The intersection of two real flag manifolds in a complex flag manifold

Takashi Sakai (Tokyo Metropolitan University / OCAMI)

joint work with Osamu Ikawa, Hiroshi Iriyeh,

Takayuki Okuda, and Hiroyuki Tasaki

December 13, 2016

The First Japan-Taiwan Joint Conference on Differential Geometry & the 8th TIMS-OCAMI-WASEDA Joint International Workshop on Differential Geometry and Geometric Analysis at Waseda University

 (M,J,ω) : homogeneous Kähler manifold

 L_1, L_2 : real forms of M

i.e.
$$\exists \sigma_i$$
 : anti-holomorphic involutive isometry of M $(i=1,2)$

s.t.
$$L_i = \operatorname{Fix}(\sigma_i, M)_0$$

totally geodesic Lagrangian submanifold

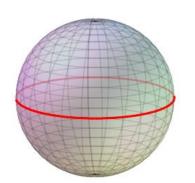
Problems

- **1** Is the intersection $L_1 \cap L_2$ discrete?
- ② If so, count the intersection number $\#(L_1 \cap L_2)$, and describe the geometric meaning of $\#(L_1 \cap L_2)$.

 Moreover, study the structure of the intersection $L_1 \cap L_2$.
- **3** Using the antipodal structure of the intersection, study the Floer homology of L_1 and L_2 .

Problems

- **1** Is the intersection $L_1 \cap L_2$ discrete?
- ② If so, count the intersection number $\#(L_1 \cap L_2)$, and describe the geometric meaning of $\#(L_1 \cap L_2)$.
 - Moreover, study the structure of the intersection $L_1 \cap L_2$.

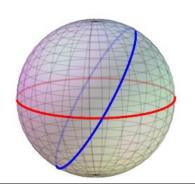


$$M = \mathbb{C}P^1$$
$$L_1 = \mathbb{R}P^1,$$

Problems

- **1** Is the intersection $L_1 \cap L_2$ discrete?
- ② If so, count the intersection number $\#(L_1 \cap L_2)$, and describe the geometric meaning of $\#(L_1 \cap L_2)$.

Moreover, study the structure of the intersection $L_1 \cap L_2$.



$$M = \mathbb{C}P^1$$

 $L_1 = \mathbb{R}P^1, \quad L_2 \cong \mathbb{R}P^1$

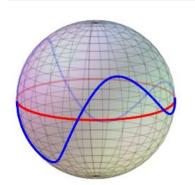
$$\#(L_1 \cap L_2) = 2 = \dim H_*(L_1; \mathbb{Z}_2)$$

 $L_1 \cap L_2$: antipodal points

Problems

- **1** Is the intersection $L_1 \cap L_2$ discrete?
- ② If so, count the intersection number $\#(L_1 \cap L_2)$, and describe the geometric meaning of $\#(L_1 \cap L_2)$.

Moreover, study the structure of the intersection $L_1 \cap L_2$.



$$M = \mathbb{C}P^1$$

 $L_1 = \mathbb{R}P^1, \quad L_2 \cong \mathbb{R}P^1$

$$\#(L_1 \cap L_2) = 2 = \dim H_*(L_1; \mathbb{Z}_2)$$

 $L_1 \cap L_2$: antipodal points

$$\#(L_1 \cap \phi L_2) \ge 2 \quad \forall \phi \in \operatorname{Ham}(M, \omega)$$

Previous studies

Theorem (Tanaka-Tasaki 2012)

M: Hermitian symmetric space of compact type

 $L_1, L_2 \subset M$: real forms, $L_1 \pitchfork L_2$

 $\implies L_1 \cap L_2$ is an antipodal set of L_1 and L_2 .

In addition, if L_1 and L_2 are congruent to each other,

 \implies $L_1 \cap L_2$ is a great antipodal set of L_1 and L_2 .

Theorem (Ikawa-Tanaka-Tasaki 2015)

A necessary and sufficient condition for two real forms in a compact Hermitian symmetric space to intersect transversally is given in terms of symmetric triad $(\tilde{\Sigma}, \Sigma, W)$.

