \mathfrak{g} with invariant Kähler metrics
- \leftrightarrow Generalized complex flag manifolds $F_{\mathbb{C}}$ with invariant Kähler metrics.

Remark:

Kähler C-spaces M

- \leftrightarrow Adjoint orbits $\mathcal O$ in compact semisimple Lie algebras $\mathfrak g$ with invariant Kähler metrics
- \leftrightarrow Generalized complex flag manifolds $F_{\mathbb{C}}$ with invariant Kähler metrics.

Real forms L of M

- \leftrightarrow Intersections $\mathcal{O} \cap \mathfrak{g}^{-\theta}$ in \mathcal{O} for involutions θ on \mathfrak{g} .
- \leftrightarrow Real flag submanifolds $F_{\mathbb{R}}$ of $F_{\mathbb{C}}$ with anti-symplectic complex conjugations.

Plan of this talk:

- Antipodal subsets of Kähler C-spaces.
- Computations of \mathbb{Z}_2 -Lagrangian Floer homologies.
- Proof of our main theorem.

- $M = (M, \omega, J)$: a Kähler C-space.
- \bullet $A_0(M) \curvearrowright M$: the identity component of the group of all holomorphic isometries on M.

For each $x \in M$, we put $\mathbb{T}_x := Z(A_0(M)^x)$.

Definition .

A pair of points (x,y) of M will be called antipodal in M if

$$t_x y = y$$
 for any $t_x \in \mathbb{T}_x$.

A finite subset X of M is said to be antipodal if any pair of points (x,y) of X is antipodal in M.

Let M be a Kähler C-space. For each $x \in M$, we put $\mathbb{T}_x := Z(A_0(M)^x)$.

Definition .

A finite subset X of M will be called antipodal if

$$t_xy=y$$
 for any $x,y\in X$ and any $t_x\in \mathbb{T}_x$.

Example

Let $M=S^2$. Then $\mathbb{T}_x\simeq\mathbb{T}^1$ as the rotations at $x\in S^2$. In particular, (x,y) are antipodal if and only if x=-y.

Let M be a Kähler C-space. For each $x \in M$, we put $\mathbb{T}_x := Z(A_0(M)^x)$.

Definition .

A finite subset X of M will be called antipodal if

$$t_xy=y$$
 for any $x,y\in X$ and any $t_x\in \mathbb{T}_x$.

Example

Let $M=S^2$. Then $\mathbb{T}_x\simeq \mathbb{T}^1$ as the rotations at $x\in S^2$. In particular, (x,y) are antipodal if and only if x=-y.

A finite subset X of a Kähler C-space M will be called antipodal if

$$t_xy=y$$
 for any $x,y\in X$ and any $t_x\in \mathbb{T}_x$.

Remark: Let N be a symmetric space.

Definition (Chen-Nagano (1988))

A finite subset X of N is called antipodal if

$$s_x y = y$$
 for any $x, y \in X$,

where s_x denotes the point symmetry at x.

Let M be a Hermitian symmetric space of compact type. Then M is a symmetric space and a Kähler C-space. The two definitions of antipodal sets on M above coincide with each other.

A finite subset X of a Kähler C-space M will be called antipodal if

$$t_xy=y$$
 for any $x,y\in X$ and any $t_x\in \mathbb{T}_x$.

Remark: Let N be a symmetric space.

Definition (Chen-Nagano (1988)).

A finite subset X of N is called antipodal if

$$s_x y = y$$
 for any $x, y \in X$,

where s_x denotes the point symmetry at x.

Let M be a Hermitian symmetric space of compact type. Then M is a symmetric space and a Kähler C-space. The two definitions of antipodal sets on M above coincide with each other.

Example of non-symmetric case:

Let $M = \operatorname{Flag}_{2,2}(\mathbb{C}^6)$.

