複素旗多様体内の実形の交叉の対蹠性と Floer ホモロジー

奥田隆幸 (広島大)

joint works with 井川治 (京都工繊大), 入江博 (茨城大), 酒井高司 (首都大東京), 田崎博之 (筑波大)

2018/8/29 第 65 回幾何学シンポジウム 於 東北大学

Main results

- $M = (M, \omega, J)$: a Kähler–Einstein *C*-space.
- (L_1, L_2) : a pair of real forms of *M* with

Theorem (Main theorem).

For any Hamiltonian diffeomorphism $\phi \in$ Ham (M, ω) *with* L_1 \uparrow $\upphi L_2$ *in* M .

$$
#(L_1 \cap \phi L_2) \geq #(\iota(M) \cap \mathfrak{a}_{L_1,L_2})
$$

= dim_{Z₂} H^{*}(L₁ \cap L₂; Z₂).

This inequality is sharp.

Main results

- $M = (M, \omega, J)$: a Kähler–Einstein *C*-space,
	- i.e. a compact 1-connected homogeneous Kähler-Einstein manifold.
- (L_1, L_2) : a pair of real forms of M defined by a commutative pair of anti-holomorphic isometries (τ_1, τ_2) on M.
- **Suppose that the minimal Maslov numbers** Σ_{L_1} **,** Σ_{L_2} **are both** $>$ 3.

Theorem (Main theorem).

For any $\phi \in \text{Ham}(M, \omega)$ *with* $L_1 \pitchfork \phi L_2$ *in* M *,*

 $#(L_1 \cap \phi L_2) > #(\iota(M) \cap \mathfrak{a}_{L_1, L_2}) = \dim_{\mathbb{Z}_2} H^*(L_1 \cap L_2; \mathbb{Z}_2).$

- $M = (M, \omega, J)$: a Kähler–Einstein *C*-space.
- (L_1, L_2) : real forms defined by commutative (τ_1, τ_2) on M.
- Suppose that Σ_{L_1} , Σ_{L_2} are both ≥ 3 .

 $#(L_1 \cap \phi L_2) \geq #(\iota(M) \cap \mathfrak{a}_{L_1,L_2}) = \dim_{\mathbb{Z}_2} H^*(L_1 \cap L_2; \mathbb{Z}_2).$

Notation: We put the compact semisimple Lie algebra

 $\mathfrak{a} := \mathrm{Lie} A_0(M)$.

The canonical embedding of *M* into g will be denoted by

 $\iota : M \hookrightarrow \mathfrak{a}.$

Then $\iota(M)$ is an adjoint orbit in g. We take $\mathfrak{a}_{L_1,L_2}\subset \mathfrak{g}^{-\tau_1^*}\cap \mathfrak{g}^{-\tau_2^*}$

as a maximal abelian subspace.

奥田 降幸 (広島大)

- $M = (M, \omega, J)$: a Kähler–Einstein *C*-space.
- (L_1, L_2) : real forms defined by commutative (τ_1, τ_2) on M.
- Suppose that Σ_{L_1} , Σ_{L_2} are both ≥ 3 .

 $#(L_1 \cap \phi L_2) \geq #(\iota(M) \cap \mathfrak{a}_{L_1,L_2}) = \dim_{\mathbb{Z}_2} H^*(L_1 \cap L_2; \mathbb{Z}_2).$

Notation: We put the compact semisimple Lie algebra

 $\mathfrak{a} := \mathrm{Lie} A_0(M)$.

The canonical embedding of *M* into g will be denoted by

$$
\iota: M \hookrightarrow \mathfrak{g}.
$$

Then $\iota(M)$ is an adjoint orbit in g. We take $\mathfrak{a}_{L_1,L_2}\subset \mathfrak{g}^{-\tau_1^*}\cap \mathfrak{g}^{-\tau_2^*}$

as a maximal abelian subspace.

奥田 隆幸 (広島大)

 $#(L_1 \cap \phi L_2) \geq #(\iota(M) \cap \mathfrak{a}_{L_1,L_2}) = \dim_{\mathbb{Z}_2} H^*(L_1 \cap L_2; \mathbb{Z}_2).$

Example: Let

 $M := \mathrm{Flag}_{2,2}^{\mathbb{C}}(\mathbb{C}^{6})$ $U_i = \{(V_1, V_2) \mid V_1 \subset V_2 \subset \mathbb{C}^6, \dim_{\mathbb{C}} V_1 = 2, \dim_{\mathbb{C}} V_2 = 4\}$

with the unique (up to scalar) $SU(6)$ -invariant Kähler–Einstein structure. Take real forms (L_1, L_2) of M as

$$
L_1 = \mathrm{Flag}_{2,2}^{\mathbb{R}}(\mathbb{R}^6), \quad L_2 = \mathrm{Flag}_{1,1}^{\mathbb{H}}(\mathbb{H}^3).
$$

Then the conditions of our main theorem hold and

$$
L_1 \cap L_2 = \mathrm{Flag}_{1,1}^{\mathbb{C}}(\mathbb{C}^3).
$$

 $#(L_1 \cap \phi L_2) \geq #(\iota(M) \cap \mathfrak{a}_{L_1,L_2}) = \dim_{\mathbb{Z}_2} H^*(L_1 \cap L_2; \mathbb{Z}_2).$

Example: Let

$$
M := \mathrm{Flag}_{2,2}^{\mathbb{C}}(\mathbb{C}^{6})
$$

 := { $(V_1, V_2) | V_1 \subset V_2 \subset \mathbb{C}^{6}$, dim _{\mathbb{C}} $V_1 = 2$, dim _{\mathbb{C}} $V_2 = 4$ }

with the unique (up to scalar) $SU(6)$ -invariant Kähler–Einstein structure. Take real forms (L_1, L_2) of M as

$$
L_1 = \mathrm{Flag}_{2,2}^{\mathbb{R}}(\mathbb{R}^6), \quad L_2 = \mathrm{Flag}_{1,1}^{\mathbb{H}}(\mathbb{H}^3).
$$

Then the conditions of our main theorem hold and

$$
L_1 \cap L_2 = \mathrm{Flag}_{1,1}^{\mathbb{C}}(\mathbb{C}^3).
$$

 $#(L_1 \cap \phi L_2) \geq #(\iota(M) \cap \mathfrak{a}_{L_1,L_2}) = \dim_{\mathbb{Z}_2} H^*(L_1 \cap L_2; \mathbb{Z}_2).$