Antipodal sets of a compact symmetric space (1/2)

 $M: \mathsf{compact}\ \mathsf{Riemannian}\ \mathsf{symmetric}\ \mathsf{space}$

 s_x : geodesic symmetry at $x \in M$

Definition (Chen-Nagano 1988)

- $② \#_2M := \max\{\#\mathcal{A} \mid \mathcal{A} \subset M : \mathsf{antipodal} \mathsf{ set}\} \ \ \mathsf{2-number}$

Theorem (Takeuchi 1989)

 $M: symmetric R-space \implies \#_2M = \dim H_*(M; \mathbb{Z}_2)$

Antipodal sets of a compact symmetric space (2/2)

Example

 $\mathbb{R}P^n\subset \mathbb{C}P^n$

$$\mathcal{A}:=\{\mathbb{R}e_1,\ldots,\mathbb{R}e_{n+1}\}\subset\mathbb{R}P^n$$
 great antipodal set

For $u \in U(n+1)$, $\mathbb{R}P^n \cap u\mathbb{R}P^n$ in $\mathbb{C}P^n$

$$\mathbb{R}P^n \cap u\mathbb{R}P^n \cong \{\mathbb{C}e_1, \dots, \mathbb{C}e_{n+1}\} \subset \mathbb{C}P^n$$
$$\#(\mathbb{R}P^n \cap u\mathbb{R}P^n) = n+1 = \#_2\mathbb{R}P^n = \dim H_*(\mathbb{R}P^n; \mathbb{Z}_2)$$

Aim of our work

Generalizing the results on Hermitian symmetric spaces, study the intersection of two real forms in a complex flag manifold.

Complex flag manifolds

G : compact connected semisimple Lie group $x_0(
eq 0) \in \mathfrak{g}$

$$M:=\operatorname{Ad}(G)x_0\subset \mathfrak{g}: extbf{complex flag manifold}$$

$$\cong G/G_{x_0}\cong G^{\mathbb{C}}/P^{\mathbb{C}}$$

$$G_{x_0}:=\{q\in G\mid \operatorname{Ad}(q)x_0=x_0\}$$

 ω : Kirillov-Kostant-Souriau symplectic form on M defined by

$$\omega(X_x^*, Y_x^*) := \langle [X, Y], x \rangle \qquad (x \in M, \ X, Y \in \mathfrak{g})$$

J : G-invariant complex structure on M compatible with ω $(\cdot,\cdot):=\omega(\cdot,J\cdot)$: G-invariant Kähler metric

Antipodal set of a complex flag manifold (1/2)

For $x \in M$ and $g \in Z(G_{x_0})$, define $s_{x,g}: M \to M$ by

$$s_{x,g}(y) := \operatorname{Ad}(g_x g g_x^{-1}) y \qquad (y \in M),$$

where $q_x \in G$ satisfying $Ad(q_x)x_0 = x$.

$$Fix(s_x, M) := \{ y \in M \mid s_{x,g}(y) = y \ (\forall g \in Z(G_{x_0})) \}$$

Definition

 $\mathcal{A} \subset M$: antipodal set $\stackrel{\text{def}}{\iff} y \in \text{Fix}(s_x, M)$ for all $x, y \in \mathcal{A}$

$$\stackrel{\text{def}}{\Longrightarrow}$$

Antipodal set of a complex flag manifold (2/2)

Proposition 1

For any $x \in M$,

$$Fix(s_x, M) = \{ y \in M \mid [x, y] = 0 \}.$$

Theorem 1 (Iriyeh-S.-Tasaki)

 $\mathcal{A} \subset M$: maximal antipodal set

 $\implies \exists \mathfrak{t} \subset \mathfrak{g} : maximal abelian subalgebra s.t.$

$$\mathcal{A}=M\cap\mathfrak{t}.$$

Hence ${\mathcal A}$ is an orbit of the Weyl group of ${\mathfrak g}$ with respect to ${\mathfrak t}.$

Maximal antipodal sets of M are congruent to each other by G.

Real flag manifolds in a complex flag manifold

$$(G,K): \text{ symmetric pair of compact type} \\ \theta: \text{ involution of } G \quad \text{ s.t. } \quad \operatorname{Fix}(\theta,G)_0 \subset K \subset \operatorname{Fix}(\theta,G) \\ \\ \mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p} \\ \\ L := \operatorname{Ad}(K)x_0 \subset \mathfrak{p} \quad : \text{ real flag manifold, } R\text{-space} \\ \\ \cap \qquad \qquad \cap \qquad \\ M := \operatorname{Ad}(G)x_0 \subset \mathfrak{g} \quad : \text{ complex flag manifold, } C\text{-space} \\ \\ \cong G/G_{x_0} \cong G^{\mathbb{C}}/P^{\mathbb{C}} \\ \\ \mathfrak{g}' := \mathfrak{k} + \sqrt{-1}\mathfrak{p} \qquad \text{non-compact real form of } \mathfrak{g}^{\mathbb{C}} \\ \\ L = M \cap \mathfrak{p} \cong K/K_{x_0} \cong G'/(G' \cap P^{\mathbb{C}}) \\ \end{aligned}$$

