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Introduction

(M, J,w) : homogeneous Kahler manifold
L1, Ly : real forms of M
i.e. do; : anti-holomorphic involutive isometry of M (i = 1,2)
s.t. L; = Fix(o;, M)o

totally geodesic Lagrangian submanifold

Problems
@ Is the intersection L N Lo discrete?

@ If so, count the intersection number #(L; N Lz), and describe
the geometric meaning of #(L1 N La).
Moreover, study the structure of the intersection L1 N Ls.

© Using the antipodal structure of the intersection, study the

Floer homology of L1 and L.
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Problems
@ s the intersection L1 N Ly discrete?

@ If so, count the intersection number #(L; N Ly), and describe
the geometric meaning of #(L; N La).
Moreover, study the structure of the intersection L1 N Ls.

M =CP!
L =RP!, L, 2RP!

#(LlﬂLQ) =2= dlmH*(Ll, Zg)
L1 N Lo : antipodal points

#(L1N¢pLe) > 2 V¢ € Ham(M,w)
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Previous studies

Theorem (Tanaka-Tasaki 2012)
M : Hermitian symmetric space of compact type
Li,Ly C M : real forms, L Ly

= Ly N Ly is an antipodal set of Ly and L.

In addition, if Ly and Ly are congruent to each other,

= L1 N Ly is a great antipodal set of L and L.

Theorem (lkawa-Tanaka-Tasaki 2015)

A necessary and sufficient condition for two real forms in a
compact Hermitian symmetric space to intersect transversally is
given in terms of symmetric triad (3,5, W).
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Antipodal sets of a compact symmetric space (1/2)

M : compact Riemannian symmetric space

Sz . geodesic symmetry at x € M

Definition (Chen-Nagano 1988)

Q@ A C M : antipodal set Lt sx(y) =y forall z,y € A

Q@ #oM = max{#A| A C M : antipodal set} 2-number

© A C M : great antipodal set L, H#HA=H#sM

Theorem (Takeuchi 1989)

M : symmetic R-space —> #oM = dim H,(M;Zs)
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Antipodal sets of a compact symmetric space (2/2)

RP™ Cc CP"

A :={Rey,...,Re,11} CRP™ great antipodal set
Forue U(n+1), RP" h uRP™ in CP"

RP" NuRP" = {Cey,...,Cepsi1} C CP"
#(RP"NuRP™) = n + 1 = #,RP" = dim H,(RP"; Zy)

Aim of our work

Generalizing the results on Hermitian symmetric spaces, study the

intersection of two real forms in a complex flag manifold.
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Complex flag manifolds

compact connected semisimple Lie group

G:
zo(#0) € g

M = Ad(G)xg C g

>~ Q)G = GY/PC

: complex flag manifold

Gxo = {g €G ‘ Ad(g)xO = .%'0}
w : Kirillov-Kostant-Souriau symplectic form on M defined by

w(X;,Y)) = (X,Y],z) (xe M, XY €g)

)T

J @ G-invariant complex structure on M compatible with w

(,-) == w(-,J-) : G-invariant Kahler metric

Takashi Sakai The intersection of two real flag manifolds



Antipodal set of a complex flag manifold (1/2)

For z € M and g € Z(G,), define s; 4 : M — M by
s0.9(y) = Ad(gz99; )y (v € M),
where g, € G satisfying Ad(g,)xo = x.

Fix(sy, M) :=={y € M | sy 4(y) =y (Vg € Z(Ga,))}

Definition

A C M : antipodal set A, y € Fix(sz, M) for all z,y € A
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Antipodal set of a complex flag manifold (2/2)

For any z € M,

Fix(sy, M) ={y € M | [z,y] = 0}.

Theorem 1 (Iriyeh-S.-Tasaki)
A C M : maximal antipodal set

—> dJt C g : maximal abelian subalgebra s.t.
A=Mnt

Hence A is an orbit of the Weyl group of g with respect to t.