Example: Let $(M, L_1, L_2) = (\text{Flag}_{2,2}^{\mathbb{C}}(\mathbb{C}^6), \text{Flag}_{2,2}^{\mathbb{R}}(\mathbb{R}^6), \text{Flag}_{1,1}^{\mathbb{H}}(\mathbb{H}^3)).$ Then for any Hamiltonian diffeomorphism ϕ on $\mathrm{Flag}_{2,2}^{\mathbb{C}}(\mathbb{C}^{6})$ with

$$
\mathrm{Flag}_{2,2}^{\mathbb{R}}(\mathbb{R}^6) \pitchfork \phi(\mathrm{Flag}_{1,1}^{\mathbb{H}}(\mathbb{H}^3)) \text{ in } \mathrm{Flag}_{2,2}^{\mathbb{C}}(\mathbb{C}^6),
$$

we have

$$
\begin{aligned} \#(\mathrm{Flag}_{2,2}^{\mathbb{R}}(\mathbb{R}^6) \cap \phi(\mathrm{Flag}_{1,1}^{\mathbb{H}}(\mathbb{H}^3))) &\ge \iota(M) \cap \mathfrak{a}_{L_1,L_2} \\ &= 6 \\ &= \dim_{\mathbb{Z}_2} H^*(\mathrm{Flag}_{1,1}^{\mathbb{C}}(\mathbb{C}^3); \mathbb{Z}_2). \end{aligned}
$$

Let
$$
(M, L_1, L_2) = (\text{Flag}_{2,2}^{\mathbb{C}}(\mathbb{C}^6), \text{Flag}_{2,2}^{\mathbb{R}}(\mathbb{R}^6), \text{Flag}_{1,1}^{\mathbb{H}}(\mathbb{H}^3)).
$$

\n
$$
\#(\text{Flag}_{2,2}^{\mathbb{R}}(\mathbb{R}^6) \cap \phi(\text{Flag}_{1,1}^{\mathbb{H}}(\mathbb{H}^3))) \ge \iota(M) \cap \mathfrak{a}_{L_1, L_2}
$$
\n
$$
= 6
$$
\n
$$
= \dim_{\mathbb{Z}_2} H^*(\text{Flag}_{1,1}^{\mathbb{C}}(\mathbb{C}^3); \mathbb{Z}_2).
$$

Picture of $\iota(M) \cap \mathfrak{a}_{L_1,L_2}$:

Let
$$
(M, L_1, L_2) = (\text{Flag}_{2,2}^{\mathbb{C}}(\mathbb{C}^6), \text{Flag}_{2,2}^{\mathbb{R}}(\mathbb{R}^6), \text{Flag}_{1,1}^{\mathbb{H}}(\mathbb{H}^3)).
$$

\n
$$
\#(\text{Flag}_{2,2}^{\mathbb{R}}(\mathbb{R}^6) \cap \phi(\text{Flag}_{1,1}^{\mathbb{H}}(\mathbb{H}^3))) \ge \iota(M) \cap \mathfrak{a}_{L_1,L_2}
$$
\n
$$
= 6
$$
\n
$$
= \dim_{\mathbb{Z}_2} H^*(\text{Flag}_{1,1}^{\mathbb{C}}(\mathbb{C}^3); \mathbb{Z}_2).
$$
\n\nPicture of $\iota(M) \cap \mathfrak{a}_{L_1,L_2}$:
\n
$$
\text{dim } \mathbb{C} \cup \text{L}_1, \text{L}_2
$$
\n
$$
\text{dim } \mathbb{C} \cup \text{L}_2
$$
\n
$$
\text{dim } \mathbb{C} \cup \text{L}_2
$$

Remark:

- $M = (M, \omega)$: a compact symplectic manifold.
- L : a connected component of an anti-symplectic involution on *M*.

Conjecture (The Arnold–Givental conjecture).

For any $\phi \in \text{Ham}(M, \omega)$ *with* $L \pitchfork \phi(L)$ *in* M

 $#(L \cap \phi(L)) \ge \dim_{\mathbb{Z}_2} H^*(L; \mathbb{Z}_2).$

Conjecture (The Arnold–Givental conjecture).

$$
#(L \cap \phi(L)) \ge \dim_{\mathbb{Z}_2} H^*(L; \mathbb{Z}_2).
$$

 \blacksquare $M = (M, \omega, J)$ *: a compact Hermitian symmetric space with Einstein metric.*

L : a real form of M.

 $#(L \cap \phi(L)) \geq #(\iota(M) \cap \mathfrak{a}_L) = \dim_{\mathbb{Z}_2} H^*(L; \mathbb{Z}_2).$

Remark: Many great results were given by Fukaya–Oh–Ohta–Ono related to this topic.

Conjecture (The Arnold–Givental conjecture).

$$
#(L \cap \phi(L)) \ge \dim_{\mathbb{Z}_2} H^*(L; \mathbb{Z}_2).
$$

Fact (Y.G.Oh (Progr. Math., 1995)).

- $M = (M, \omega, J)$: a compact Hermitian symmetric space with *Einstein metric.*
- *L : a real form of M.*

$$
\#(L \cap \phi(L)) \geq \#(\iota(M) \cap \mathfrak{a}_L) = \dim_{\mathbb{Z}_2} H^*(L; \mathbb{Z}_2).
$$

Remark: Many great results were given by Fukaya–Oh–Ohta–Ono related to this topic.

Fact (Y.G.Oh (1995)).

Let M be a compact Hermitian symmetric space with Einstein metric and L a real form of M. Then

 $\#(L \cap \phi(L)) \geq \#(\iota(M) \cap \mathfrak{a}_L) = \dim_{\mathbb{Z}_2} H^*(L; \mathbb{Z}_2).$

- \blacksquare $M = (M, \omega, J)$: a compact Hermitian symmetric space with *Einstein metric.*
- \blacksquare (L_1, L_2) *: real forms of M* defined by commutative (τ_1, τ_2) *with* $\Sigma_{L_1}, \Sigma_{L_2} > 3$.

 $#(L_1 \cap \phi L_2) \geq #(\iota(M) \cap \mathfrak{a}_{L_1,L_2}) = \dim_{\mathbb{Z}_2} H^*(L_1 \cap L_2; \mathbb{Z}_2).$

Fact (Y.G.Oh (1995)).

Let M be a compact Hermitian symmetric space with Einstein metric and L a real form of M. Then

 $\#(L \cap \phi(L)) \geq \#(\iota(M) \cap \mathfrak{a}_L) = \dim_{\mathbb{Z}_2} H^*(L; \mathbb{Z}_2).$

Fact (Iriyeh–Sakai–Tasaki (J. Math. Soc. Japan 2013) $+\alpha$).

- $M = (M, \omega, J)$: a compact Hermitian symmetric space with *Einstein metric.*
- \blacksquare (L_1, L_2) *: real forms of M* defined by commutative (τ_1, τ_2) *with* $\Sigma_{L_1}, \Sigma_{L_2} > 3$.

 $#(L_1 \cap \phi L_2) \geq #(\iota(M) \cap \mathfrak{a}_{L_1,L_2}) = \dim_{\mathbb{Z}_2} H^*(L_1 \cap L_2; \mathbb{Z}_2).$

Fact (Iriyeh–Sakai–Tasaki (2013) $+\alpha$).