The intersection of real flag manifolds

 $(G,K_1),\;(G,K_2)$: symmetric pairs of compact type θ_1,θ_2 : involutions of G

$$\mathfrak{g}=\mathfrak{k}_1+\mathfrak{p}_1=\mathfrak{k}_2+\mathfrak{p}_2,$$

 $x_0(\neq 0) \in \mathfrak{p}_1 \cap \mathfrak{p}_2$

$$L_1 := Ad(K_1)x_0, \quad L_2 := Ad(K_2)x_0 \subset M := Ad(G)x_0$$

For $g \in G$, we consider the intersection of $L_1 \cap \operatorname{Ad}(g)L_2$ in M.

 \mathfrak{a} : maximal abelian subspace of $\mathfrak{p}_1\cap\mathfrak{p}_2$ containing x_0

 $A := \exp \mathfrak{a} \subset G$: toral subgroup

Then
$$G = K_1 A K_2$$
, i.e. $g = g_1 a g_2 \ (g_1 \in K_1, g_2 \in K_2, a \in A)$

$$L_1 \cap \operatorname{Ad}(g)L_2 = L_1 \cap \operatorname{Ad}(g_1 a g_2)L_2 = \operatorname{Ad}(g_1) \Big(L_1 \cap \operatorname{Ad}(a)L_2 \Big)$$

Symmetric triads

Hereafter we assume that G is simple and $\theta_1\theta_2=\theta_2\theta_1$.

$$\mathfrak{g} = \underbrace{(\mathfrak{k}_1 \cap \mathfrak{k}_2) + (\mathfrak{p}_1 \cap \mathfrak{p}_2)}_{\text{ad}(\mathfrak{a})\text{-inv.}} + \underbrace{(\mathfrak{k}_1 \cap \mathfrak{p}_2) + (\mathfrak{p}_1 \cap \mathfrak{k}_2)}_{\text{ad}(\mathfrak{a})\text{-inv.}}$$

 $\mathfrak{a}\subset\mathfrak{p}_1\cap\mathfrak{p}_2$: maximal abelian subspace

For $\lambda \in \mathfrak{a}$

$$\mathfrak{p}_{\lambda} := \left\{ X \in \mathfrak{p}_{1} \cap \mathfrak{p}_{2} \mid (\operatorname{ad}H)^{2}X = -\langle \lambda, H \rangle^{2}X \ (H \in \mathfrak{a}) \right\}$$

$$V_{\lambda} := \left\{ X \in \mathfrak{p}_{1} \cap \mathfrak{k}_{2} \mid (\operatorname{ad}H)^{2}X = -\langle \lambda, H \rangle^{2}X \ (H \in \mathfrak{a}) \right\}$$

$$\Sigma := \left\{ \lambda \in \mathfrak{a} \setminus \{0\} \mid \mathfrak{p}_{\lambda} \neq \{0\} \right\}$$

$$W := \left\{ \lambda \in \mathfrak{a} \setminus \{0\} \mid V_{\lambda} \neq \{0\} \right\}$$

$$\widetilde{\Sigma} := \Sigma \cup W$$

 $(\widetilde{\Sigma}, \Sigma, W)$: symmetric triad with multiplicities

The structure of the intersection

$$\mathfrak{a}_{\mathrm{reg}} := \bigcap_{\stackrel{\lambda \in \Sigma}{\alpha \in W}} \left\{ H \in \mathfrak{a} \; \middle| \; \langle \lambda, H \rangle \not \in \pi \mathbb{Z}, \; \langle \alpha, H \rangle \not \in \frac{\pi}{2} + \pi \mathbb{Z} \right\}$$

 $W(\tilde{\Sigma})$: Weyl group of the root system $\tilde{\Sigma}$ of ${\mathfrak a}$

 \mathfrak{a}_i : maximal abelian subspace of \mathfrak{p}_i containing \mathfrak{a} (i=1,2)