Maximal antipodal sets of M are congruent to each other by G.
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Real flag manifolds in a complex flag manifold

(G, K) : symmetric pair of compact type
6 : involution of G s.t. Fix(6,G)g C K C Fix(0,G)

g=top
zo(#0) € p
L = Ad(K)xzo C p :real flag manifold, R-space
N N N
M := Ad(G)xg C g :complex flag manifold, C-space

>~ G/Gy = GC/PC
g =t+V-1p non-compact real form of g©
L=Mnp=K/K,, =G /(G NP
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The intersection of real flag manifolds

(G,K1), (G, K3) : symmetric pairs of compact type
01,05 : involutions of G

g="=0 +p1 =8t +po,
wo(# 0) € p1 NP2

Ly = Ad(Kl)l‘O, Ly = Ad(K2)$0 Cc M:= Ad(G)J}Q
For g € G, we consider the intersection of L; N Ad(g)Ls in M.

a : maximal abelian subspace of p; N po containing g

A:=expa C G : toral subgroup
Then G = K1AKy, ie. g=giags (g1 € K1,92 € Ka,a € A)

L1 N Ad(g)Ls = Ly N Ad(giage)Ls = Ad(g1) (L1 N Ad(a)Lg)
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Symmetric triads

Hereafter we assume that G is simple and 610, = 050;.

g= (81 Nt2)+ (p1 Np2) + (B1 Np2) + (p1 NE2)

ad(a)-inv. ad(a)-inv.
a C p1 Np2 : maximal abelian subspace

For A€a
pri={X €pinpa| (adH)’X = —(\, H)’X (H € a)}
Vi={Xepint|(adH)’X = —(\,H)>X (H € a)}

Li={rea\{0} [ pr#{0}}
W={Aea\{0} | V) #{0}}
Y=YUW

(i,E,W) : symmetric triad with multiplicities

Takashi Sakai The intersection of two real flag manifolds



The structure of the intersection

Areg 1= ﬂ {HEa

reD
aceW

(\H) ¢ 7Z, (o, H) ¢ 5 + wz}

W () : Weyl group of the root system 3 of a

a; : maximal abelian subspace of p; containing a (i =1,2)

W(R;) : Weyl group of the restricted root system R; of (g, ;)
w.r.t. a;

Theorem 2 (lkawa-Iriyeh-Okuda-S.-Tasaki)

For a = exp H (H € a), the intersection Ly N Ad(a)Ly is discrete

if and only if H € a,e;. Moreover, if L1 N Ad(a)Ls is discrete, then

LiNAd(a)Ly = W(X)zg = W(R1)zo Na=W(Rz)ze Na.

In particular, L1 N Ad(a)Ls is an antipodal set of M.
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(G, K1, K32) = (SU(2n), 50(2n), Sp(n))

o I,

01(9) =G, 02(9)=JngJ,! (9€G) where J,:= o

pmm_{[ Vo1X /-1y

’ X,Y € My(R), traceX =0 }

—/—-1Y /-1X X=X,V =-Y
Fix a maximal abelian subspace a in p; N ps as
i vV—-1X (@) ‘ X = diag(ty,...,tn),
a= =
O V=1X tH,oo o tn €R, t1 4+ +t, =0

Then
N=S=W={%(ei—¢;) | 1<i<j<n}

where e; —e; € a (i # j) is defined by (e; —e;, H) = t; — t;.



v—1X (0]
O v—1X

where X = diag(z1/pn,, ..., %r411n,,,) and x; are distinct real

xo = ca

numbers satisfying njx1 + - + npp12,41 = 0.

Ly = Ad(K1)zo = Fay,, o, (R?")

Ly = Ad(Ky)zo = Fy, . (H")

M = Ad(G)ao = Fa, o, (C*")
K=R,CorH
n,ni,...,n, satisfying n,41 :=n—(n1+---+n,) >0

Vj is a K-subspace of K",
FE o ®) =L (Vi V) | dimg V=g + -+ +ny,
icWwec---CcV,CcK"
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vV—-1Y @)

@) vV-1Y
where Y = diag(t1,...,t,) and t1,...,t, € R which satisfy
ty +---+t, =0. By our theorem,

a=expH, H= €a

Li N Ad(a)Ls is discrete

= Heareg:{Hea‘(ei—ej,H>§ZgZ(1§z‘<j§n)}

LiNAd(a)Ly = W(X)zo = W(R1)zoNa=W(Ra)zoNa

In this case, a maximal abelian subspace a in p; Np9 is also a

maximal abelian subspace in po, i.e. a = as and X = R».
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We shall express the intersection in the flag model Fﬁcm,...gnr (c2m).