1 For
$$x = (V_1, V_2, V_3 = \mathbb{C}^6) \in \operatorname{Flag}_{2,2}^{\mathbb{C}}(\mathbb{C}^6)$$
,

$$\mathbb{C}^6 = W_1 \oplus W_2 \oplus W_3$$
 (the orthogonal decomposition)

such that $V_1 = W_1$, $V_2 = W_1 \oplus W_2$. Consider

$$\mathbb{T}_x = S(U(1) \times U(1) \times U(1)) \curvearrowright \mathbb{C}^6 = W_1 \oplus W_2 \oplus W_3.$$

$$\rightsquigarrow \mathbb{T}_x \curvearrowright \operatorname{Flag}_{2,2}(\mathbb{C}^6).$$

 $\{x,y\} \subset \operatorname{Flag}_{2,2}(\mathbb{C}^6)$ is antipodal if and only if the decompositions corresponding to x and y of \mathbb{C}^6 are compatible (i.e. projections are commutative to each other).

Definition.

A finite subset X of M will be called antipodal if

$$t_xy=y$$
 for any $x,y\in X$ and any $t_x\in \mathbb{T}_x$.

• (L_1, L_2) : real forms of M defined by commutative (τ_1, τ_2) .

Theorem (Key theorem).

For any $g \in A_0(M)$ with $L_1 \pitchfork gL_2$ in M,

- $\blacksquare L_1 \cap gL_2$ is antipodal in M.
- $\#(L_1 \cap gL_2) = \#(\iota(M) \cap \mathfrak{a}_{L_1,L_2}) = \dim_{\mathbb{Z}_2} H^*(L_1 \cap L_2; \mathbb{Z}_2).$

Definition.

A finite subset X of M will be called antipodal if

$$t_xy=y$$
 for any $x,y\in X$ and any $t_x\in \mathbb{T}_x$.

• (L_1, L_2) : real forms of M defined by commutative (τ_1, τ_2) .

Theorem (Key theorem).

For any $g \in A_0(M)$ with $L_1 \cap gL_2$ in M,

- $L_1 \cap gL_2$ is antipodal in M.
- $#(L_1 \cap gL_2) = #(\iota(M) \cap \mathfrak{a}_{L_1,L_2}) = \dim_{\mathbb{Z}_2} H^*(L_1 \cap L_2; \mathbb{Z}_2).$

Computations of \mathbb{Z}_2 -Lagrangian Floer homologies

- $M = (M, \omega, J)$: a Kähler–Einstein C-space.
- (L_1, L_2) : real forms of M with $\Sigma_{L_1}, \Sigma_{L_2} \geq 3$.

Fact.

Take $g \in \operatorname{Ham}(M, \omega)$ such that

- 1 $L_1 \pitchfork qL_2$ in M
- \mathbf{Z} J is regular for q.
- 3 The number of isolated points of $\{J$ -holomorphic strips for $(p,q;L_1,qL_2)\}/\sim$ is even for any $p, q \in L_1 \cap qL_2$.

Then...

Computations of Floer homologies

- $M = (M, \omega, J)$: a Kähler–Einstein C-space.
- (L_1, L_2) : real forms of M with $\Sigma_{L_1}, \Sigma_{L_2} \geq 3$.

Fact.

Take $g \in \operatorname{Ham}(M, \omega)$ such that

- 1 $L_1 \pitchfork qL_2$ in M
- \mathbf{Z} J is regular for q.
- 3 The number of isolated points of $\{J$ -holomorphic strips for $(p,q;L_1,gL_2)\}/\sim$ is even for any $p, q \in L_1 \cap qL_2$.

Then

$$HF(L_1, L_2; \mathbb{Z}_2) = \bigoplus_{p \in L_1 \cap gL_2} \mathbb{Z}_2[p].$$

Fact.

Take $g \in \operatorname{Ham}(M,\omega)$ such that

- 2 J is regular for g.
- In The number of isolated points of $\{J$ -holomorphic strips for $(p,q;L_1,gL_2)\}/\sim$ is even for any $p,q\in L_1\cap gL_2$.

Then

$$HF(L_1, L_2; \mathbb{Z}_2) = \bigoplus_{p \in L_1 \cap gL_2} \mathbb{Z}_2[p].$$

Furthermore, for any $\phi \in \operatorname{Ham}(M,\omega)$ with $L_1 \pitchfork \phi L_2$ in M

$$\#(L_1 \cap \phi L_2) \ge \dim_{\mathbb{Z}_2} HF(L_1, L_2; \mathbb{Z}_2) = \#(L_1 \cap gL_2)$$

Fact.