 $W(R_i)$: Weyl group of the restricted root system R_i of $(\mathfrak{g},\mathfrak{k}_i)$ w.r.t. \mathfrak{a}_i

Theorem 2 (Ikawa-Iriyeh-Okuda-S.-Tasaki)

For $a = \exp H$ $(H \in \mathfrak{a})$, the intersection $L_1 \cap \operatorname{Ad}(a)L_2$ is discrete if and only if $H \in \mathfrak{a}_{reg}$. Moreover, if $L_1 \cap \operatorname{Ad}(a)L_2$ is discrete, then

$$L_1 \cap \operatorname{Ad}(a)L_2 = W(\tilde{\Sigma})x_0 = W(R_1)x_0 \cap \mathfrak{a} = W(R_2)x_0 \cap \mathfrak{a}.$$

In particular, $L_1 \cap \operatorname{Ad}(a)L_2$ is an antipodal set of M.

Example

$$(G, K_1, K_2) = (SU(2n), SO(2n), Sp(n))$$

$$\theta_1(g) = \bar{g}, \quad \theta_2(g) = J_n \bar{g} J_n^{-1} \quad (g \in G) \quad \text{where} \quad J_n := \left[\begin{array}{cc} O & I_n \\ -I_n & O \end{array} \right]$$

$$\mathfrak{p}_1 \cap \mathfrak{p}_2 = \left\{ \left[\begin{array}{cc} \sqrt{-1}X & \sqrt{-1}Y \\ -\sqrt{-1}Y & \sqrt{-1}X \end{array} \right] \mid \begin{array}{c} X,Y \in M_n(\mathbb{R}), \ \mathrm{trace}X = 0 \\ {}^tX = X, \ {}^tY = -Y \end{array} \right\}$$

Fix a maximal abelian subspace \mathfrak{a} in $\mathfrak{p}_1 \cap \mathfrak{p}_2$ as

$$\mathfrak{a} = \left\{ H = \begin{bmatrix} \sqrt{-1}X & O \\ O & \sqrt{-1}X \end{bmatrix} \middle| \begin{array}{c} X = \operatorname{diag}(t_1, \dots, t_n), \\ t_1, \dots, t_n \in \mathbb{R}, \ t_1 + \dots + t_n = 0 \end{array} \right\}$$

Then

$$\widetilde{\Sigma} = \Sigma = W = \{ \pm (e_i - e_j) \mid 1 \le i < j \le n \}$$

where $e_i - e_j \in \mathfrak{a}$ $(i \neq j)$ is defined by $\langle e_i - e_j, H \rangle = t_i - t_j$.

$$x_0 = \left[\begin{array}{cc} \sqrt{-1}X & O \\ O & \sqrt{-1}X \end{array} \right] \in \mathfrak{a}$$

where $X = \operatorname{diag}(x_1I_{n_1},\ldots,x_{r+1}I_{n_{r+1}})$ and x_i are distinct real numbers satisfying $n_1x_1+\cdots+n_{r+1}x_{r+1}=0$.

$$L_1 = \operatorname{Ad}(K_1)x_0 \cong F_{2n_1,\dots,2n_r}^{\mathbb{R}}(\mathbb{R}^{2n})$$

$$L_2 = \operatorname{Ad}(K_2)x_0 \cong F_{n_1,\dots,n_r}^{\mathbb{H}}(\mathbb{H}^n)$$

$$M = \operatorname{Ad}(G)x_0 \cong F_{2n_1,\dots,2n_r}^{\mathbb{C}}(\mathbb{C}^{2n})$$

 $\mathbb{K} = \mathbb{R}, \mathbb{C} \text{ or } \mathbb{H}$

$$n, n_1, \ldots, n_r$$
 satisfying $n_{r+1} := n - (n_1 + \cdots + n_r) > 0$

$$F_{n_1,\dots,n_r}^{\mathbb{K}}(\mathbb{K}^n) = \left\{ (V_1,\dots,V_r) \left| \begin{array}{l} V_j \text{ is a } \mathbb{K}\text{-subspace of } \mathbb{K}^n, \\ \dim_{\mathbb{K}} V_j = n_1 + \dots + n_j, \\ V_1 \subset V_2 \subset \dots \subset V_r \subset \mathbb{K}^n \end{array} \right\}$$

$$a = \exp H, \quad H = \begin{bmatrix} \sqrt{-1}Y & O \\ O & \sqrt{-1}Y \end{bmatrix} \in \mathfrak{a}$$

where $Y = \operatorname{diag}(t_1, \dots, t_n)$ and $t_1, \dots, t_n \in \mathbb{R}$ which satisfy $t_1 + \dots + t_n = 0$. By our theorem,

