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1. Introduction

M: a compact Riemannian symmetric space

sx: the geodesic symmetry at x

i.e., (i) sx is an isometry of M, (ii) sx2 = id,

(iii) x is an isolated fixed point of sx

S ⊂ M: a subset

S: an antipodal set def⇐⇒ ∀x, y ∈ S, sx(y) = y

The 2-number #2M of M

#2M := max{|S| | S ⊂ M antipodal set}
S: great def⇐⇒ |S| = #2M

(Chen-Nagano 1988)



Examples. (1) M = Sn (⊂ Rn+1)

{x,−x}: a great antipodal set for any x ∈ Sn

(2) M = RPn

e1, . . . , en+1: an o.n.b. of Rn+1

{⟨e1⟩R, . . . , ⟨en+1⟩R}: a great antipodal set

(3) M = U(n) sx(y) = xy−1x

s1n(x) = x ⇔ x2 = 1n (1n: the unit matrix)

x2 = y2 = 1n ⇒ sx(y) = y iff xy = yx
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⊂ U(n): a great antipodal set



M ⊂ N: totally geodesic

S ⊂ M: an antip. set ⇒ S ⊂ N: an antip. set

⇝ #2M ≤ #2N

(Chen-Nagano) M: cpt. conn. sym. sp.

#2M ≥ χ(M), χ(M): the Euler number

“=” if M: a Herm. sym. sp. of compact type

(Takeuchi) M: a symmetric R-space

⇒ #2M =
dimM∑
k=0

bk(M ;Z2)

bk: the k-th Betti number



A symmetric R-sp. is a real form L of some

Herm. sym. sp.M of cpt. type, i.e., ∃τ : an

involutive anti-holomorphic isometry of M;

L = {x ∈ M | τ(x) = x}, which is connected.

(T.-Tasaki 2012)

M: a Herm. sym. sp. of compact type

L1, L2: real forms of M, L1 ⋔ L2

⇒ L1∩L2 is an antipodal set of Li (i = 1,2).

Moreover, if L1, L2 are congruent, L1∩L2 is

great.



Remark. Sn, RPn, and U(n) are sym.R-sp.

Remark. There exists a maximal antipodal

set which is not great in general.

(T.-Tasaki 2013) For a sym.R-sp.M (i)

any antipodal set of M is included in a great

antipodal set, (ii) any two great antipodal

sets of M are I(M)0-congruent, (iii) a great

antipodal set of M is an orbit of the Weyl

group.



Chen-Nagano determined #2M of almost

all compact symmetric spaces M. On the

other hand, we are interested in the struc-

tures of antipodal sets of M.

Our goal: Classify maximal antipodal sets

of compact symmetric spaces.



2.Maximal antipodal subgroups of compact

Lie groups

G: a cpt. Lie gr. with bi-invariant metric

sx(y) = xy−1x (x, y ∈ G)

1：the unit element of G

s1(y) = y ⇔ y2 = 1

If x2 = y2 = 1, sx(y) = y ⇔ xy = yx

1 ∈ S：max. antipodal set of G ⇒ S: subgroup

S ∼= Z2 × · · · × Z2︸ ︷︷ ︸
r

|S| = 2r

r ≥ rank(G) (r > rank(G) can happen)



Classification of max. antip. subgroups (MAS)

∆n :=
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⊂ O(n)

∆+
n := {g ∈ ∆n | det g = 1}

A MAS of O(n), U(n), Sp(n) is conjugate to

∆n. A MAS of SO(n), SU(n) is conjugate

to ∆+
n .

#2O(n) = #2U(n) = #2Sp(n) = 2n

#2SO(n) = #2SU(n) = 2n−1



D[4] :=


±1 0
0 ±1

 ,
 0 ±1
±1 0


 ⊂ O(2)

n = 2k · l, l：odd

0 ≤ s ≤ k

D(s, n) := {d1⊗· · ·⊗ds⊗d0 | d1, . . . , ds ∈ D[4], d0 ∈
∆n/2s} = D[4]⊗ · · · ⊗D[4]︸ ︷︷ ︸

s
⊗∆n/2s ⊂ O(n)

Q[8] := {±1,±i,±j,±k}
i2 = j2 = k2 = −1,

ij = −ji = k, jk = −kj = i, ki = −ik = j



Theorem 1（T.-Tasaki）

G̃ = U(n), O(n), Sp(n)

G = U(n)/{±1n}, O(n)/{±1n}, Sp(n)/{±1n}
πn : G̃ → G : the projection

n = 2k · l, l : odd

(1) MAS of G = O(n)/{±1n} is conjugate to

πn(D(s, n)) (0 ≤ s ≤ k)

where (s, n) = (k − 1,2k) is excluded.