- $M = (M, \omega, J)$: a compact Hermitian symmetric space with *Einstein matric.*
- $($ L₁, L₂ $)$ *: real forms of M defined by commutative* (τ_1, τ_2) *with* $\Sigma_{L_1}, \Sigma_{L_2} > 3$.

 $#(L_1 \cap \phi L_2) \geq #(\iota(M) \cap \mathfrak{a}_{L_1,L_2}) = \dim_{\mathbb{Z}_2} H^*(L_1 \cap L_2; \mathbb{Z}_2).$

The same results hold for

 $M = (M, \omega, J)$ *: a Kähler–Einstein C-space.*

Fact (Iriyeh–Sakai–Tasaki (2013) $+\alpha$).

- $M = (M, \omega, J)$: a compact Hermitian symmetric space with *Einstein matric.*
- $($ L₁, L₂ $)$ *: real forms of M defined by commutative* (τ_1, τ_2) *with* $\Sigma_{L_1}, \Sigma_{L_2} > 3$.

$$
\#(L_1 \cap \phi L_2) \geq \#(\iota(M) \cap \mathfrak{a}_{L_1,L_2}) = \dim_{\mathbb{Z}_2} H^*(L_1 \cap L_2; \mathbb{Z}_2).
$$

Theorem (Main theorem of this talk).

The same results hold for

$$
M = (M, \omega, J) : a Kähler-Einstein C-space.
$$

- $M = (M, \omega, J)$ *: a Kähler–Einstein C-space, and*
- \blacksquare (L_1, L_2) *: real forms of M* defined by commutative (τ_1, τ_2) *with* $\Sigma_{L_1}, \Sigma_{L_2} > 3$.
- *For any* $\phi \in \text{Ham}(M, \omega)$ *with* $L_1 \pitchfork \phi L_2$,

 $#(L_1 \cap \phi L_2) \geq #(\iota(M) \cap \mathfrak{a}_{L_1,L_2}) = \dim_{\mathbb{Z}_2} H^*(L_1 \cap L_2; \mathbb{Z}_2).$

Strategy Compute the \mathbb{Z}_2 -Lagrangian Floer homology.

$$
\dim_{\mathbb{Z}_2} HF(L_1, L_2; \mathbb{Z}_2) = \#(\iota(M) \cap \mathfrak{a}_{L_1, L_2}).
$$

- $M = (M, \omega, J)$ *: a Kähler–Einstein C-space, and*
- $($ (*L*₁*, L*₂) *: real forms of M defined by commutative* (τ_1 *,* τ_2) *with* $\Sigma_{L_1}, \Sigma_{L_2} > 3$.
- *For any* $\phi \in \text{Ham}(M, \omega)$ *with* $L_1 \pitchfork \phi L_2$,

 $#(L_1 \cap \phi L_2) \geq #(\iota(M) \cap \mathfrak{a}_{L_1,L_2}) = \dim_{\mathbb{Z}_2} H^*(L_1 \cap L_2; \mathbb{Z}_2).$

Strategy Compute the \mathbb{Z}_2 -Lagrangian Floer homology.

Theorem .

$$
\dim_{\mathbb{Z}_2} \mathrm{HF}(L_1, L_2; \mathbb{Z}_2) = \#(\iota(M) \cap \mathfrak{a}_{L_1, L_2}).
$$

- $M = (M, \omega, J)$: a Kähler–Einstein *C*-space.
- (L_1, L_2) : real forms of M defined by commutative (τ_1, τ_2) with $\Sigma_{L_1}, \Sigma_{L_2} \geq 3$.

Theorem .

$$
\dim_{\mathbb{Z}_2} \mathrm{HF}(L_1, L_2; \mathbb{Z}_2) = \#(\iota(M) \cap \mathfrak{a}_{L_1, L_2}).
$$

For any $q \in A_0(M)$,

L_1 \pitchfork *g* L_2 *in* $M \Rightarrow L_1 \cap qL_2$ *is "antipodal" in* M ,

where $A_0(M)$ *denotes the identity component of the group of holomorphic isometries on M.*

- $M = (M, \omega, J)$: a Kähler–Einstein *C*-space.
- (L_1, L_2) : real forms of M defined by commutative (τ_1, τ_2) with Σ_{L_1} , Σ_{L_2} > 3.

Theorem .

$$
\dim_{\mathbb{Z}_2} \mathrm{HF}(L_1, L_2; \mathbb{Z}_2) = \#(\iota(M) \cap \mathfrak{a}_{L_1, L_2}).
$$

Lemma (Key Lemma).

For any $q \in A_0(M)$,

 L_1 \pitchfork *g* L_2 *in* $M \Rightarrow L_1 \cap qL_2$ *is "antipodal" in* M ,

where $A_0(M)$ *denotes the identity component of the group of holomorphic isometries on M.*

Remark:

K¨ahler *C*-spaces *M*

- \leftrightarrow Adjoint orbits $\mathcal O$ in compact semisimple Lie algebras g with invariant Kähler metrics
- \leftrightarrow Generalized complex flag manifolds $F_{\mathbb{C}}$ with invariant Kähler metrics.

Real forms *L* of *M*

- [↔] Intersections *^O* [∩] ^g−^θ in *^O* for involutions ^θ on ^g.
- \leftrightarrow Real flag submanifolds $F_{\mathbb{R}}$ of $F_{\mathbb{C}}$
	- with anti-symplectic complex conjugations.

Remark:

K¨ahler *C*-spaces *M*

- \leftrightarrow Adjoint orbits $\mathcal O$ in compact semisimple Lie algebras g with invariant Kähler metrics
- \leftrightarrow Generalized complex flag manifolds $F_{\mathbb{C}}$ with invariant Kähler metrics.

Real forms *L* of *M*

- \leftrightarrow Intersections $O \cap \mathfrak{g}^{-\theta}$ in O for involutions θ on \mathfrak{g} .
- \leftrightarrow Real flag submanifolds $F_{\mathbb{R}}$ of $F_{\mathbb{C}}$ with anti-symplectic complex conjugations.

Plan of this talk:

- Antipodal subsets of Kähler *C*-spaces.
- Gomputations of \mathbb{Z}_2 -Lagrangian Floer homologies.
- Proof of our main theorem.

Antipodal subsets of Kähler *C*-spaces

- $M = (M, \omega, J)$: a Kähler *C*-space.
- \blacksquare $A_0(M) \curvearrowright M$: the identity component of the group of all holomorphic isometries on *M*.

For each $x \in M$, we put $\mathbb{T}_x := Z(A_0(M)^x)$.

Definition .

A pair of points (*x, y*) of *M* will be called antipodal in *M* if

$$
t_xy=y \text{ for any } t_x\in \mathbb{T}_x.
$$

A finite subset *X* of *M* is said to be antipodal if any pair of points (x, y) of X is antipodal in M.

Let *M* be a Kähler *C*-space. For each $x \in M$, we put $\mathbb{T}_x := Z(A_0(M)^x).$

Definition .

A finite subset *X* of *M* will be called antipodal if

 $t_x y = y$ for any $x, y \in X$ and any $t_x \in \mathbb{T}_x$.