 $L_1 \cap \operatorname{Ad}(a)L_2$ is discrete

$$\iff$$
 $H \in \mathfrak{a}_{reg} = \left\{ H \in \mathfrak{a} \mid \langle e_i - e_j, H \rangle \notin \frac{\pi}{2} \mathbb{Z} \ (1 \le i < j \le n) \right\}$

$$L_1 \cap \operatorname{Ad}(a)L_2 = W(\tilde{\Sigma})x_0 = W(R_1)x_0 \cap \mathfrak{a} = W(R_2)x_0 \cap \mathfrak{a}$$

In this case, a maximal abelian subspace \mathfrak{a} in $\mathfrak{p}_1 \cap \mathfrak{p}_2$ is also a maximal abelian subspace in \mathfrak{p}_2 , i.e. $\mathfrak{a} = \mathfrak{a}_2$ and $\widetilde{\Sigma} = R_2$.

We shall express the intersection in the flag model $F_{2n_1,\ldots,2n_r}^{\mathbb{C}}(\mathbb{C}^{2n})$.

$$v_1, \ldots, v_{2n}$$
: standard basis of \mathbb{C}^{2n}
 $W_i := \langle v_i, v_{n+i} \rangle_{\mathbb{C}} = \langle v_i \rangle_{\mathbb{H}} \ (1 \leq i \leq n)$

Proposition 2

For $a = \exp H$ $(H \in \mathfrak{a}_{reg})$,

$$F_{2n_{1},\dots,2n_{r}}^{\mathbb{R}}(\mathbb{R}^{2n}) \cap aF_{n_{1},\dots,n_{r}}^{\mathbb{H}}(\mathbb{H}^{n})$$

$$= \{ (W_{i_{1}} \oplus \dots \oplus W_{i_{n_{1}}}, W_{i_{1}} \oplus \dots \oplus W_{i_{n_{1}+n_{2}}}, \dots \dots \dots, W_{i_{1}} \oplus \dots \oplus W_{i_{n_{1}+\dots+n_{r}}})$$

$$\mid 1 \leq i_{1} < \dots < i_{n_{1}} \leq n, \ 1 \leq i_{n_{1}+1} < \dots < i_{n_{1}+n_{2}} \leq n, \dots,$$

$$1 \leq i_{n_{1}+\dots+n_{r-1}+1} < \dots < i_{n_{1}+\dots+n_{r}} \leq n,$$

$$\#\{i_{1}, \dots, i_{n_{1}+\dots+n_{r}}\} = n_{1} + \dots + n_{r}\},$$

which is an antipodal set of $F_{2n_1,...,2n_r}^{\mathbb{C}}(\mathbb{C}^{2n})$.

Corollary 1

For
$$a = \exp H \ (H \in \mathfrak{a}_{reg})$$

$$\# \left(F_{2n_{1},\dots,2n_{r}}^{\mathbb{R}}(\mathbb{R}^{2n}) \cap g F_{n_{1},\dots,n_{r}}^{\mathbb{H}}(\mathbb{H}^{n}) \right) \\
= \#_{I} \left(F_{n_{1},\dots,n_{r}}^{\mathbb{H}}(\mathbb{H}^{n}) \right) = \dim H_{*} \left(F_{n_{1},\dots,n_{r}}^{\mathbb{H}}(\mathbb{H}^{n}); \mathbb{Z}_{2} \right) \\
= \frac{n!}{n_{1}! n_{2}! \cdots n_{r+1}!} \\
< \#_{I} \left(F_{2n_{1},\dots,2n_{r}}^{\mathbb{R}}(\mathbb{R}^{2n}) \right) = \dim H_{*} \left(F_{2n_{1},\dots,2n_{r}}^{\mathbb{R}}(\mathbb{R}^{2n}); \mathbb{Z}_{2} \right) \\
= \#_{k} \left(F_{2n_{1},\dots,2n_{r}}^{\mathbb{C}}(\mathbb{C}^{2n}) \right) = \dim H_{*} \left(F_{2n_{1},\dots,2n_{r}}^{\mathbb{C}}(\mathbb{C}^{2n}); \mathbb{Z}_{2} \right) \\
= \frac{(2n)!}{(2n_{1})! (2n_{2})! \cdots (2n_{r+1})!}.$$