Take $g \in \operatorname{Ham}(M, \omega)$ such that

- 2 J is regular for g.
- In The number of isolated points of $\{J$ -holomorphic strips for $(p,q;L_1,gL_2)\}/\sim$ is even for any $p,q\in L_1\cap gL_2$.

Then

$$HF(L_1, L_2; \mathbb{Z}_2) = \bigoplus_{p \in L_1 \cap gL_2} \mathbb{Z}_2[p].$$

Furthermore, for any $\phi \in \operatorname{Ham}(M,\omega)$ with $L_1 \pitchfork \phi L_2$ in M,

$$\#(L_1 \cap \phi L_2) \ge \dim_{\mathbb{Z}_2} HF(L_1, L_2; \mathbb{Z}_2) = \#(L_1 \cap gL_2).$$

- $M = (M, \omega, J)$: a Kähler-Einstein C-space.
- (L_1, L_2) : real forms of M with $\Sigma_{L_1}, \Sigma_{L_2} > 3$.
- $q \in \operatorname{Ham}(M,\omega)$ with $L_1 \pitchfork qL_2$.

For each $p, q \in L_1 \cap qL_2$, we put

$$\widehat{\mathcal{M}}_J(p,q;L_1,gL_2)^0$$

:= the set of all isolated points of

{J-holo. strips for $(p, q; L_1, gL_2)$ }/parameter shifts.

Computations of Floer homologies

Definition of J-holomorphic strips:

Let
$$\Omega := \{ s + it \mid s \in \mathbb{R}, 0 \le t \le 1 \} \subset \mathbb{C}$$
.

A J-holomorphic map $u:\Omega\to M$ is said to be a strip for $(p, q; L_1, qL_2)$ if

- $u(s) \in L_1$ and $u(s+i) \in qL_2$.
- $\| \| \frac{\partial u}{\partial s} \|^2 ds dt < \infty.$
- u(s+i) is not constant for each $s \in \mathbb{R}$.

- $M = (M, \omega, J)$: a Kähler-Einstein C-space.
- (L_1, L_2) : real forms of M with $\Sigma_{L_1}, \Sigma_{L_2} \geq 3$.
- $q \in \operatorname{Ham}(M,\omega)$ with $L_1 \pitchfork gL_2$.

$$E_u = D\bar{\partial}_J : T_u \mathcal{P}_u \to \mathcal{L}_u$$

- $M = (M, \omega, J)$: a Kähler–Einstein C-space.
- (L_1, L_2) : real forms of M with $\Sigma_{L_1}, \Sigma_{L_2} \geq 3$.
- $g \in \operatorname{Ham}(M, \omega)$ with $L_1 \cap gL_2$.

Definition .

J is called **regular** for (L_1, gL_2) if

$$E_u = D\bar{\partial_J} : T_u \mathcal{P}_u \to \mathcal{L}_u$$

is surjective for any $u \in \mathcal{M}_J(L_1, gL_2)$ (cf. Y.G.Oh [Comm. Pure Appl. Math. (1993)]).

- $M = (M, \omega, J)$: a Kähler–Einstein C-space.
- (L_1, L_2) : real forms of M with $\Sigma_{L_1}, \Sigma_{L_2} \geq 3$.
- $g \in \operatorname{Ham}(M,\omega)$ with $L_1 \cap gL_2$.

$$CF_g(L_1, L_2) := \bigoplus_{p \in L_1 \cap gL_2} \mathbb{Z}_2[p].$$

$$n_g(p,q;J) := \#\widehat{\mathcal{M}}_J(p,q;L_1,gL_2)^0 < \infty$$

$$\partial_{J,g}: CF_g(L_1, L_2) \to CF_g(L_1, L_2), \ [p] \mapsto \sum_{q \in L_1 \cap gL_2} n(p, q; J)[q].$$

- $M = (M, \omega, J)$: a Kähler–Einstein C-space.
- (L_1, L_2) : real forms of M with $\Sigma_{L_1}, \Sigma_{L_2} \geq 3$.
- $g \in \operatorname{Ham}(M,\omega)$ with $L_1 \cap gL_2$.