Example Let $M = S^2$. Then $\mathbb{T}_x \simeq \mathbb{T}^1$ as the rotations at $x \in S^2$. In particular, (x, y) are antipodal if and only if $x = -y$.

Let *M* be a Kähler *C*-space. For each $x \in M$, we put $\mathbb{T}_x := Z(A_0(M)^x).$

Definition .

A finite subset *X* of *M* will be called antipodal if

 $t_x y = y$ for any $x, y \in X$ and any $t_x \in \mathbb{T}_x$.

Example

Let $M = S^2$. Then $\mathbb{T}_x \simeq \mathbb{T}^1$ as the rotations at $x \in S^2$. In particular, (x, y) are antipodal if and only if $x = -y$.

A finite subset *X* of a K¨ahler *C*-space *M* will be called antipodal if

$$
t_xy = y \text{ for any } x, y \in X \text{ and any } t_x \in \mathbb{T}_x.
$$

Remark: Let *N* be a symmetric space.

A finite subset *X* of *N* is called antipodal if

 $s_x y = y$ for any $x, y \in X$,

where *s^x* denotes the point symmetry at *x*.

Let *M* be a Hermitian symmetric space of compact type. Then *M* is a symmetric space and a K¨ahler *C*-space. The two definitions of antipodal sets on *M* above coincide with each other.

A finite subset *X* of a K¨ahler *C*-space *M* will be called antipodal if

$$
t_xy=y \text{ for any } x,y\in X \text{ and any } t_x\in \mathbb{T}_x.
$$

Remark: Let *N* be a symmetric space.

Definition (Chen–Nagano (1988)).

A finite subset *X* of *N* is called antipodal if

$$
s_xy=y \text{ for any } x,y\in X,
$$

where s_x denotes the point symmetry at x .

Let *M* be a Hermitian symmetric space of compact type. Then *M* is a symmetric space and a K¨ahler *C*-space. The two definitions of antipodal sets on *M* above coincide with each other.

Example of non-symmetric case: Let $M = \text{Flag}_{2,2}(\mathbb{C}^6)$.

1 For $x = (V_1, V_2, V_3 = \mathbb{C}^6) \in \text{Flag}_{2,2}^{\mathbb{C}}(\mathbb{C}^6)$,

 $\mathbb{C}^6 = W_1 \oplus W_2 \oplus W_3$ (the orthogonal decomposition)

such that $V_1 = W_1$, $V_2 = W_1 \oplus W_2$. Consider

 $\mathbb{T}_x = S(U(1) \times U(1) \times U(1)) \cap \mathbb{C}^6 = W_1 \oplus W_2 \oplus W_3.$

 \rightsquigarrow $\mathbb{T}_x \curvearrowright$ Flag₂₂(\mathbb{C}^6).

2 $\{x, y\}$ ⊂ Flag_{2.2}(\mathbb{C}^{6}) is antipodal if and only if the decompositions corresponding to x and y of \mathbb{C}^6 are compatible (i.e. projections are commutative to each other).

Definition .

A finite subset *X* of *M* will be called antipodal if

$$
t_xy=y\text{ for any }x,y\in X\text{ and any }t_x\in\mathbb{T}_x.
$$

(L_1, L_2) : real forms of *M* defined by commutative (τ_1, τ_2) .

For any $q \in A_0(M)$ *with* L_1 \uparrow qL_2 *in* M *,*

 \blacksquare *L*₁ \cap *qL*₂ *is antipodal in M.*

 \blacksquare $\#(L_1 \cap qL_2) = \#(\iota(M) \cap \mathfrak{a}_{L_1,L_2}) = \dim_{\mathbb{Z}_2} H^*(L_1 \cap L_2; \mathbb{Z}_2).$

Definition .

A finite subset *X* of *M* will be called antipodal if

$$
t_xy=y \text{ for any } x,y\in X \text{ and any } t_x\in \mathbb{T}_x.
$$

 (L_1, L_2) : real forms of M defined by commutative (τ_1, τ_2) .

Theorem (Key theorem).

For any $q \in A_0(M)$ *with* $L_1 \pitchfork qL_2$ *in* M *,*

 \blacksquare *L*₁ \cap *gL*₂ *is antipodal in M.*

 \blacksquare $\#(L_1 \cap qL_2) = \#(\iota(M) \cap \mathfrak{a}_{L_1,L_2}) = \dim_{\mathbb{Z}_2} H^*(L_1 \cap L_2; \mathbb{Z}_2).$

Computations of \mathbb{Z}_2 -Lagrangian Floer homologies

- $M = (M, \omega, J)$: a Kähler–Einstein *C*-space.
- (L_1, L_2) : real forms of *M* with $\Sigma_{L_1}, \Sigma_{L_2} \geq 3$.

Fact .

Take $g \in \text{Ham}(M, \omega)$ *such that*

- \blacksquare L_1 \pitchfork qL_2 *in* M
- 2 *J is regular for g.*
- 3 *The number of isolated points of {J-holomorphic strips for* (*p, q*;*L*1*, gL*2)*}/*∼ *is even for any* $p, q \in L_1 \cap aL_2$.

Then...

 (L_1, L_2) : real forms of *M* with $\Sigma_{L_1}, \Sigma_{L_2} \geq 3$.

Fact .

- *Take* $q \in \text{Ham}(M, \omega)$ *such that*
	- \Box $L_1 \pitchfork qL_2$ *in* M
	- 2 *J is regular for g.*
	- 3 *The number of isolated points of {J-holomorphic strips for* (*p, q*;*L*1*, gL*2)*}/*∼ *is even for any p*, *q* ∈ *L*₁ ∩ *qL*₂*.*

Then

$$
HF(L_1, L_2; \mathbb{Z}_2) = \bigoplus_{p \in L_1 \cap gL_2} \mathbb{Z}_2[p].
$$

Fact .

- *Take* $q \in \text{Ham}(M, \omega)$ *such that*
	- \blacksquare $L_1 \pitchfork qL_2$ *in M*
	- 2 *J is regular for g.*
	- 3 *The number of isolated points of {J-holomorphic strips for* (*p, q*;*L*1*, gL*2)*}/*∼ *is even for any p*, *q* ∈ *L*₁ ∩ *qL*₂*.*

Then

$$
HF(L_1, L_2; \mathbb{Z}_2) = \bigoplus_{p \in L_1 \cap gL_2} \mathbb{Z}_2[p].
$$

Furthermore, for any $\phi \in \text{Ham}(M, \omega)$ *with* $L_1 \pitchfork \phi L_2$ *in* M *,*

 $#(L_1 \cap \phi L_2) \ge \dim_{\mathbb{Z}_2} HF(L_1, L_2; \mathbb{Z}_2) = \#(L_1 \cap gL_2).$

Fact .