Theorem (Sánchez, Berndt-Console-Fino)

For a complex flag manifold M and a real flag manifold L,

$$\#_k(M) = \dim H_*(M; \mathbb{Z}_2), \qquad \#_I(L) = \dim H_*(L; \mathbb{Z}_2).$$

Lagrangian Floer homology

 (M,ω) : closed symplectic manifold

 $J=\{J_t\}_{0\leq t\leq 1}$: family of ω -compatible almost complex structures L_0,L_1 : closed Lagrangian submanifolds, $L_0\pitchfork L_1$

$$CF(L_0, L_1) := \bigoplus_{p \in L_0 \cap L_1} \mathbb{Z}_2 p$$

 $\partial: CF(L_0, L_1) \longrightarrow CF(L_0, L_1)$

$$\partial(p) = \sum_{q \in L_0 \cap L_1} n(p, q) \cdot q$$

 $n(p,q) := \#\{\text{isolated } J\text{-holomorphic strips from } p \text{ to } q\} \pmod{2}$

$$\partial \circ \partial = 0 \implies HF(L_0, L_1; \mathbb{Z}_2) := \ker \partial / \mathrm{im} \partial$$

Lagrangian Floer homology for a pair of real forms (1/2)

Theorem 3 (Iriyeh-S.-Tasaki 2013)

 (M,J_0,ω) : Einstein, Hermitian symmetric space of compact type L_0,L_1 : real forms, $L_0\pitchfork L_1$, $\Sigma_{L_0},\Sigma_{L_1}\geq 3$ \Longrightarrow

$$HF(L_0, L_1; \mathbb{Z}_2) \cong \bigoplus_{p \in L_0 \cap L_1} \mathbb{Z}_2[p]$$

① If M is irreducible, then the assumptions are satisfied except for the case $\mathbb{R}P^1\subset \mathbb{C}P^1$.

Lagrangian Floer homology for a pair of real forms (2/2)

Theorem 4 (Iriyeh-S.-Tasaki 2013)

M : irreducible Hermitian symmetric space of compact type L_0, L_1 : real forms of M , $L_0 \pitchfork L_1$ \Longrightarrow

$$HF(L_0, L_1; \mathbb{Z}_2) \cong (\mathbb{Z}_2)^{2^m}$$

where
$$2^m < {2m \choose m} = \#_2 L_0 < 2^{2m} = \#_2 L_1$$

 (M, L_0, L_1) : otherwise

$$HF(L_0, L_1; \mathbb{Z}_2) \cong (\mathbb{Z}_2)^{\min\{\#_2 L_0, \#_2 L_1\}}$$

Generalized Arnold-Givental inequality

Corollary 2

 ${\it M}$: irreducible Hermitian symmetric space of compact type

 (L_0,L_1) : real forms of M

 \implies for any $\phi \in \operatorname{Ham}(M,\omega)$, $L_0 \pitchfork \phi L_1$

 $\bullet \ (M,L_0,L_1) \cong (G_{2m}^{\mathbb{C}}(\mathbb{C}^{4m}), \ G_m^{\mathbb{H}}(\mathbb{H}^{2m}), \ U(2m)) \quad (m \geq 2)$

$$\#(L_0 \cap \phi L_1) \ge 2^m$$

 (M, L_0, L_1) : otherwise

$$\#(L_0 \cap \phi L_1) \ge \min\{SB(L_0, \mathbb{Z}_2), SB(L_1, \mathbb{Z}_2)\}\$$

Further problems

- Study the intersection of two real flag manifolds in the case where $\theta_1\theta_2 \neq \theta_2\theta_1$.
- 2 Calculate Lagrangian Floer homologies of pairs of real flag manifolds in complex flag manifolds.
- Oetermine Hamiltonian volume minimizing properties of all real forms in irreducible Hermitian symmetric spaces, more generally, in complex flag manifolds.

Thank you very much for your attention

Further problems

- Study the intersection of two real flag manifolds in the case where $\theta_1\theta_2 \neq \theta_2\theta_1$.
- 2 Calculate Lagrangian Floer homologies of pairs of real flag manifolds in complex flag manifolds.
- Oetermine Hamiltonian volume minimizing properties of all real forms in irreducible Hermitian symmetric spaces, more generally, in complex flag manifolds.

Thank you very much for your attention