Put

$$CF_g(L_1, L_2) := \bigoplus_{p \in L_1 \cap gL_2} \mathbb{Z}_2[p].$$

Computations of Floer homologies

$$n_g(p, q; J) := \# \widehat{\mathcal{M}}_J(p, q; L_1, gL_2)^0 < \infty$$

$$\partial_{J,g}: CF_g(L_1, L_2) \to CF_g(L_1, L_2), \ [p] \mapsto \sum_{q \in L_1 \cap gL_2} n(p, q; J)[q].$$

- $M = (M, \omega, J)$: a Kähler–Einstein C-space.
- (L_1, L_2) : real forms of M with $\Sigma_{L_1}, \Sigma_{L_2} \geq 3$.
- $q \in \operatorname{Ham}(M, \omega)$ with $L_1 \pitchfork qL_2$.

Put

$$CF_g(L_1, L_2) := \bigoplus_{p \in L_1 \cap gL_2} \mathbb{Z}_2[p].$$

Computations of Floer homologies

Suppose that J is regular for (L_1, gL_2) . We put

$$n_g(p,q;J) := \#\widehat{\mathcal{M}}_J(p,q;L_1,gL_2)^0 < \infty$$

for each $p, q \in L_1 \cap gL_2$. Define

$$\partial_{J,g}: CF_g(L_1, L_2) \to CF_g(L_1, L_2), \ [p] \mapsto \sum_{q \in L_1 \cap gL_2} n(p, q; J)[q].$$

Then $\partial_{La} \circ \partial_{La} = 0$.

$$CF_g(L_1, L_2) := \bigoplus_{p \in L_1 \cap gL_2} \mathbb{Z}_2[p].$$

Suppose that J is regular for (L_1, gL_2) . We put

$$n_g(p,q;J) := \#\widehat{\mathcal{M}}_J(p,q;L_1,gL_2)^0 < \infty$$

for each $p, q \in L_1 \cap gL_2$. Define

$$\partial_{J,g}: CF_g(L_1, L_2) \to CF_g(L_1, L_2), \ [p] \mapsto \sum_{q \in L_1 \cap gL_2} n(p, q; J)[q].$$

Then $\partial_{J,g} \circ \partial_{J,g} = 0$.

In this situation, the \mathbb{Z}_2 -Lagrangian Floer homology of (M,L_1,L_2) can be "computed" as

$$HF(L_1, L_2; \mathbb{Z}_2) = \operatorname{Ker} \partial_{J,g} / \operatorname{Image} \partial_{J,g}.$$

Put

$$CF_g(L_1, L_2) := \bigoplus_{p \in L_1 \cap gL_2} \mathbb{Z}_2[p].$$

Computations of Floer homologies

Suppose that J is regular for (L_1, gL_2) . We put

$$n_g(p,q;J) := \#\widehat{\mathcal{M}}_J(p,q;L_1,gL_2)^0 < \infty$$

for each $p, q \in L_1 \cap qL_2$. Define

$$\partial_{J,g}: CF_g(L_1, L_2) \to CF_g(L_1, L_2), \ [p] \mapsto \sum_{q \in L_1 \cap gL_2} n(p, q; J)[q].$$

Then $\partial_{J,q} \circ \partial_{J,q} = 0$.

In this situation, the \mathbb{Z}_2 -Lagrangian Floer homology of (M, L_1, L_2) can be "computed" as

$$HF(L_1, L_2; \mathbb{Z}_2) = \operatorname{Ker} \partial_{J,g} / \operatorname{Image} \partial_{J,g}.$$

Suppose that J is regular for (L_1, gL_2) . We put

$$n_g(p,q;J) := \#\widehat{\mathcal{M}}_J(p,q;L_1,gL_2)^0 < \infty$$

Computations of Floer homologies

for each $p, q \in L_1 \cap qL_2$. Define

$$\partial_{J,g}: CF_{\phi}(L_1, L_2) \to CF_{\phi}(L_1, L_2), \ [p] \mapsto \sum_{q \in L_1 \cap gL_2} n(p, q; J)[q].$$

Then $\partial_{J,a} \circ \partial_{J,a} = 0$.