- *Take* $q \in \text{Ham}(M, \omega)$ *such that*
	- \blacksquare $L_1 \pitchfork qL_2$ *in M*
	- 2 *J is regular for g.*
	- 3 *The number of isolated points of {J-holomorphic strips for* (*p, q*;*L*1*, gL*2)*}/*∼ *is even for any p*, *q* ∈ *L*₁ ∩ *qL*₂*.*

Then

$$
HF(L_1, L_2; \mathbb{Z}_2) = \bigoplus_{p \in L_1 \cap gL_2} \mathbb{Z}_2[p].
$$

Furthermore, for any $\phi \in \text{Ham}(M, \omega)$ *with* $L_1 \pitchfork \phi L_2$ *in* M *,*

 $\#(L_1 \cap \phi L_2) \ge \dim_{\mathbb{Z}_2} HF(L_1, L_2; \mathbb{Z}_2) = \#(L_1 \cap gL_2).$

 (L_1, L_2) : real forms of *M* with $\Sigma_{L_1}, \Sigma_{L_2} > 3$.

g ∈ Ham (M, ω) with $L_1 \pitchfork qL_2$.

For each $p, q \in L_1 \cap qL_2$, we put

 $\widehat{\mathcal{M}}_J(p,q;L_1,gL_2)^0$

 $:=$ the set of all isolated points of

 ${J-holo. strips for $(p, q; L_1, qL_2)$ }/parameter shifts.$

Definition of *J*-holomorphic strips:

Let $\Omega := \{s + it \mid s \in \mathbb{R}, 0 \leq t \leq 1\} \subset \mathbb{C}.$

A *J*-holomorphic map $u : \Omega \to M$ is said to be a strip for $(p, q; L_1, qL_2)$ if

$$
u(s) \in L_1 \text{ and } u(s+i) \in gL_2.
$$

■
$$
\lim_{s \to -\infty} u(s + it) = p
$$
 and $\lim_{s \to \infty} u(s + it) = q$.
\n■ $\int ||\frac{\partial u}{\partial s}||^2 ds dt < \infty$.

$$
\int \|\frac{\partial u}{\partial s}\|^2 ds dt < \infty.
$$

 $u(s + i \cdot)$ is not constant for each $s \in \mathbb{R}$.

$$
(L_1, L_2) : \text{ real forms of } M \text{ with } \Sigma_{L_1}, \Sigma_{L_2} \ge 3.
$$

g ∈ Ham(*M*, ω) with $L_1 \oplus qL_2$.

J is called regular for (L_1, qL_2) if

$$
E_u = D\overline{\partial}_J : T_u \mathcal{P}_u \to \mathcal{L}_u
$$

is surjective for any $u \in M_J(L_1, qL_2)$ (cf. Y.G.Oh [Comm. Pure Appl. Math. (1993)]).

$$
(L_1, L_2) : \text{ real forms of } M \text{ with } \Sigma_{L_1}, \Sigma_{L_2} \geq 3.
$$

g ∈ Ham(*M*, ω) with $L_1 \oplus qL_2$.

Definition .

J is called regular for (L_1, qL_2) if

$$
E_u = D\bar{\partial}_J : T_u \mathcal{P}_u \to \mathcal{L}_u
$$

is surjective for any $u \in M_J(L_1, gL_2)$ (cf. Y.G.Oh [Comm. Pure Appl. Math. (1993)]).

 (L_1, L_2) : real forms of *M* with $\Sigma_{L_1}, \Sigma_{L_2} \geq 3$.

g ∈ Ham (M, ω) with $L_1 \pitchfork qL_2$.

Put

$$
CF_g(L_1, L_2) := \bigoplus_{p \in L_1 \cap gL_2} \mathbb{Z}_2[p].
$$

Suppose that *J* is regular for (L_1, qL_2) . We put

$$
n_g(p,q;J) := \#\widehat{\mathcal{M}}_J(p,q;L_1,gL_2)^0 < \infty
$$

for each $p, q \in L_1 \cap qL_2$. Define

$$
\partial_{J,g}: CF_g(L_1,L_2) \to CF_g(L_1,L_2), [p] \mapsto \sum_{q \in L_1 \cap gL_2} n(p,q;J)[q].
$$

Then $\partial_{J,q} \circ \partial_{J,q} = 0$.

- $M = (M, \omega, J)$: a Kähler–Einstein *C*-space.
- (L_1, L_2) : real forms of *M* with $\Sigma_{L_1}, \Sigma_{L_2} \geq 3$.
- *g* ∈ Ham (M, ω) with $L_1 \pitchfork qL_2$.

$$
CF_g(L_1, L_2) := \bigoplus_{p \in L_1 \cap gL_2} \mathbb{Z}_2[p].
$$

Suppose that *J* is regular for (L_1, qL_2) . We put

$$
n_g(p,q;J) := \#\widehat{\mathcal{M}}_J(p,q;L_1,gL_2)^0 < \infty
$$

for each $p, q \in L_1 \cap aL_2$. Define

$$
\partial_{J,g}: CF_g(L_1,L_2) \to CF_g(L_1,L_2), [p] \mapsto \sum_{q \in L_1 \cap gL_2} n(p,q;J)[q].
$$

Then $\partial_{J,q} \circ \partial_{J,q} = 0$.

- $M = (M, \omega, J)$: a Kähler–Einstein *C*-space.
- (L_1, L_2) : real forms of *M* with $\Sigma_{L_1}, \Sigma_{L_2} \geq 3$.
- *g* ∈ Ham (M, ω) with $L_1 \pitchfork qL_2$.

$$
CF_g(L_1, L_2) := \bigoplus_{p \in L_1 \cap gL_2} \mathbb{Z}_2[p].
$$

Suppose that *J* is regular for (L_1, gL_2) . We put

$$
n_g(p,q;J) := \#\widehat{\mathcal{M}}_J(p,q;L_1,gL_2)^0 < \infty
$$

for each $p, q \in L_1 \cap qL_2$. Define

$$
\partial_{J,g}: CF_g(L_1, L_2) \to CF_g(L_1, L_2), [p] \mapsto \sum_{q \in L_1 \cap gL_2} n(p, q; J)[q].
$$

Then $\partial_{J,q} \circ \partial_{J,q} = 0$.

奥田 降幸 (広島大)

$$
CF_g(L_1, L_2) := \bigoplus_{p \in L_1 \cap gL_2} \mathbb{Z}_2[p].
$$

Suppose that *J* is regular for (L_1, gL_2) . We put

$$
n_g(p,q;J) := \#\widehat{\mathcal{M}}_J(p,q;L_1,gL_2)^0 < \infty
$$

for each $p, q \in L_1 \cap qL_2$. Define

$$
\partial_{J,g}: CF_g(L_1, L_2) \to CF_g(L_1, L_2), [p] \mapsto \sum_{q \in L_1 \cap gL_2} n(p, q; J)[q].
$$

Then $\partial_{J,q} \circ \partial_{J,q} = 0$.