(2) MAS of G = U(n)/{±1n} is conjugate to

πn({1,
√
−1}D(s, n)) (0 ≤ s ≤ k)

where (s, n) = (k − 1,2k) is excluded.



(3) MASofG = Sp(n)/{±1n} is conjugate to

πn(Q[8] ·D(s, n)) (0 ≤ s ≤ k)

where (s, n) = (k − 1,2k) is excluded.

Remark. ∆2 ⊊ D[4].

D(k − 1,2k) = D[4]⊗ · · · ⊗D[4]︸ ︷︷ ︸
s

⊗∆2

⊊ D[4]⊗ · · · ⊗D[4]︸ ︷︷ ︸
s

⊗D[4] = D(k,2k)

Griess (1991) and Yu (2013) classified con-

jugate classes of elementary abelian p-subgr.

of algebraic groups by algebraic methods.



3.Maximal antipodal sets of classical com-

pact symmetric spaces

We use an appropriate totally geodesic em-

bedding of classical compact sym. sp.M =

G/K into G and the classification of MAS

of G.

K = R,C,H O(n,K) := O(n)(K = R), U(n)(K =

C), Sp(n)(K = H)

{g diag(1, . . . ,1︸ ︷︷ ︸
k

,−1, . . . ,−1︸ ︷︷ ︸
n−k

) g−1 | g ∈ O(n,K)}

∼= O(n,K)/O(k,K)×O(n− k,K) ∼= Gk(Kn)



CI(n) := {x ∈ Sp(n) | x2 = −1n} ∼= Sp(n)/U(n)

DIII(n) := {x ∈ SO(2n) | x2 = −12n,Pf(x) =

1} ∼= SO(2n)/U(n)

Maximal antip. sets of CI(n) and CI(n)/{±1n}
i∆n: unique max. antip. set of CI(n) up to

congruence #2CI(n) = 2n

Sp(n)∗ := Sp(n)/{±1n}
πn : Sp(n) → Sp(n)∗ the projection

CI(n)∗ := πn(CI(n)) = CI(n)/{±1n}



CI(n)∗ ⊂ {x ∈ Sp(n)∗ | x2 = πn(1n)}
Let S ⊂ CI(n)∗be a max. antipodal set. Then

{πn(1n)}∪S is an antipo. set of Sp(n)∗. There

is a max. antipo. subgr. S̃ of Sp(n)∗ such that

{πn(1n)} ∪ S ⊂ S̃. By Theorem 1,

S̃ = πn(g)πn(Q[8] ·D(s, n))πn(g−1)

for some g ∈ Sp(n). Hence

{πn(1n)}∪πn(g)−1Sπn(g) ⊂ πn(Q[8]·D(s, n)).

By the maximality of S we obtain

πn(g)−1Sπn(g) = πn(Q[8] ·D(s, n)) ∩ CI(n)∗.

RHS= πn({x ∈ Q[8] ·D(s, n) | x2 = −1n}).



PD(s, n) := {d ∈ D(s, n) | d2 = 1n}
ND(s, n) := {d ∈ D(s, n) | d2 = −1n}

{x ∈ Q[8] ·D(s, n) | x2 = −1n}
= ND(s, n) ∪ {i, j, k}PD(s, n)

n = 2k · l, l：odd

Theorem 2 (T.-Tasaki) A maximal antipo-

dal set of CI(n)∗ is congruent to

πn(ND(s, n) ∪ {i, j, k}PD(s, n)) (0 ≤ s ≤ k)

where (s, n) = (k − 1,2k) is excluded.