In this situation, the \mathbb{Z}_2 -Lagrangian Floer homology of (M, L_1, L_2) can be "computed" as

$$HF(L_1, L_2; \mathbb{Z}_2) = \operatorname{Ker} \partial_{J,g} / \operatorname{Image} \partial_{J,g}.$$

$$\#(L_1 \cap \phi L_2) \ge \dim_{\mathbb{Z}_2}(\operatorname{Ker} \partial_{J,g}/\operatorname{Image} \partial_{J,g}).$$

Suppose that J is regular for (L_1, gL_2) . We put

$$n_g(p,q;J) := \#\widehat{\mathcal{M}}_J(p,q;L_1,gL_2)^0 < \infty$$

Computations of Floer homologies

for each $p, q \in L_1 \cap qL_2$. Define

$$\partial_{J,g}: CF_{\phi}(L_1, L_2) \to CF_{\phi}(L_1, L_2), \ [p] \mapsto \sum_{q \in L_1 \cap gL_2} n(p, q; J)[q].$$

Then $\partial_{J,a} \circ \partial_{J,a} = 0$.

In this situation, the \mathbb{Z}_2 -Lagrangian Floer homology of (M, L_1, L_2) can be "computed" as

$$HF(L_1, L_2; \mathbb{Z}_2) = \operatorname{Ker} \partial_{J,g} / \operatorname{Image} \partial_{J,g}.$$

In particular, for any $\phi \in \operatorname{Ham}(M, \omega)$ with $L_1 \pitchfork \phi L_2$,

$$\#(L_1 \cap \phi L_2) \ge \dim_{\mathbb{Z}_2}(\operatorname{Ker} \partial_{J,g}/\operatorname{Image} \partial_{J,g}).$$

- $M = (M, \omega, J)$: a Kähler–Einstein C-space.
- (L_1, L_2) : real forms of M with $\Sigma_{L_1}, \Sigma_{L_2} \geq 3$.

Fact.

Suppose that $g \in \operatorname{Ham}(M, \omega)$ satisfies that

- $lacksquare L_1 \pitchfork gL_2$ in M
- J is regular for (L_1, gL_2) .
- $\#\widehat{\mathcal{M}}_J(p,q;L_1,gL_2)^0$ is even for any $p,q\in L_1\cap\phi L_2$.

Then for any $\phi \in \operatorname{Ham}(M,\omega)$ with $L_1 \pitchfork \phi L_2$,

$$\#(L_1 \cap \phi L_2) \ge \dim_{\mathbb{Z}_2} HF(L_1, L_2; \mathbb{Z}_2) = \#(L_1 \cap gL_2)$$

Problem: Find such $g \in \operatorname{Ham}(M, \omega)$.

Proof of our main theorem

- $M = (M, \omega, J)$: a Kähler–Einstein C-space.
- (L_1, L_2) : real forms defined by commutative (τ_1, τ_2) with $\Sigma_{L_1}, \Sigma_{L_2} \geq 3.$

Our Goal: $\dim_{\mathbb{Z}_2} HF(L_1, L_2; \mathbb{Z}_2) = \#(\iota(M) \cap \mathfrak{a}_{L_1, L_2}).$

- $\blacksquare L_1 \cap qL_2$ is antipodal in M.
- $\#(L_1 \cap gL_2) = \#(\iota(M) \cap \mathfrak{a}_{L_1,L_2}) = \dim_{\mathbb{Z}_2} H^*(L_1 \cap L_2; \mathbb{Z}_2).$

$$\dim_{\mathbb{Z}_2} HF(L_1, L_2; \mathbb{Z}_2) = \#(L_1 \cap gL_2) = \#(\iota(M) \cap \mathfrak{a}_{L_1, L_2}).$$

Proof of our main theorem

- $M = (M, \omega, J)$: a Kähler–Einstein C-space.
- (L_1, L_2) : real forms defined by commutative (τ_1, τ_2) with $\Sigma_{L_1}, \Sigma_{L_2} \geq 3.$

Our Goal: $\dim_{\mathbb{Z}_2} HF(L_1, L_2; \mathbb{Z}_2) = \#(\iota(M) \cap \mathfrak{a}_{L_1, L_2}).$