In this situation, the \mathbb{Z}_2 -Lagrangian Floer homology of (M, L_1, L_2) can be "computed" as

$$
HF(L_1, L_2; \mathbb{Z}_2) = \text{Ker}\, \partial_{J,g}/\text{Image}\, \partial_{J,g}.
$$

$$
CF_g(L_1, L_2) := \bigoplus_{p \in L_1 \cap gL_2} \mathbb{Z}_2[p].
$$

Suppose that *J* is regular for (L_1, gL_2) . We put

$$
n_g(p,q;J) := \#\widehat{\mathcal{M}}_J(p,q;L_1,gL_2)^0 < \infty
$$

for each $p, q \in L_1 \cap qL_2$. Define

$$
\partial_{J,g}: CF_g(L_1, L_2) \to CF_g(L_1, L_2), [p] \mapsto \sum_{q \in L_1 \cap gL_2} n(p, q; J)[q].
$$

Then $\partial_{J,q} \circ \partial_{J,q} = 0$. In this situation, the \mathbb{Z}_2 -Lagrangian Floer homology of (M, L_1, L_2) can be "computed" as

$$
HF(L_1, L_2; \mathbb{Z}_2) = \text{Ker}\, \partial_{J,g}/\text{Image}\, \partial_{J,g}.
$$

Suppose that *J* is regular for (L_1, gL_2) . We put

$$
n_g(p,q;J) := \# \widehat{\mathcal{M}}_J(p,q;L_1,gL_2)^0 < \infty
$$

for each $p, q \in L_1 \cap qL_2$. Define

$$
\partial_{J,g} : CF_{\phi}(L_1, L_2) \to CF_{\phi}(L_1, L_2), [p] \mapsto \sum_{q \in L_1 \cap gL_2} n(p, q; J)[q].
$$

Then $\partial_{J,q} \circ \partial_{J,q} = 0$. In this situation, the \mathbb{Z}_2 -Lagrangian Floer homology of (M, L_1, L_2) can be "computed" as

$$
HF(L_1, L_2; \mathbb{Z}_2) = \text{Ker}\, \partial_{J,g}/\text{Image}\, \partial_{J,g}.
$$

In particular, for any $\phi \in \text{Ham}(M, \omega)$ with $L_1 \pitchfork \phi L_2$,

 $#(L_1 \cap \phi L_2) > \dim_{\mathbb{Z}_2}(\text{Ker}\,\partial_{L_1} / \text{Image}\,\partial_{L_2}).$

Suppose that *J* is regular for (L_1, gL_2) . We put

$$
n_g(p,q;J) := \# \widehat{\mathcal{M}}_J(p,q;L_1,gL_2)^0 < \infty
$$

for each $p, q \in L_1 \cap qL_2$. Define

$$
\partial_{J,g} : CF_{\phi}(L_1, L_2) \to CF_{\phi}(L_1, L_2), [p] \mapsto \sum_{q \in L_1 \cap gL_2} n(p, q; J)[q].
$$

Then $\partial_{J,q} \circ \partial_{J,q} = 0$. In this situation, the \mathbb{Z}_2 -Lagrangian Floer homology of (M, L_1, L_2) can be "computed" as

$$
HF(L_1, L_2; \mathbb{Z}_2) = \text{Ker}\, \partial_{J,g}/\text{Image}\, \partial_{J,g}.
$$

In particular, for any $\phi \in \text{Ham}(M, \omega)$ with $L_1 \pitchfork \phi L_2$,

$$
#(L_1 \cap \phi L_2) \ge \dim_{\mathbb{Z}_2}(\text{Ker }\partial_{J,g}/\text{Image }\partial_{J,g}).
$$

 (L_1, L_2) : real forms of *M* with $\Sigma_{L_1}, \Sigma_{L_2} \geq 3$.

Fact .

Suppose that $g \in \text{Ham}(M, \omega)$ *satisfies that*

 \blacksquare L_1 \pitchfork gL_2 *in* M

 \blacksquare *J* is regular for (L_1, gL_2) .

 $\mathbf{H} \oplus \mathcal{M}_I(p, q; L_1, qL_2)^0$ *is even for any* $p, q \in L_1 \cap \phi L_2$.

Then for any $\phi \in \text{Ham}(M, \omega)$ *with* $L_1 \pitchfork \phi L_2$,

 $#(L_1 \cap \phi L_2) > \dim_{\mathbb{Z}_2} HF(L_1, L_2; \mathbb{Z}_2) = #(L_1 \cap qL_2)$

Problem: Find such $q \in \text{Ham}(M, \omega)$.

Proof of our main theorem

- $M = (M, \omega, J)$: a Kähler–Einstein *C*-space.
- (L_1, L_2) : real forms defined by commutative (τ_1, τ_2) with $\Sigma_{L_1}, \Sigma_{L_2} \geq 3.$
- $\text{Our Goal: } \dim_{\mathbb{Z}_2} HF(L_1, L_2; \mathbb{Z}_2) = \#(\iota(M) \cap \mathfrak{a}_{L_1, L_2}).$

Recall: For any $q \in A_0(M)$ with $L_1 \pitchfork qL_2$ in M,

■ $L_1 \cap qL_2$ is antipodal in M.

■ $#(L_1 \cap gL_2) = #(\iota(M) \cap \mathfrak{a}_{L_1,L_2}) = \dim_{\mathbb{Z}_2} H^*(L_1 \cap L_2;\mathbb{Z}_2).$ Strategy: Find $q \in A_0(M) \subset \text{Ham}(M, \omega)$ such that

- 1 L_1 \pitchfork gL_2 in M .
- 2 *J* is regular for (L_1, qL_2) .
- **3** # $\mathcal{M}_J(p,q;L_1,qL_2)^0$ is even for any $p,q \in L_1 \cap qL_2$. Then

 $\dim_{\mathbb{Z}_2} HF(L_1, L_2; \mathbb{Z}_2) = \#(L_1 \cap gL_2) = \#(\iota(M) \cap \mathfrak{a}_{L_1, L_2}).$

Proof of our main theorem

- $M = (M, \omega, J)$: a Kähler–Einstein *C*-space.
- (L_1, L_2) : real forms defined by commutative (τ_1, τ_2) with $\Sigma_{L_1}, \Sigma_{L_2} \geq 3.$
- $\text{Our Goal: } \dim_{\mathbb{Z}_2} HF(L_1, L_2; \mathbb{Z}_2) = \#(\iota(M) \cap \mathfrak{a}_{L_1, L_2}).$ Recall: For any $q \in A_0(M)$ with $L_1 \pitchfork qL_2$ in M,
	- $L_1 \cap qL_2$ is antipodal in M.
	- \blacksquare $\#(L_1 \cap gL_2) = \#(\iota(M) \cap \mathfrak{a}_{L_1,L_2}) = \dim_{\mathbb{Z}_2} H^*(L_1 \cap L_2; \mathbb{Z}_2).$