V1, ..., U9y, : standard basis of C2"
Wi i= (vi, vnti)e = (viym (1 <i<n)

Proposition 2

For a =exp H (H € aycg),

R 2 H
F2n1,...,2nr(R n) maFnl,...,nr(Hn)
Z{(Wil@'”@Winl,Wil@"'@WinlJrnQ,...
e Wy @@ W
|1 <i) <+ <ipy <0y 1L <lipy41 <o <lpygng S Myeen

n1+-~~+nr)

L <ldpygotne 141 <00 <lpggogn, <N,

#{il, 000 7in1+"'+n,~} =N + .o+ nr}’

which is an antipodal set of Fé%hmgnr (c2m).

v
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Corollary 1

For a =exp H (H € tyeg)

#(Fon,..om, ") N gFy o, (HT))

T ey T
= #(FE, (") = dim H.(FE _, (H");Zy)
n!
T ongng! o npyg!

< #1(Fy, .. 20, (R*")) = dim H.(Fy,, _op, (R*"); Z2)

- #k(FZCnl,...QnT (C2n)> = dim H*(FZ(EH,...,QnT(CQn); ZQ)
(2n)!

(2n1)!(2n2)! -+ (2np41)!

Theorem (Sanchez, Berndt-Console-Fino)

For a complex flag manifold M and a real flag manifold L,

#r(M) = dim H,(M; Zs), #1(L) = dim H.(L; Zs).




Lagrangian Floer homology

(M,w) : closed symplectic manifold
J = {Ji}o<t<1 : family of w-compatible almost complex structures

Lo, Ly : closed Lagrangian submanifolds, Ly h Ly

CF(Lo,L1):= (D Zop
peLoNLy

0: CF(L(),Ll) — CF(LQ,Ll)
ap)= >, npa)-q

q€LoNLy

n(p, q) := #{isolated J-holomorphic strips from p to ¢} (mod 2)

808=0 =—> HF(Ly,L1;Zs) = kerd/imd |

Q@ HF(¢Lo,L1;Zo) = HF (Lo, L1;Z3) Vo, € Ham(M,w)
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Lagrangian Floer homology for a pair of real forms (1/2)

Theorem 3 (Iriyeh-S.-Tasaki 2013)

(M, Jy,w) : Einstein, Hermitian symmetric space of compact type
Lo, Ly : real forms, Lo M Ly, ¥1,,X1, > 3

_—

HF(Lo,L1;Z0) = P Zalp)

peLoNLy

Q If M is irreducible, then the assumptions are satisfied except
for the case RP! ¢ CP!.
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Lagrangian Floer homology for a pair of real forms (2/2)

Theorem 4 (Iriyeh-S.-Tasaki 2013)

M : irreducible Hermitian symmetric space of compact type
Lo, Ly : real forms of M, Ly M Ly

_—

© (M, Lo, L1) = (G5, (C*™), GR(HP™), U(2m)) (m > 2)

HF (Lo, L1;Zs) = (Z)*"

where 2™ < () = #, Lo < 22 = #5L4
Q@ (M, Lo, L;) : otherwise

HF(Ly, L1;Z9) = (ZQ)min{#zLo,#le}
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Generalized Arnold-Givental inequality

Corollary 2

M : irreducible Hermitian symmetric space of compact type
(Lo, L1) : real forms of M
—> for any ¢ € Ham(M,w), Lo h ¢ Ly

@ (M, Lo, L1) = (G5, (C*™), GR(HP™), U(2m)) (m > 2)

#(Lo N ¢L1) > 2m

Q@ (M, Lo, L;) : otherwise

#(LO N ¢L1) > min{SB(Lo,Zg), SB(Ll,ZQ)}
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Further problems

@ Study the intersection of two real flag manifolds in the case
where 9192 7'5 0291.

@ Calculate Lagrangian Floer homologies of pairs of real flag
manifolds in complex flag manifolds.

© Determine Hamiltonian volume minimizing properties of all
real forms in irreducible Hermitian symmetric spaces, more

generally, in complex flag manifolds.
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Thank you very much for your attention
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