Recall: For any $q \in A_0(M)$ with $L_1 \pitchfork qL_2$ in M,

- $L_1 \cap qL_2$ is antipodal in M.
- $\#(L_1 \cap gL_2) = \#(\iota(M) \cap \mathfrak{a}_{L_1,L_2}) = \dim_{\mathbb{Z}_2} H^*(L_1 \cap L_2; \mathbb{Z}_2).$

Proof of our main theorem

- $lacksquare M = (M, \omega, J)$: a Kähler–Einstein C-space.
- (L_1,L_2) : real forms defined by commutative (τ_1,τ_2) with $\Sigma_{L_1},\Sigma_{L_2}\geq 3.$

 $\underline{\mathsf{Our}\;\mathsf{Goal}}\colon \dim_{\mathbb{Z}_2} HF(L_1,L_2;\mathbb{Z}_2) = \#(\iota(M)\cap \mathfrak{a}_{L_1,L_2}).$

Recall: For any $g \in A_0(M)$ with $L_1 \pitchfork gL_2$ in M,

- $L_1 \cap gL_2$ is antipodal in M.
- $#(L_1 \cap gL_2) = #(\iota(M) \cap \mathfrak{a}_{L_1,L_2}) = \dim_{\mathbb{Z}_2} H^*(L_1 \cap L_2; \mathbb{Z}_2).$

Strategy: Find $g \in A_0(M) \subset \operatorname{Ham}(M, \omega)$ such that

- $\mathbf{1}$ $L_1 \cap gL_2$ in M.
 - 2 J is regular for (L_1, gL_2) .
 - $\#\widehat{\mathcal{M}}_J(p,q;L_1,gL_2)^0$ is even for any $p,q\in L_1\cap gL_2$.

Then

$$\dim_{\mathbb{Z}_2} HF(L_1, L_2; \mathbb{Z}_2) = \#(L_1 \cap gL_2) = \#(\iota(M) \cap \mathfrak{a}_{L_1, L_2}).$$

- $M = (M, \omega, J)$: Kähler–Einstein C-space.
- (L_1, L_2) : real forms of M defined by commutative (τ_1, τ_2) with $\Sigma_{L_1}, \Sigma_{L_2} > 3$.

Our Goal: $\dim_{\mathbb{Z}_2} HF(L_1, L_2; \mathbb{Z}_2) = \#(\iota(M) \cap \mathfrak{a}_{L_1, L_2}).$

Strategy: Find $g \in A_0(M) \subset \operatorname{Ham}(M, \omega)$ such that

- $\mathbf{1}$ $L_1 \cap qL_2$ in M.
- 2 J is regular for (L_1, gL_2) .
- $\#\widehat{\mathcal{M}}_J(p,q;L_1,gL_2)^0$ is even for any $p,q\in L_1\cap gL_2$.

- $\blacksquare L_1 \pitchfork qL_2 \text{ in } M.$
- J is regular for (L_1, qL_2) .

- $M = (M, \omega, J)$: Kähler–Einstein C-space.
- (L_1,L_2) : real forms of M defined by commutative (τ_1,τ_2) with $\Sigma_{L_1},\Sigma_{L_2}\geq 3$.

Our Goal: $\dim_{\mathbb{Z}_2} HF(L_1, L_2; \mathbb{Z}_2) = \#(\iota(M) \cap \mathfrak{a}_{L_1, L_2}).$

Strategy: Find $g \in A_0(M) \subset \operatorname{Ham}(M, \omega)$ such that

- 2 J is regular for (L_1, gL_2) .
- $\#\widehat{\mathcal{M}}_J(p,q;L_1,gL_2)^0$ is even for any $p,q\in L_1\cap gL_2$.

Step 1: Find $g \in A_0(M)$ such that

- $\blacksquare L_1 \pitchfork gL_2 \text{ in } M.$
- J is regular for (L_1, gL_2) .
- Step 2: For such $g \in A_0(M)$, $\#\widehat{\mathcal{M}}_J(p,q;L_1,gL_2)^0$ is even for any $p,q \in L_1 \cap gL_2$.

Today, we focus on Step 2.

- M: a Kähler C-space.
- (L_1, L_2) : a real forms of M with commutative (τ_1, τ_2) .
- $q \in A_0(M)$ with $L_1 \cap qL_2$.