Strategy: Find $g \in A_0(M) \subset \text{Ham}(M, \omega)$ such that

- 1 L_1 \pitchfork gL_2 in M .
- 2 *J* is regular for (L_1, qL_2) .
- **3** # $\mathcal{M}_J(p,q;L_1,qL_2)^0$ is even for any $p,q \in L_1 \cap qL_2$. Then

 $\dim_{\mathbb{Z}_2} HF(L_1, L_2; \mathbb{Z}_2) = \#(L_1 \cap gL_2) = \#(\iota(M) \cap \mathfrak{a}_{L_1, L_2}).$

Proof of our main theorem

- $M = (M, \omega, J)$: a Kähler–Einstein *C*-space.
- (L_1, L_2) : real forms defined by commutative (τ_1, τ_2) with Σ_{L_1} , $\Sigma_{L_2} > 3$.
- $\text{Our Goal: } \dim_{\mathbb{Z}_2} HF(L_1, L_2; \mathbb{Z}_2) = \#(\iota(M) \cap \mathfrak{a}_{L_1, L_2}).$ Recall: For any $q \in A_0(M)$ with $L_1 \pitchfork qL_2$ in M,
	- $L_1 \cap qL_2$ is antipodal in M.
- \blacksquare $\#(L_1 \cap gL_2) = \#(\iota(M) \cap \mathfrak{a}_{L_1,L_2}) = \dim_{\mathbb{Z}_2} H^*(L_1 \cap L_2; \mathbb{Z}_2).$ Strategy: Find $q \in A_0(M) \subset \text{Ham}(M, \omega)$ such that
	- \Box $L_1 \pitchfork qL_2$ in M.
	- 2 *J* is regular for (L_1, qL_2) .

3 $\#\widehat{\mathcal{M}}_J(p,q;L_1,qL_2)^0$ is even for any $p,q \in L_1 \cap qL_2$. Then

$$
\dim_{\mathbb{Z}_2} HF(L_1, L_2; \mathbb{Z}_2) = \#(L_1 \cap gL_2) = \#(\iota(M) \cap \mathfrak{a}_{L_1, L_2}).
$$

奥田 降幸 (広島大)

- $M = (M, \omega, J)$: Kähler–Einstein *C*-space.
- (L_1, L_2) : real forms of M defined by commutative (τ_1, τ_2) with Σ_{L_1} , Σ_{L_2} > 3.

 $\text{Our Goal: } \dim_{\mathbb{Z}_2} HF(L_1, L_2; \mathbb{Z}_2) = \#(\iota(M) \cap \mathfrak{a}_{L_1, L_2}).$ Strategy: Find $g \in A_0(M) \subset \text{Ham}(M, \omega)$ such that

- \blacksquare L_1 \pitchfork qL_2 in M .
- 2 *J* is regular for (L_1, qL_2) .
- 3 $\#\widehat{\mathcal{M}}_J(p,q;L_1,qL_2)^0$ is even for any $p,q \in L_1 \cap gL_2$.

Step 1: Find $q \in A_0(M)$ such that

- L_1 \uparrow aL_2 in M .
- *J* is regular for (L_1, gL_2) .
- Step 2: For such $q \in A_0(M)$, $\#\widehat{\mathcal{M}}_I(p,q;L_1,qL_2)^0$ is even for any $p, q \in L_1 \cap qL_2$.

Today, we focus on Step 2.

奥田 降幸 (広島大)

- $M = (M, \omega, J)$: Kähler–Einstein *C*-space.
- (L_1, L_2) : real forms of *M* defined by commutative (τ_1, τ_2) with Σ_{L_1} , Σ_{L_2} > 3.

 $\text{Our Goal: } \dim_{\mathbb{Z}_2} HF(L_1, L_2; \mathbb{Z}_2) = \#(\iota(M) \cap \mathfrak{a}_{L_1, L_2}).$ Strategy: Find $q \in A_0(M) \subset \text{Ham}(M, \omega)$ such that

- \blacksquare L_1 \uparrow aL_2 in M .
- 2 *J* is regular for (L_1, qL_2) .
- 3 $\#\widehat{\mathcal{M}}_J(p,q;L_1,gL_2)^0$ is even for any $p,q \in L_1 \cap gL_2$.

Step 1: Find $g \in A_0(M)$ such that

- \blacksquare *L*₁ \uparrow *gL*₂ in *M*.
- *J* is regular for (L_1, qL_2) .
- Step 2: For such $q \in A_0(M)$, $\#\widehat{\mathcal{M}}_I(p,q;L_1,qL_2)^0$ is even for any $p, q \in L_1 \cap qL_2$.

Today, we focus on Step 2.

奥田 降幸 (広島大)

Step 2: For such $q \in A_0(M)$, $\# \mathcal{M}_J(p,q;L_1,qL_2)^0$ is even for any $p, q \in L_1 \cap qL_2$.

- \blacksquare *M* : a Kähler *C*-space.
- (L_1, L_2) : a real forms of M with commutative (τ_1, τ_2) .
- $q \in A_0(M)$ with $L_1 \pitchfork qL_2$.

Lemma .

For each x ∈ *M, there exists a sequence of finite abelian subgroups*

$$
\{\mathrm{id}\} = \Gamma_x^0 \subset \Gamma_x^1 \subset \cdots \subset \Gamma_x^N
$$

of $\mathbb{T}_x = Z(A_0(M)^x)$ *such that*

- $\#\Gamma^l_x$ is a power of 2 for any l .
- x *is isolated in* $\operatorname{Fix}(M;\Gamma^N_x).$
- *For any real form* L *with* $x \in L$ *and any* $l = 1, \ldots, N$ *,* $L \cap \text{Fix}(M; \Gamma_x^{l-1})$ *is stable by* Γ_x^l *.*

奥田 降幸 (広島大)

For each x ∈ *M, there exists a sequence of finite abelian subgroups*

$$
\{\mathrm{id}\} = \Gamma_x^0 \subset \Gamma_x^1 \subset \cdots \subset \Gamma_x^N \subset \mathbb{T}_x \text{ such that}
$$

- $\#\Gamma^l_x$ is a power of 2 for any l .
- *x* is isolated in $\operatorname{Fix}(M;\Gamma^N_x).$
- For any real form L with $x \in L$ and any $l = 1, \ldots, N$, $L \cap \text{Fix}(M; \Gamma_x^{l-1})$ *is stable by* Γ_x^l .

Remark:

Let *N* be a symmetric space. Then for each $x \in N$,

- *s*_{*x*} is involutive, and hence $\{id_N, s_x\}$ is a group of order 2.
- \blacksquare *x* is isolated in $Fix(N; s_x)$.
- $s_x(L) = L$ for any totally geodesic submanifold *L* with $x \in L$.