For each $x \in M$, there exists a sequence of finite abelian subgroups

$$\{\mathrm{id}\} = \Gamma_x^0 \subset \Gamma_x^1 \subset \dots \subset \Gamma_x^N$$

of $\mathbb{T}_r = Z(A_0(M)^x)$ such that

- $\blacksquare \#\Gamma_x^l$ is a power of 2 for any l.
- x is isolated in $Fix(M; \Gamma_x^N)$.
- For any real form L with $x \in L$ and any l = 1, ..., N, $L \cap \operatorname{Fix}(M; \Gamma_x^{l-1})$ is stable by Γ_x^l .

For each $x \in M$, there exists a sequence of finite abelian subgroups

$$\{\mathrm{id}\} = \Gamma_x^0 \subset \Gamma_x^1 \subset \cdots \subset \Gamma_x^N \subset \mathbb{T}_x \text{ such that }$$

- $\#\Gamma_x^l$ is a power of 2 for any l.
- x is isolated in $Fix(M; \Gamma_x^N)$.
- For any real form L with $x \in L$ and any l = 1, ..., N, $L \cap \text{Fix}(M; \Gamma_x^{l-1})$ is stable by Γ_x^l .

Remark

Let N be a symmetric space. Then for each $x \in N$,

- \blacksquare s_x is involutive, and hence $\{id_N, s_x\}$ is a group of order 2.
- $\blacksquare x$ is isolated in $Fix(N; s_x)$.
- \bullet $s_x(L) = L$ for any totally geodesic submanifold L with $x \in L$.

For each $x \in M$, there exists a sequence of finite abelian subgroups

$$\{\mathrm{id}\} = \Gamma_x^0 \subset \Gamma_x^1 \subset \cdots \subset \Gamma_x^N \subset \mathbb{T}_x \text{ such that }$$

- $\blacksquare \#\Gamma_x^l$ is a power of 2 for any l.
- x is isolated in $Fix(M; \Gamma_x^N)$.
- For any real form L with $x \in L$ and any l = 1, ..., N, $L \cap \operatorname{Fix}(M; \Gamma_x^{l-1})$ is stable by Γ_x^l .

Remark:

Let N be a symmetric space. Then for each $x \in N$,

- \bullet s_x is involutive, and hence $\{id_N, s_x\}$ is a group of order 2.
- $\blacksquare x$ is isolated in $Fix(N; s_x)$.
- $s_x(L) = L$ for any totally geodesic submanifold L with $x \in L$.

For each $x \in M$, there exists a sequence of finite abelian subgroups $\{\mathrm{id}\} = \Gamma_x^0 \subset \Gamma_x^1 \subset \cdots \subset \Gamma_x^N \subset \mathbb{T}_x$ such that

- $\blacksquare \#\Gamma_x^l$ is a power of 2 for any l.
- x is isolated in $Fix(M; \Gamma_x^N)$.
- For any real form L with $x \in L$ and any l = 1, ..., N, $L \cap \operatorname{Fix}(M; \Gamma_x^{l-1})$ is stable by Γ_x^l .

$$\widehat{\mathcal{M}}_J(p,q;L_1,gL_2)^0 = \widehat{\mathcal{M}}_0 \supset \widehat{\mathcal{M}}_1 \supset \cdots \supset \widehat{\mathcal{M}}_N = \emptyset$$

For each $x \in M$, there exists a sequence of finite abelian subgroups $\{\mathrm{id}\} = \Gamma_x^0 \subset \Gamma_x^1 \subset \cdots \subset \Gamma_x^N \subset \mathbb{T}_x$ such that

- $\blacksquare \#\Gamma_x^l$ is a power of 2 for any l.
- x is isolated in $Fix(M; \Gamma_x^N)$.
- For any real form L with $x \in L$ and any l = 1, ..., N, $L \cap \operatorname{Fix}(M; \Gamma_x^{l-1})$ is stable by Γ_x^l .

Proposition .

For any $p, q \in L_1 \cap gL_2$, there exists a sequence

$$\widehat{\mathcal{M}}_J(p,q;L_1,gL_2)^0 = \widehat{\mathcal{M}}_0 \supset \widehat{\mathcal{M}}_1 \supset \cdots \supset \widehat{\mathcal{M}}_N = \emptyset$$

such that Γ_x^l acts on $\widehat{\mathcal{M}}_{l-1}$ with $\widehat{\mathcal{M}}_{l-1}^{\Gamma_x^l} = \mathcal{M}_l$. In particular, $\#\widehat{\mathcal{M}}_I(p,q;L_1,qL_2)^0$ is even if it is finite.

We obtained...

Theorem (Main theorem).

$$\#(L_1 \cap \phi L_2) \ge \#(\iota(M) \cap \mathfrak{a}_{L_1,L_2}) = \dim_{\mathbb{Z}_2} H^*(L_1 \cap L_2; \mathbb{Z}_2).$$

- $M = (M, \omega, J)$: a Kähler–Einstein C-space.
- (L_1,L_2) : a pair of real forms defined by commutative (au_1, au_2) on M.
- Suppose that Σ_{L_1} , Σ_{L_2} are both ≥ 3 .

Furture works

- Classifications of (M, L_1, L_2) in our setting.
- Does the main theorem hold even if (τ_1, τ_2) is not commutative?
- Does the main theorem hold even if $\Sigma_{L_1} = 2$ or $\Sigma_{L_2} = 2$?
- Applications for Hamilton volume minimizing problems?

Fact (Iriyeh-Sakai-Tasaki (J. Math. Soc. Japan 2013)).

The real form S^n of $Q_n(\mathbb{C})$ has the Hamilton volume minimizing property.

Thank you for your attention!

Outline of the proof of the regularlity of J

Step 1: Find $q \in A_0(M)$ such that $L_1 \cap qL_2$ and J is regular for (L_1, qL_2) .

1 First, we take $g \in A_0(M)$ as $L_1 \pitchfork gL_2$ and

$$(\tau_1 \circ (g \circ \tau_2 \circ g^{-1}))^{2m} = \mathrm{id}_M$$

for some $m \in \mathbb{Z}$ (we can find such g by using symmetric triads).

2 For each $u \in \mathcal{M}(p,q,L_1,qL_2)$, we find a non-constant holomorphic map

$$f_u: \mathbb{C}P^1 \to M.$$

If there exists a non-zero element of $\operatorname{Coker} E_u$, then it defines a non-zero gloval holomorphic section of $f_n^*(TM)$ with at least two zeros.

- Step 1: Find $g \in A_0(M)$ such that $L_1 \cap gL_2$ and J is regular for (L_1, qL_2) .
- **1** First, we take $g \in A_0(M)$ as $L_1 \cap gL_2$ and

$$(\tau_1 \circ (g \circ \tau_2 \circ g^{-1}))^{2m} = \mathrm{id}_M$$

for some $m \in \mathbb{Z}$ (we can find such q by using symmetric triads).

2 For each $u \in \mathcal{M}(p,q,L_1,gL_2)$, we find a non-constant holomorphic map

$$f_u: \mathbb{C}P^1 \to M.$$

- 3 If there exists a non-zero element of $\operatorname{Coker} E_u$, then it defines a non-zero gloval holomorphic section of $f_n^*(TM)$ with at least two zeros.

- Step 1: Find $g \in A_0(M)$ such that $L_1 \cap gL_2$ and J is regular for (L_1, gL_2) .
- **I** First, we take $g \in A_0(M)$ as $L_1 \pitchfork gL_2$ and

$$(\tau_1 \circ (g \circ \tau_2 \circ g^{-1}))^{2m} = \mathrm{id}_M$$

for some $m \in \mathbb{Z}$ (we can find such g by using symmetric triads).

2 For each $u \in \mathcal{M}(p,q,L_1,gL_2)$, we find a non-constant holomorphic map

$$f_u: \mathbb{C}P^1 \to M.$$

- 3 If there exists a non-zero element of $\operatorname{Coker} E_u$, then it defines a non-zero gloval holomorphic section of $f_u^*(TM)$ with at least two zeros.
- 4 However, this contradicts to the Kodaira vanishing theorem, thus $\operatorname{Coker} E_u = 0$ for any u, i.e. J is regular for (L_1, qL_2) .