For each x ∈ *M, there exists a sequence of finite abelian subgroups*

$$
\{\mathrm{id}\} = \Gamma_x^0 \subset \Gamma_x^1 \subset \cdots \subset \Gamma_x^N \subset \mathbb{T}_x \text{ such that}
$$

$$
\blacksquare \# \Gamma_x^l \text{ is a power of } 2 \text{ for any } l.
$$

$$
\blacksquare x \text{ is isolated in } \operatorname{Fix}(M;\Gamma_x^N).
$$

■ For any real form L with $x \in L$ and any $l = 1, \ldots, N$, $L \cap \text{Fix}(M; \Gamma_x^{l-1})$ *is stable by* Γ_x^l .

Remark:

Let *N* be a symmetric space. Then for each $x \in N$,

- *s*_{*x*} is involutive, and hence $\{id_N, s_x\}$ is a group of order 2.
- \blacksquare *x* is isolated in $Fix(N; s_x)$.
- $s_x(L) = L$ for any totally geodesic submanifold *L* with $x \in L$.

For each x ∈ *M, there exists a sequence of finite abelian subgroups* $\{id\} = \Gamma_x^0 \subset \Gamma_x^1 \subset \cdots \subset \Gamma_x^N \subset \mathbb{T}_x$ such that

- $\#\Gamma^l_x$ is a power of 2 for any l.
- *x* is isolated in $\text{Fix}(M; \Gamma^N_x)$.
- *For any real form L with x* ∈ *L and any l* = 1*,...,N,* $L \cap \text{Fix}(M; \Gamma_x^{l-1})$ *is stable by* Γ_x^l .

For any $p, q \in L_1 \cap qL_2$, there exists a sequence

$$
\widehat{\mathcal{M}}_J(p,q;L_1,gL_2)^0=\widehat{\mathcal{M}}_0\supset \widehat{\mathcal{M}}_1\supset\cdots\supset \widehat{\mathcal{M}}_N=\emptyset
$$

such that Γ_x^l *acts on* $\widehat{\mathcal{M}}_{l-1}$ *with* $\widehat{\mathcal{M}}_{l-1}^{\Gamma_x^l} = \mathcal{M}_l$ *. In particular,* $\#\overline{\mathcal{M}}_J(p,q;L_1,qL_2)^0$ is even if it is finite.

For each x ∈ *M, there exists a sequence of finite abelian subgroups* $\{id\} = \Gamma_x^0 \subset \Gamma_x^1 \subset \cdots \subset \Gamma_x^N \subset \mathbb{T}_x$ such that

- $\#\Gamma^l_x$ is a power of 2 for any l.
- *x* is isolated in $\text{Fix}(M; \Gamma^N_x)$.
- *For any real form L with x* ∈ *L and any l* = 1*,...,N,* $L \cap \text{Fix}(M; \Gamma_x^{l-1})$ *is stable by* Γ_x^l .

Proposition .

For any $p, q \in L_1 \cap qL_2$, there exists a sequence

$$
\widehat{\mathcal{M}}_J(p,q;L_1,gL_2)^0=\widehat{\mathcal{M}}_0\supset \widehat{\mathcal{M}}_1\supset\cdots\supset \widehat{\mathcal{M}}_N=\emptyset
$$

 $\textbf{such that } \Gamma^l_x$ acts on $\widehat{\mathcal{M}}_{l-1}$ with $\widehat{\mathcal{M}}_{l-1}^{\Gamma^l_x} = \mathcal{M}_l$. In particular, $\#\widehat{\mathcal{M}}_J(p,q;L_1,gL_2)^0$ is even if it is finite.

奥田 降幸 (広島大)

We obtained...

- $M = (M, \omega, J)$: a Kähler–Einstein *C*-space.
- (L_1, L_2) : a pair of real forms defined by commutative (τ_1, τ_2) on *M*.
- Suppose that Σ_{L_1} , Σ_{L_2} are both ≥ 3 .

Furture works

- Classifications of (M, L_1, L_2) in our setting.
- **Does the main theorem hold even if** (τ_1, τ_2) is not commutative?
- **Does the main theorem hold even if** $\Sigma_{L1} = 2$ **or** $\Sigma_{L2} = 2$ **?**
- **Applications for Hamilton volume minimizing problems?**

Fact (Iriyeh–Sakai–Tasaki (J. Math. Soc. Japan 2013)).

The real form S^n *of* $Q_n(\mathbb{C})$ *has the Hamilton volume minimizing property.*

Thank you for your attention!

Outline of the proof of the regularlity of *J*

Step 1: Find $q \in A_0(M)$ such that $L_1 \pitchfork qL_2$ and *J* is regular for (L_1, qL_2) .

1 First, we take $q \in A_0(M)$ as $L_1 \pitchfork qL_2$ and

$$
(\tau_1 \circ (g \circ \tau_2 \circ g^{-1}))^{2m} = \mathrm{id}_M
$$

for some $m \in \mathbb{Z}$ (we can find such q by using symmetric triads).

2 For each u ∈ $\mathcal{M}(p,q,L_1,qL_2)$, we find a non-constant holomorphic map

$$
f_u: \mathbb{C}P^1 \to M.
$$

³ If there exists a non-zero element of Coker*Eu*, then it defines a non-zero gloval holomorphic section of $f^*_u(TM)$ with at least two zeros.

Step 1: Find $q \in A_0(M)$ such that $L_1 \pitchfork qL_2$ and *J* is regular for (L_1, qL_2) .

∆ First, we take $g \in A_0(M)$ as $L_1 \pitchfork qL_2$ and

$$
(\tau_1 \circ (g \circ \tau_2 \circ g^{-1}))^{2m} = \mathrm{id}_M
$$

for some $m \in \mathbb{Z}$ (we can find such q by using symmetric triads).

2 For each u ∈ $\mathcal{M}(p, q, L_1, qL_2)$, we find a non-constant holomorphic map

 $f_u: \mathbb{C}P^1 \to M$.

- ³ If there exists a non-zero element of Coker*Eu*, then it defines a non-zero gloval holomorphic section of $f^*_u(TM)$ with at least two zeros.
- 4 However, this contradicts to the Kodaira vanishing theorem, thus $\text{Coker}E_u = 0$ for any *u*, i.e. *J* is regular for (L_1, qL_2) .

Step 1: Find $q \in A_0(M)$ such that $L_1 \pitchfork qL_2$ and *J* is regular for (L_1, qL_2) .

1 First, we take $q \in A_0(M)$ as $L_1 \pitchfork qL_2$ and

$$
(\tau_1 \circ (g \circ \tau_2 \circ g^{-1}))^{2m} = \mathrm{id}_M
$$

for some $m \in \mathbb{Z}$ (we can find such q by using symmetric triads).

2 For each u ∈ $\mathcal{M}(p, q, L_1, qL_2)$, we find a non-constant holomorphic map

$$
f_u: \mathbb{C}P^1 \to M.
$$

- ³ If there exists a non-zero element of Coker*Eu*, then it defines a non-zero gloval holomorphic section of $f^*_u(TM)$ with at least two zeros.
- 4 However, this contradicts to the Kodaira vanishing theorem, thus $\text{Coker}E_u = 0$ for any *u*, i.e. *J* is regular for (L_1, qL_2) .